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Chapter 1

Polynomial Identity Testing

1.1 Introduction

Polynomial identity testing is the problem of testing if a polynomial P is
equal to zero. It has always been one of the most important problems in
theoretical computer science. Many famous problem reduce to polynomial
identity testing. Agrawal and Biswas [AB03] showed that testing whether a
number n is prime or not reduces to testing whether following polynomial
P(x) is zero or not mod n.

P(x) = (1 + x)n − 1− xn

It was shown in [AB03] that number n is prime if and only if P(x) = 0
(mod n). Agrawal, Kayal and Saxena [AKS04] were able to derandom-
ize identity testing of P(x) to get the first polynomial time deterministic
algorithm for primality testing. It was observed in [MVV87] that the deter-
minant polynomial of Tutte matrix of a graph is non-zero if and only if the
graph has a perfect matching.

Polynomial identity testing has been studied in various models. Com-
plexity of this problem is highly dependent on the model in which we study
it. For example, if polynomial is given as a list of coefficients and monomi-
als then this problem is trivial. Arithmetic circuits and black-box model
have been two of the most prominent models in which polynomial identity
testing has been studied extensively.

Schwartz [Sch80] and Zippel [Zip79] devised randomized algorithm for
polynomial identity testing. They observed that if we evaluate the polyno-
mial at a random point from a large enough domain then we get a non-zero
answer with high probability, if the input polynomial was non-zero. The
size of domain depends upon the degree of the input polynomial. Their
observation is famously known as the Schwartz-Zippel Lemma and can be
found in almost any literature dealing with algebraic computations, such
as [GG03].
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Chen and Kao [CK97] introduced a new approach to polynomial iden-
tity testing over black-box model. They used rational approximation of
smartly chosen irrational numbers as the evaluation point. They were able
to show that we get a non-zero answer for this point with high probabil-
ity if the input polynomial was non-zero. Algorithm by Chen and Kao
[CK97] used only ∑n

i=1dlog(di + 1)e random bits, where n is the number of
variables and di is the bound on the degree of the i-th variable. But their
algorithm only worked for polynomials over integers. Lewin and Vadhan
[LV98] extended the idea of Chen and Kao to get a randomized algorithm
using ∑n

i=1dlog(di + 1)e random bits over any field. Whereas Chen and
Kao [CK97] used square roots of prime numbers to construct the irrational
numbers, Lewin and Vadhan [LV98] used square roots of irreducible poly-
nomials over the underlying field. Lewin and Vadhan [LV98] also showed
almost matching lower bound on the number of random bits used. More
precisely, they showed a lower bound of (1 − o(1))∑n

i=1 log(di + 1) ran-
dom bits for any algorithm which made only poly(n) queries to black-
box. This approach also gave a new time-error trade-off instead of regular
randomness-error trade-off.

Agrawal and Biswas [AB03] introduced yet another framework for poly-
nomial identity testing using the same number of random bits, i.e.,
d∑n

i=1 log(di + 1)e. They constructed a set of polynomials such that any
non-zero polynomial cannot be divisible by too many of the polynomials
in the set of the polynomials they constructed.

Goal of all the approaches to polynomial identity testing has been to
get a deterministic algorithm for this problem. Namely, given a arithmetic
circuit C of input length l, can we find a deterministic algorithm which
runs in time poly(l) and tests whether the polynomial represented by C is
zero? Currently this problem is known to be in complexity class coRP. It
is a long standing open problem to show whether this problem belongs to
complexity class P.

Reducing the number of random bits has been an intermediate goal to
understand this problem better and perhaps solve it in the long run. We
also study the problem of reducing random bits for black-box model over
reals.

1.2 Our Results

We study the polynomial identity testing in the black-box model. We con-
sider sparse polynomials over the reals. By sparse, we mean that we are
guaranteed that polynomial has at most m monomials for some given num-
ber m. More specifically, we study the polynomial identity testing in the
model which can be pictured as follows.
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P(x1, x2, . . . xn)
(a1, a2, . . . an) P(a1, a2, . . . an) 6= 0

Figure 1.2.1: Black-Box Model

Here P(x1, x2, . . . , xn) is polynomial of unbounded degree over the re-
als. We are guaranteed that it has at most m monomials. The black-box gets
a point on which we want to evaluate the polynomial and the black-box
returns whether the polynomial is zero or not on this point. We want both
deterministic and randomized algorithm for this problem.

This problem was extensively studied in [BE11]. Bläser and Engels
[BE11] devised a deterministic algorithm which runs in time Õ(m3n3). They
also devised a randomized algorithm which runs in time poly(n, log m) and
uses O(log2 m) random bits. It is not difficult to show that any randomized
algorithm which runs in time poly(n, log m) has to use at least Ω(log m)
random bits. We present a new deterministic algorithm which runs in
time Õ(m2n). For the polynomials whose degree is bounded by poly(m)
and whose coefficients are rationals, we present a randomized algorithm
which runs in time poly(n, log m) using only O(log m) random bits. Also,
we tweak the randomized algorithm in [BE11] to reduce the number of ran-

dom bits to O( log2 m
log log m ) .

1.3 Preliminaries

In this section, we formally define the problem we want to solve and corre-
sponding notations.

Definition 1.1. A polynomial P(x1, x2, . . . , xn) is called m-sparse if it can be
written in the following form

P(x1, x2, . . . , xn) =
m

∑
i=1

ci

n

∏
j=1

x
αij
j .

We say that the degree of P(x1, x2, . . . , xn) is bounded by d if

∀i ∈ [m], ∀j ∈ [n] αij ≤ d.

Here we have that for k 6= l : (αk1, αk2, . . . αkn) 6= (αl1, αl2, . . . αln).

As mentioned earlier, we will usually work over polynomials over the
field of reals. Hence ci ∈ R in the above definition.

Now we define the problem which we want to solve.
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Problem 1.2 (PITRBB). Given an m-sparse polynomial P(x1, x2, . . . , xn) ∈
R[x1, x2, . . . , xn] as a black-box, PITRBB is the problem of testing whether
P(x1, x2, . . . , xn) is the zero polynomial.

Problem 1.3 (PITQBB). Given an m-sparse polynomial P(x1, x2, . . . , xn) ∈
Q[x1, x2, . . . , xn] as a black-box, PITQBB is the problem of testing whether
P(x1, x2, . . . , xn) is the zero polynomial.

We use the notation ˜O(t) to denote the complexity O(t · (log t)O(1)).
Whenever we say “time” in the discussion that follows, we will always
mean number of bit operations. We shall use the following basic fact about
prime numbers which follows from the famous Prime Number Theorem.

Fact 1.4. The n-th prime number’s magnitude is of order Θ(n log n).

Fact 1.5. Two positive numbers of bit length m and n respectively can be multiplied
using O(mn) number of bit operations.

Corollary 1.6. If we have t positive numbers n1, n2, . . . , nt of bit length k each
then their multiplication, i.e., n1 · n2 · . . . · nt can be computed using O((kt)2)
number of bit operations.

Corollary 1.7. Given a positive number M of bit length m and a positive number
n, Mn can be computed using O((mn)2) number of bit operations.

Lemma 1.8 (THEOREM 5.4.1 in [BS96]). For positive integers a, e and n ≥ a,
there is an algorithm to compute ae mod n in O((log e)(log n)2) bit operations.

Lemma 1.9 (Lemma 4.4 in [BE11]). Let N ≥ 1 be a positive number. We can
find a prime number p satisfying N < p ≤ 2N with success probability ≥ 1− β,
using O(log N + log 1

β ) random bits and poly(log N, log 1
β ) bit operations.

We shall need Descartes’s Rule of Signs in the ensuing discussion. A
proof of Descartes’s Rule of Signs can be found in [Wan04].

Theorem 1.10 (Descartes’s Rule of Signs). Let p(x) = a1xb1 + a2xb2 + . . . +
anxbn be a polynomial with nonzero real coefficients ai, where the bi are integers
satisfying 0 ≤ b1 < b2 < . . . < bn. Then the number of positive real zeros of p(x)
(counted with multiplicities) is either equal to the number of variations in sign in
the sequence a1, a2, . . . , an of the coefficients or less than that by an even whole
number.

Corollary 1.11. Let p(x) = a1xb1 + a2xb2 + . . . + anxbn be a polynomial with
nonzero real coefficients ai, where the bi are integers satisfying 0 ≤ b1 < b2 <
. . . < bn. Then the number of positive real zeros of p(x) (counted with multiplici-
ties) is less than n.
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We shall also need the following trivial lemma for bounding probabili-
ties of error in the analysis of our randomized algorithm.

Lemma 1.12. Let A and B be two probabilistic events such that Pr[A | B] ≥
1 − ε and Pr[B] ≥ 1 − δ for some non-negative real numbers δ and ε. Then
Pr[A] ≥ 1− (δ + ε).

Proof. By the law of total probability, we have

Pr[A] = Pr[A | B] · Pr[B] + Pr[A | ¬B] · Pr[¬B]
≥ Pr[A | B] · Pr[B]
≥ (1− ε)(1− δ)

= 1− (δ + ε) + ε · δ
≥ 1− (δ + ε).

1.4 Algorithms for PITRBB and PITQBB

Now we present an improved deterministic algorithm. This algorithm is
faster than the deterministic algorithm presented in [BE11]. For PITRBB,
we usually want randomized algorithms running in time poly(n, log m).
We present two randomized algorithms. The first randomized algorithm
achieves a matching upper bound of O(log m) random bits for a special
case of PITQBB. In this special case, we need that the degree of the polyno-
mial is bounded by poly(m). Second randomized algorithm is for PITRBB.

It uses only O( log2 m
log log m ) random bits.

1.4.1 Improved deterministic algorithm

As mentioned earlier, Bläser and Engels [BE11] devised a deterministic al-
gorithm for PITRBB which runs in time Õ(m3n3). Their algorithm relies on
a lemma which is similar to Schwartz-Zippel, but for sparse polynomials.
We use a completely different approach here to get an improved determin-
istic algorithm for PITRBB. This approach dates back to [BO88]. Ben-or
and Tiwari [BO88] used this approach to devise the first deterministic algo-
rithm for interpolating sparse multivariate polynomials over the reals. But
we can also use this approach for polynomial identity testing.

Lemma 1.13. Let pi be the i-th prime number. Let Pk = (pk−1
1 , pk−1

2 , . . . ,
pk−1

n ) for 1 ≤ k ≤ m. Then any non-zero m-sparse polynomial is zero on at most
m− 1 of the points P1, P2, . . . , Pm.



CHAPTER 1. POLYNOMIAL IDENTITY TESTING 6

Proof. Let P(x1, x2, . . . , xn) be a non-zero m-sparse polynomial. Assume
that P(x1, x2, . . . , xn) evaluates to zero all m points P1, P2, . . . , Pm. Let

P(x1, x2, . . . , xn) =
m

∑
i=1

ci

n

∏
j=1

x
αij
j

Then

P(Pk) = P(pk−1
1 , pk−1

2 , . . . , pk−1
n ) =

m

∑
i=1

ci

n

∏
j=1

(pk−1
j )αij

=
m

∑
i=1

ci

(
n

∏
j=1

p
αij
j

)k−1

Let us use qi to denote the integer ∏n
j=1 p

αij
j . Since,

for k 6= l : (αk1, αk2, . . . αkn) 6= (αl1, αl2, . . . αln).
We get that qk 6= ql for k 6= l. Evaluation of P at points P1, P2, . . . , Pm can

be represented as the following linear system.
1 q1 · · · qm−1

1
1 q2 · · · qm−1

2
...

...
...

1 qm · · · qm−1
m


T 

c1
c2
...

cm

 =


P(P1)
P(P2)

...
P(Pm)


Above system is of the form ATc = r. Here A is Vandermonde matrix.

A is known to be invertible when all qi’s are pairwise distinct, hence AT

is also invertible. Since P is non-zero, at least one of the ci’s is non-zero.
Hence c 6= 0.

By assumption, P(x1, x2, . . . , xn) evaluates to zero on all points
P1, P2, . . . , Pm, hence r = 0. Therefore we have ATc = 0. But this means
kernel of AT contains a non-zero vector c, making AT singular. But AT is
invertible. Hence P(x1, x2, . . . , xn) cannot evaluate to zero on all m points
P1, P2, . . . , Pm.

With the previous lemma, we are ready to describe our deterministic
algorithm for PITRBB.
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Algorithm 1.1 Deterministic Algorithm for PITRBB
Input: A black-box for an m-sparse multivariate polynomial
P(x1, x2, . . . , xn).
Output: Determine whether P(x1, x2, . . . , xn) is zero or not.

1. Determine the first n primes p1, p2, . . . , pn.

2. For k = 1 to m

(a) Query the black-box at the point Pk = (pk−1
1 , pk−1

2 , . . . , pk−1
n ).

3. If all the answers were zero in Step 2a then output “P(x1, x2, . . . , xn)
is zero” else output “P(x1, x2, . . . , xn) is non-zero”.

Theorem 1.14. Algorithm 1.1 solves PITRBB in time Õ(m2n).

Proof. Correctness of Algorithm 1.1 is a trivial consequence of Lemma 1.13.
For finding first n primes p1, p2, . . . , pn in Step 1, we just need to iterate
on first Θ(n log n) numbers and checks for primes. Using AKS algorithm
[AKS04], we can test primality of any number of order Θ(n log n) in time
O((log n)O(1)). Hence Step 1 takes Õ(n) time. We can compute each Pk+1
from Pk. Computing P2 takes ˜O(n) time as Step 1 takes Õ(n) time. To com-
pute i-th component of Pk+1 from Pk, we need to multiply pi with pk−1

i . This
multiplication takes O(k log2 n) due to Fact 1.5 and the fact that pk−1

i has
size of O(k log n) bits. Hence Pk+1 can be computed in O(kn log2 n) ∈ Õ(kn)
time. Computing P1, P2, . . . , Pm takes ∑m

k=1 Õ(kn) time, which is Õ(m2n).
Hence Step 2 takes Õ(m2n) time in total. Thus Algorithm 1.1 runs in the
time Õ(m2n).

1.4.2 Randomized Algorithm when the degree is poly(m)

We assume that n ≤ m. If n > m then Algorithm 1.1 runs in time Õ(m2n) =
Õ(n3) time. Hence if n > m, we already have a deterministic algorithm for
PITRBB running in time poly(n). As described earlier, any randomized al-
gorithm which runs in time poly(n, log m) has to use at least Ω(log m) ran-
dom bits to solve PITRBB. Ideally, we want to solve PITRBB for unbounded
degree polynomials in time poly(n, log m) using only O(log m) random bits.
This would match the known lower bound of Ω(log m) random bits. In
this subsection, we describe the randomized algorithm which runs in time
poly(n, log m) and solves PITQBB (and not PITRBB) using only O(log m)
random bits. We shall need following lemma, which can be attributed to
[BE11]. We repeat the proof of [BE11] for the sake of completeness.



CHAPTER 1. POLYNOMIAL IDENTITY TESTING 8

Lemma 1.15. Let N = d (
m
2 )n
ε e and p be a prime between N and 2N. Let vk denote

the vector (1, k mod p, k2 mod p, . . . , kn−1 mod p), here k ∈ [p]. Also, let vkl
denote the l-th component of vk. Then for any non-zero m-sparse multivariate
polynomial P(x1, x2, . . . , xn),

Pr
k∈[p]

[P(xvk1 , xvk2 , . . . , xvkn) 6= 0] ≥ 1− ε

Proof. P(x1, x2, . . . , xn) is of the following form.

P(x1, x2, . . . , xn) =
m

∑
i=1

ci

n

∏
j=1

x
αij
j

Define uij = (αi1 − αj1, αi2 − αj2, . . . , αin − αjn) for 1 ≤ i < j ≤ m. uij is a
non-zero vector in Zn. Let e be the power of p in greatest common divisor
of components of uij. u′ij is the vector obtained by dividing components
of uij by pe. By this construction, we have made sure that u′ij mod p 6= 0.
We observe that u′ij · vk is zero for at most n− 1 different values of k. Let us
assume that u′ij · vk is zero for at least n different values of k. Let these values
be k1, k2, . . . , kn. Consider the univariate polynomial f (x) = ∑n

l=1(u
′
ij)l ·

xl−1, here (u′ij)l is the l-th component of u′ij. f (x) is a non-zero polynomial
in Fp[x] because u′ij mod p 6= 0. Since u′ij · vki is zero for 1 ≤ i ≤ n, we see
that k1, k2, . . . , kn are roots of f (x) in Fp[x]. But a non-zero polynomial of
degree n− 1 can have at most n− 1 roots in Fp[x], a contradiction. Hence
u′ij · vk is zero for at most n− 1 different values of k. Note that if u′ij · vk is
non-zero then uij · vk is also non-zero. Hence uij · vk is also zero for at most
n− 1 different values of k. Hence number of different values of k such that
uij · vk is zero for any 1 ≤ i < j ≤ m, is at most (m

2 )(n− 1). Thus

Pr
k∈[p]

[∃1 ≤ i < j ≤ m such that uij · vk = 0] ≤
(m

2 )(n− 1)
p

≤ ε

Suppose we choose a k such that 6 ∃1 ≤ i < j ≤ m having uij · vk = 0, then
P(xvk1 , xvk2 , . . . , xvkn) 6= 0 because every monomial in P(xvk1 , xvk2 , . . . , xvkn)
will have different exponent. Therefore

Pr
k∈[p]

[P(xvk1 , xvk2 , . . . , xvkn) 6= 0] ≥ 1− ε.

Now we present our randomized algorithm using only O(log m+ log d)
random bits where the degree of P(x1, x2, . . . , xn) is bounded by d.
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Algorithm 1.2 Algorithm for bounded degree
Input: A black-box for a m-sparse multivariate polynomial
P(x1, x2, . . . , xn) ∈ Q[x1, x2, . . . , xn] having degree at most d.
Output: Determine whether P(x1, x2, . . . , xn) is zero or not. If
P(x1, x2, . . . , xn) is zero then with probability 1 output that P(x1, x2, . . . , xn)
is zero, otherwise with probability > 1

2 output P(x1, x2, . . . , xn) is non-zero.

1. Let N = d (
m
2 )n
ε e.

2. Find a prime p between N and 2N with success probability at least
1− ε.

3. Choose k uniformly at random from [p].

4. Compute vk = (1, k mod p, k2 mod p, . . . , kn−1 mod p).

5. Let T = d pdn
ε e.

6. Find a prime q between T and 2T with success probability at least
1− ε.

7. Choose t uniformly at random from [q]. Let r = t− 1 .

8. Query black-box at the point Pv
r = (rvk1 mod q, rvk2 mod

q, . . . , rvkn mod q). If answer is zero then output “P(x1, x2, . . . , xn) is
zero” else output “P(x1, x2, . . . , xn) is non-zero”.

Theorem 1.16. Algorithm 1.2 solves PITQBB with success probability
1 − 4ε, in time poly(n, log m, log d, log 1

ε ) and uses O(log m + log d + log 1
ε )

random bits.

Proof. Let P′(x) = P(xvk1 , xvk2 , . . . , xvkn). Using Lemma 1.15, P′(x) ∈ Q[x] is
a non-zero univariate polynomial with probability at least ≥ 1− ε. Since
the degree of P(x1, x2, . . . , xn) is bounded by d, degree of P′(x) is bounded
by pdn. Let R(x) ∈ Z[x] be the polynomial obtained by multiplying P′(x)
with the least common multiple of denominators of all coefficients of P′(x).
R(x) is non-zero iff P′(x) is non-zero. Also for any a ∈ Z, R(a) = 0 iff
P′(a) = 0. Let e be the power of q in greatest common divisor of coefficients
of R(x). Let R′(x) is the polynomial obtained by dividing coefficients of
R(x) by qe. By this construction, we have made sure that R′(x) mod q 6=
0. Since q is greater than degree of R′(x), we get that R′(x) is non-zero
polynomial in Fq[x] with probability at least ≥ 1− ε. Conditional on the
fact that R′(x) in non-zero polynomial in Fq[x], we know that it can have
at most pdn roots in Fq. r is randomly chosen from Fq. Hence probability
that r is a root of R′(x) is at most pdn

q ≤ ε. Using Lemma 1.12, we see that
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R′(r) 6= 0 with probability at least ≥ 1− 2ε. And if R′(r) 6= 0 in Fq then it
follows that P(rvk1 mod q, rvk2 mod q, . . . , rvkn mod q) 6= 0. Hence

Pr
k∈[p],r∈[q]

[P(rvk1 mod q, rvk2 mod q, . . . , rvkn mod q) 6= 0] ≥ 1− 2ε.

Now we show the desired upper bound on random bits used by Algo-
rithm 1.2. We use randomness at Steps 2, 3, 6 and 7. We want to succeed
with probability at least ≥ 1− ε in Step 2. Using Lemma 1.9, this can be
done using O(logd (

m
2 )n
ε e+ log 1

ε ) = O(log m + log 1
ε ) random bits. Here we

are using the assumption that n ≤ m. Step 3 uses dlog pe = O(log N) =
O(log m + log 1

ε ) random bits. We also want to succeed with probabil-
ity at least ≥ 1 − ε in Step 6. Using Lemma 1.9, this can be done using
O(logd pdn

ε e+ log 1
ε ) = O(log m + log d + log 1

ε ). random bits. Step 7 uses
dlog qe = O(log T) = O(log m+ log d+ log 1

ε ) random bits. Hence the total
number of random bits used are O(log m + log d + log 1

ε ).
Now we show the desired upper bound on time consumed by Algo-

rithm 1.2. Using Lemma 1.9, Step 2 works in time poly(log N, log 1
ε ) =

poly(log m, log 1
ε ). Using Lemma 1.8, each component of vk can be com-

puted in time O(log n · (log p)2) = poly(log m, log 1
ε ) time. Hence vk can be

computed in time n · poly(log m, log 1
ε ) = poly(n, log m, log 1

ε ) time. Hence
Step 4 works in time poly(n, log m, log 1

ε ). Using Lemma 1.9, Step 6 works
in time poly(log T, log 1

ε ) = poly(log m, log d, log 1
ε ). In Step 8, we consume

O(log p · (log q)2) = poly(log m, log d, log 1
ε ) time to compute each compo-

nent of the point Pv
r . Hence Step 8 works in time n ·poly(log m, log d, log 1

ε ) =

poly(n, log m, log d, log 1
ε ) time.

Since each of the steps 2 and 6 fail with probability at most ε, Algorithm
1.2 fails with probability at most 4ε. This is because we already showed that
Prk∈[p],r∈[q][P(rvk1 mod q, rvk2 mod q, . . . , rvkn mod q) 6= 0] ≥ 1− 2ε.

Corollary 1.17. For polynomials having degree bounded by poly(m), Algorithm
1.2 solves PITQBB in the time poly(n, log m, log 1

ε ) with success probability 1−
4ε and uses O(log m + log 1

ε ) random bits.

Remark 1.18. Klivans and Spielman [KS01] also devised a randomized al-
gorithm for PITRBB using O(log m + log d + log 1

ε ) random bits and run-
ning in the time poly(n, log d, log 1

ε ). Our algorithm for PITQBB achieves
the same performance but uses a different approach.

1.4.3 Reducing Random bits

In this section, we show a randomized algorithm for PITRBB which uses

O( log2 m
log log m ) random bits, thus improving upon the O(log2 m) random bits
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upper bound shown by Bläser and Engels [BE11]. First, we need the fol-
lowing lemma, this is the sparse analogue of the famous Schwartz-Zippel
lemma.

Theorem 1.19 ([BE11]). Let P(x1, x2, . . . , xn) be an m-sparse non-zero multi-
variate polynomial. Let S be a finite subset of positive numbers. Then

|{s ∈ Sn | P(s) = 0}| ≤ mn · |S|n−1.

Hence

Pr
s∈Sn

[P(s) = 0] ≤ mn
|S| .

Proof. We prove it by induction on n. For n = 1, number of positive roots of
any non-zero univariate m-sparse polynomial is bounded by m − 1 using
Descartes’ rule of signs. Hence for n = 1, |{s ∈ S | P(s) = 0}| ≤ (m −
1). Assume induction hypothesis for n− 1. Let P(x1, x2, . . . , xn) be of the
following form.

P(x1, x2, . . . , xn) =
t

∑
i=1

xαi
1 · Pi(x2, x3, . . . , xn)

Assume that Pi(x2, x3, . . . , xn) has ki monomials, we have ∑t
i=1 ki = m.

Here t ≤ m and also ki ≤ m. Consider the set X = {s ∈ Sn−1 | P1(s) =
0}. By induction hypothesis, |X| ≤ k1(n − 1)|S|n−2 ≤ m(n − 1)|S|n−2.
Hence number of non-zeros of P1(x2, x3, . . . , xn) in Sn−1 is at least (|S|n−1−
m(n − 1)|S|n−2). For each of these non-zeros (s2, s3, . . . , sn), there are at
least (|S| − m) values s1 of x1 in S such that (s1, s2, . . . , sn) ∈ Sn is a non-
zero of P(x1, x2, . . . , xn). This follows from Descartes’ rule of signs. Hence

|{s ∈ Sn | P(s) 6= 0}| ≥ (|S|n−1 −m(n− 1)|S|n−2)(|S| −m)

≥ |S|n−2(|S|2 −mn|S|+ m2(n− 1))
≥ |S|n−2(|S|2 −mn|S|)
= |S|n−1(|S| −mn)

Hence

|{s ∈ Sn | P(s) = 0}| ≤ |S|n − |S|n−1(|S| −mn)
= mn · |S|n−1.

Second part of the theorem, i.e., Prs∈Sn [P(s) = 0] ≤ mn
|S| immediately

follows from the above result.
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Theorem 1.19 immediately hints to a randomized algorithm for PITRBB.
If we select n numbers a1, a2, . . . , an uniformly at random from the set [dmn

ε e]
then for any non-zero m-sparse polynomial P(x1, x2, . . . , xn), we have that
probability of P(a1, a2, . . . , an) being zero is at most ε. This method trivially
works in time poly(n, log m, log 1

ε ). But it consumes n · logdmn
ε e random

bits. We want to get a better upper bound on random bits. Suppose we had
t < n variables instead of n, then we would need t · logdmt

ε e random bits.
Bläser and Engels [BE11] described a randomized transformation which re-
duces the number of variables to O(log mn

ε ), thus obtaining an upper bound
of O(log2 mn

ε ) random bits consumed. This transformation is a randomized
transformation which preserves the non-zeroness of the polynomial with a
high probability. Also, it reduces number of variables to O(log mn

ε ) while
keeping number of monomials at most m. We slightly modify this transfor-
mation to reduce number of variables to O(

log mn
ε

log log m ), while preserving other
properties of this transformation. Lemma 1.20 formalizes this argument.

Lemma 1.20. Let P(x1, x2, . . . , xn) be a m-sparse non-zero multivariate polyno-
mial. Let N = d (

m
2 )n
ε e and p (not a power of 2) be a prime between N and 2N.

Let vi denote the vector (1, i mod p, i2 mod p, . . . , in−1 mod p), here i ∈ [p].
Let vij denote the j-th component of vi. Let vijk be the k-th digit of vij, when
vij is represented in base dlog me. Consider the polynomial P′(y1, y2, . . . , yt) =

P(∏t
l=1 yvi1l

l , ∏t
l=1 yvi2l

l , . . . , ∏t
l=1 yvinl

l ), here t = dlogdlog me pe. Then

Pr
i∈[p]

[P′(y1, y2, . . . , yt) 6= 0] ≥ 1− ε.

Proof. Assume that P′(y1, y2, . . . , yt) is zero with probability > ε. Consider
the polynomial R(x) = P′(x, xdlog me, x(dlog me)2

, . . . , x(dlog me)t−1
). With the

assumption P′(y1, y2, . . . , yt) is zero with probability > ε, R(x) is also zero
with probability > ε. But

R(x) = P′(x, xdlog me, x(dlog me)2
, . . . , x(dlog me)t−1

)

= P(
t

∏
l=1

(
x(dlog me)l−1

)vi1l
,

t

∏
l=1

(
x(dlog me)l−1

)vi2l
, . . . ,

t

∏
l=1

(
x(dlog me)l−1

)vinl
)

= P(x∑t
k=1 vi1k ·(dlog me)k−1

, x∑t
k=1 vi2k ·(dlog me)k−1

, . . . , x∑t
k=1 vi1nk ·(dlog me)k−1

)

= P(xvi1 , xvi2 , . . . , xvin)

Using Lemma 1.15, R(x) = P(xvi1 , xvi2 , . . . , xvin) is zero with probability
at most ε. Hence assumption that P′(y1, y2, . . . , yt) is zero with probability
> ε, is wrong. Thus P′(y1, y2, . . . , yt) is a zero polynomial with probability
at most ε. Thus

Pr
i∈[p]

[P′(y1, y2, . . . , yt) 6= 0] ≥ 1− ε.
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Now we are ready to describe our algorithm which improves upon the
upper bound on number of random bits presented in [BE11].

Algorithm 1.3 Algorithm with better upper bound on random bits
Input: A black-box for an m-sparse multivariate polynomial
P(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] .
Output: Determine whether P(x1, x2, . . . , xn) is zero or not. If
P(x1, x2, . . . , xn) is zero then with probability 1 output that P(x1, x2, . . . , xn)
is zero, otherwise with probability ≥ 1− 3ε output P(x1, x2, . . . , xn) is non-
zero.

1. Let N = d (
m
2 )n
ε e.

2. Find a prime p between N and 2N, p is not a power of 2 here.

3. Choose i uniformly at random from [p] with success probability at
least 1− ε.

4. Compute vi = (1, i mod p, i2 mod p, . . . , in−1 mod p).

5. t = dlogdlog me pe. Let vijk be the k-th digit of vij when vij is rep-
resented in base dlog me, i.e., vij = ∑t

k=1 vijk · (dlog me)k−1 . Here
vij = ij−1 mod p =j-th component of vi.

6. Choose t numbers a1, a2, . . . , at uniformly at random from [dmt
ε e].

7. Query black-box at the point Pv
a =

(∏t
l=1 avi1l

l , ∏t
l=1 avi2l

l , . . . , ∏t
l=1 avinl

l ). If answer is zero then output
“P(x1, x2, . . . , xn) is zero” else output “P(x1, x2, . . . , xn) is non-zero”.

Theorem 1.21. Algorithm 1.3 solves PITRBB in time poly(n, log m, log 1
ε ) with

success probability 1− 3ε and uses O(
log2 m

ε
log log m ) random bits.

Proof. First we show the correctness of Algorithm 1.3. Consider the polyno-
mial P′(y1, y2, . . . , yt) = P(∏t

l=1 yvi1l
l , ∏t

l=1 yvi2l
l , . . . , ∏t

l=1 yvinl
l ). Using Lemma

1.20, we observe that P′(y1, y2, . . . , yt) is a zero polynomial with probability
at most ε. So we have made sure that P′(y1, y2, . . . , yt) is a non-zero poly-
nomial with high probability. Using Theorem 1.19, if we select t numbers
a1, a2, . . . , at uniformly at random from [mt

ε ] then P′(a1, a2, . . . , at) is zero
with probability at most ε. Note that

P′(a1, a2, . . . , at) = P(
t

∏
l=1

avi1l
l ,

t

∏
l=1

avi2l
l , . . . ,

t

∏
l=1

avinl
l )
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If P′(y1, y2, . . . , yt) is non-zero then P′(a1, a2, . . . , at) is zero with proba-
bility at most ε.

Using Lemma 1.12, we get that Pr[P′(a1, a2, . . . , at) is non-zero] ≥ 1−
2ε.

Hence P′(a1, a2, . . . , at) = P(∏t
l=1 avi1l

l , ∏t
l=1 avi2l

l , . . . , ∏t
l=1 avinl

l ) is non-
zero with probability at least 1− 2ε if P(x1, x2, . . . , xn) is a non-zero poly-
nomial. We also have an error probability of ε in Step 3. Hence Algorithm
1.3 fails with probability at most 3ε. In other words, Algorithm 1.3 succeeds
with probability at least 1− 3ε.

Now we prove the desired upper bound on number of random bits
used. We use random bits at Step 2, 3 and 6. Number of random bits used
in Step 2 is O(log (m

2 )n
ε e+ log 1

ε ) = O(log m + log 1
ε ), we are using Lemma

1.9 here. Step 3 uses dlog pe = O(log N) = O(log m + log 1
ε ) random bits.

Step 6 uses t · dlogdmt
ε ee random bits. t is equal to O( log p

log log m ) = O(
log m

ε
log log m ).

Hence Step 6 uses O(
log m

ε
log log m ·O(log m + log 1

ε )) random bits. This is equal

to O(
log2 m

ε
log log m ). Thus, total number of random bits used are O(

log2 m
ε

log log m ).
Lastly, we need to show the claimed upper bound on time consumed by

Algorithm 1.3. Using Lemma 1.9, Step 2 works in time poly(log N, log 1
ε ) =

poly(log m, log 1
ε ). Using Lemma 1.8, each component of vi can be com-

puted in time O(log n · (log p)2) = poly(log m, log 1
ε ) time. Hence vi can be

computed in time n · poly(log m, log 1
ε ) = poly(n, log m, log 1

ε ) time. Hence
Step 4 works in time poly(n, log m, log 1

ε ). Step 5 just converts vij to base
dlog me, each such conversion can be done time poly(log m, log 1

ε ) time.
Hence Step 5 works in n · poly(log m, log 1

ε ) = poly(n, log m, log 1
ε ) time.

Step 6 works in time O(t · logdmt
ε e) time, which is poly(log m, log 1

ε ). In Step
7, we need to compute point Pv

a from a′ls and vi. The j-th component of Pv
a

is ∏t
l=1 a

vijl
l . Since vijl < dlog me and bit length of al is O(log m + log 1

ε ), us-
ing Corollary 1.7 we can compute a

vijl
l in time O((log m + log 1

ε )
2 · log2 m).

For every l ∈ [t], bit length of a
vijl
l is O(log m · (log m + log 1

ε )). Using Corol-
lary 1.6, we can compute ∏t

l=1 a
vijl
l in time O(t2 · log2 m · (log m+ log 1

ε )
2) =

poly(log m, log 1
ε ). Hence Pv

a can be computed in time n ·poly(log m, log 1
ε ) =

poly(n, log m, log 1
ε ) .



Chapter 2

Polynomial Interpolation

We present a deterministic algorithm to interpolate any m-sparse n-variate
polynomial. This algorithm uses poly(n, m, log H, log d) bit operations. Our
algorithm works over the integers. Here H is bound on the magnitude of
the coefficient values of the given polynomial. This running time is poly-
nomial in the output size. Our algorithm only requires black box access
to the given polynomial, albeit in a special form. To our knowledge, this
is the first algorithm in which the number of the bit operations have loga-
rithmic dependence on the degree. As an easy consequence, we obtain an
algorithm to interpolate polynomials represented by arithmetic circuits.

2.1 Introduction

Polynomial interpolation has always been an important problem in mathe-
matics and computer science. Interpolation techniques by Lagrange and
Newton have been very useful for interpolating univariate polynomials
over fields of characteristic zero. There also has been lot of work on in-
terpolating multivariate polynomials over fields of any characteristic. Zip-
pel [Zip79] presented a randomized algorithm for polynomial interpola-
tion. This inspired a lot of further research for finding deterministic al-
gorithms for polynomial interpolation. An important technique for devis-
ing deterministic algorithms for polynomial interpolation was provided by
Grigoriev and Karpinski [GK86], in their work on finding matchings for
bipartite graphs having bounded permanent. Ben-Or and Tiwari [BO88]
developed a deterministic algorithm for interpolating m-sparse multivari-
ate polynomial in the black-box model using the ideas of Grigoriev and
Karpinski [GK86]. This algorithm cleverly chooses the following points for
evaluation

(pi
1, pi

2, . . . , pi
n)

15
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where i is in range from 0 to 2m− 1 and p1, p2, . . . , pn are first n primes.
The algorithm by Ben-Or and Tiwari uses m2(log2 m + log nd) ring oper-
ations and 2m evaluations of the polynomial. But this operation count
is in the algebraic RAM model and not in the traditional Turing model.
Interpolation over finite fields have proved to be more difficult because
xq ≡ x in Fq. Polynomial interpolation has been extensively studied over
finite fields in [Wer94, GKS90, CDGK91]. Grigoriev, Karpinski and Singer
[GKS90] devised the first NC algorithm for interpolating m-sparse polyno-
mials over finite fields. Their algorithm can be used to interpolate any m-
sparse and n-variate polynomial in O(log3(nm)) Boolean parallel time, us-
ing O(n2m6 log2(nm)) processors. Clausen, Dress, Grabmeier and Karpin-
ski [CDGK91] showed that the number of queries to the black-box depend
upon the degree of the extension field in which we make queries. For fi-
nite fields, if the degree of extension is equal to number of variables then
we can interpolate any m-sparse polynomial with m + 1 queries. Klivans
and Spielman [KS01] discovered an algorithm for polynomial interpolation
over fields of large characteristic. The reader should note that sparsity of
the polynomial is very important when considering the interpolation. If
number of monomials m is large, then the description of the polynomial is
large, too. Representing an m-sparse n-variate polynomial as sum of mono-
mials consumes O(m · (log H + n log d)) space, H being the bound on the
magnitude of coefficient values and d being the bound on the degree of ev-
ery variable. So our algorithm running in the time poly(n, m, log H, log d),
is really optimal in the sense that the running time is polynomial in the
output size.

2.2 New Black-box Model

Our algorithm uses access to the black-box in a new way. In the traditional
black-box model we are given a black-box which represents a multivariate
polynomial P(x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn], here R is the underlying
ring. The black-box takes a point (a1, a2, . . . , an) ∈ Rn as input and returns
P(a1, a2, . . . , an) ∈ R as output. Any interpolation algorithm in this model
asks for value of P at some set of points and after that it has to output P as
a list of coefficients along with corresponding monomials.

P(x1, x2, . . . , xn)
(a1, a2, . . . , an) P(a1, a2, . . . , an)

Figure 2.2.1: Traditional Black-Box Model

As mentioned earlier, in our case R = Z. In our new black-box model,
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there are two inputs instead of one. The first input is same as the traditional
model, i.e., a point (a1, a2, . . . , an) ∈ Zn. The second input is a positive
number N ∈ N+. As an output, we get P(a1, a2, . . . , an) mod N instead of
P(a1, a2, . . . , an).

P(x1, x2, . . . , xn)
(a1, a2, . . . , an)

N

P(a1, a2, . . . , an) mod N

Figure 2.2.2: Our Black-Box Model

This new black-box model is a very natural extension of the traditional
black-box model. The first reason for this is that we do not get any extra
information in this new black-box model. The traditional black-box model
can easily be simulated in this new black-box model, we just need to choose
N (in Figure 2.2.2) large enough. Or one can also use Chinese remainder-
ing to compute P(a1, a2, . . . , an) by computing P(a1, a2, . . . , an) mod N for
many relatively prime N. It is true even the other way round. We can
easily simulate this new black-box model by using the traditional black-
box model. Secondly, if we want to have an interpolation algorithm which
works in time sub-linear in the degree d, then we can not use the traditional
black-box model. This is because P(a1, a2, . . . , an) will have bit size of Ω(d)
almost always. Lastly, this new black-box model is generalized version of
arithmetic circuits. It is easy to simulate the new black-box model when the
polynomial is given as an arithmetic circuit. We shall make this last point
more precise in Section 2.7.

2.3 Our approach

It is not at all trivial to see why this new black-box model should help us
to get faster algorithms for interpolation, since the traditional black-box
model has all the information as the new black-box model. One thing that
this new black-box model has in its favor is the fact that by choosing N (in
Figure 2.2.2), we can control the size of output returned by the black-box.
Still, it is not clear how to use this to devise faster interpolation algorithms.
We precisely use this feature of the new black-box model in a novel way.
Our approach has two main components. The first component finds some
relatively small prime number q0 such that projection of polynomial (which
we are trying to interpolate) in Fq0 [x] has the same number of monomials
as the polynomial itself. For this, we can not just consider any prime. We
shall use primes generated by arithmetic progressions for this purpose. The
second component uses this prime q0 to find sufficiently many primes p of
a very special form. Primes p in this phase are also generated by arith-
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metic progressions. But we choose these arithmetic progressions in a sub-
tle way so that computing the polynomial from its projections in Fp[x] (for
many primes p) is efficient. If we choose these primes p by some arbitrary
strategy then it would not be clear how to compute the polynomial from
its projections in Fp[x]. Our novel way of choosing these primes p in the
second phase of our algorithm, makes sure that it is easy to compute the
polynomial from its projections.

2.4 Preliminaries

Here, some of the important results will also be duplicated from Chap-
ter 1. We reproduce all the main results below to make this chapter self
contained. In this chapter, Z denotes the set of integers. N denotes the
set of natural numbers. N+ denotes the set of positive integers. [n] de-
notes the set {1, 2, . . . , n}. We also use the notation Õ(t) to denote the com-
plexity O(t · (log t)O(1)). Zp denotes the quotient group Z/pZ. The de-
gree of a polynomial is defined as the maximum degree of any variable.
Fp(x) denotes the polynomial F(x) mod p. Note that Fp(x) is the projec-
tion of F(x) into Fp[x]. More precisely, if F(x) = ∑m

i=1 cixαi then Fp(x) =

∑m
i=1(ci mod p)xαi mod (p−1).

Here we think of ci mod p as an integer belonging to the set {0, 1, 2, . . . , p−
1}. Similarly for αi mod (p− 1). More specifically, whenever the operator
“mod N” appears in this chapter for some positive number N, we just
think of the result of the operator as the remainder (a number in {0, 1, 2, . . . , N−
1}) when the operand is divided by N.

It is easy to see that if we interpolate F(x) modulo a prime p then we
obtain Fp(x) (due to Fermat’s little theorem). Whenever we say “time” in
this paper, we mean the number of bit operations. Some of the results in
this section can be found in [BHLD08].

Fact 2.1. Any integer n ≥ 1 has at most log n distinct prime divisors.

Fact 2.2. The k-th prime number is of order Θ(k log k).

Using the same notation as in [BHLD08], let P(k) denote the smallest
prime number in the arithmetic progression {jk + 1 | j ≥ 1}. Linnik’s
Theorem gives an unconditional upper bound on P(k).

Theorem 2.3 (Linnik’s Theorem [Lin44]). There is a constant L > 1 (called
Linnik’s constant) such that P(k) < kL for every sufficiently large k ≥ k0.

The current best upper bound for L is known to be 5.2 due to [Xyl09].
For a discussion on Linnik’s Theorem, reader is referred to [Rib96].

In the ensuing discussion, we would want that for different primes q1 6=
q2, we get that P(q1) 6= P(q2). However this is not always true. But the
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following lemma makes sure that P(q) cannot be the same for too many
distinct primes q.

Theorem 2.4 (Lemma 2 in [BHLD08]). Let k0 be the constant mentioned in
Linnik’s Theorem above. Let q1, q2 . . . , qv be distinct primes greater than k0 and p
be the prime such that ∀i ∈ [v] : P(qi) = p. Then, v ≤ 5.

Proof. Since ∀i ∈ [v] P(qi) = p, we get that ∀i ∈ [v] qi | (p-1). Hence
q1q2 . . . qv | (p− 1). Therefore q1q2 . . . qv < p. It implies that qv

1 < q1q2 . . . qv <
p. We also have that p < q5.2

1 . Therefore qv
1 < q5.2

1 . Since v is a positive inte-
ger, we get that v ≤ 5.

We would need the following result about modular computation. The
reader is referred to [GG03] for details.

Fact 2.5 (COROLLARY 4.7 in [GG03]). One arithmetic operation, that is, ad-
dition, multiplication, or division by a invertible element in Zp can be performed
using O(log2 p) bit operations.

We shall be using the Chinese remainder theorem and gcd computa-
tions in the next section. We shall use the following Generalized Chinese
remainder theorem and we shall also need an algorithm to find the solution
in the case of generalized Chinese remainder theorem. We refer the reader
to [BS96] for the following facts.

Fact 2.6 (COROLLARY 4.2.4 in [BS96]). Let u, v be positive integers. We can
compute the greatest common divisor of u and v using O(log u · log v) bit opera-
tions.

Lemma 2.7 (THEOREM 5.4.1 in [BS96]). For positive integers a, e and n, there
is an algorithm to compute ae mod n in O((log e)(log n)2) bit operations, here
0 ≤ a < n.

Theorem 2.8 (Generalized Chinese Remainder Theorem, THEOREM 5.5.5
in [BS96]). Let m1, m2, . . . , mk be positive integers. Then the system of congru-
ences

x ≡ xi mod mi, 1 ≤ i ≤ k

has a solution iff xi ≡ xj (mod gcd(mi, mj)) for all i 6= j. If the solution
exists, it is unique (mod lcm(m1, m2, . . . , mk)).

Lemma 2.9 (COROLLARY 5.5.6 in [BS96]). Let m1, m2, . . . , mk be positive in-
tegers, each ≥ 2, define m = m1m2 . . . mk, and m′ = lcm(m1, m2, . . . , mk).
Given the system S of congruences

x ≡ xi mod mi, 1 ≤ i ≤ k

we can determine if S has a solution, using O((log m)2) bit operations, and if so,
we can find the unique solution (mod m′), using O((log m)2) bit operations.
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2.5 Univariate interpolation

With all the machinery introduced in the last section, we are ready to de-
scribe our algorithm for interpolating univariate polynomials. For describ-
ing the algorithm, we need some definitions. In the following discussion,
we always assume that we are trying to interpolate the following kind of
univariate polynomial:

F(x) =
m

∑
i=1

cixαi .

Here |ci| ≤ H. And, d ≥ αm 6= αm−1 6= . . . 6= α1 ≥ 0. From now on, all
the primes we encounter will be more than k0, the constant mentioned in
Linnik’s Theorem.

2.5.1 Finding a Good prime

As we noted earlier, if we interpolate a polynomial F(x) modulo a prime
p then we get all the coefficients modulo p. This means that all the coef-
ficients which are 0 modulo p, vanish while interpolating modulo p and
hence do not appear in Fp(x). Since we do not want to miss any coefficients
for complete interpolation, we would want to avoid interpolating modulo
any prime p such that some coefficient is 0 modulo p. Also, we saw that we
get all exponents modulo (p− 1). If the exponents of two different mono-
mials are the same modulo (p− 1) then these monomials get merged into
a single monomial while interpolating modulo p. We would also like to
avoid this situation. The following definitions formalize this notion.

Definition 2.10 (Coefficientbad prime). A prime q is called Coefficientbad for
a polynomial F(x) if there exists some coefficient ci such that ci ≡ 0 mod q.

Lemma 2.11. There are at most m log H Coefficientbad primes.

Proof. This lemma is a direct implication of the Fact 2.1 and the fact that
|ci| ≤ H.

Definition 2.12 (LinnikCoefficientbad number (or prime)). A number (or
prime) q is called LinnikCoefficientbad for a polynomial F(x) if P(q) is Coeffi-
cientbad prime for F(x).

Lemma 2.13. There are at most 5m log H LinnikCoefficientbad primes.

Proof. This lemma is a direct implication of the Theorem 2.4 and the Lemma
2.11.

Definition 2.14 (Powerbad prime). A prime q is called Powerbad for a poly-
nomial F(x) if there exist 1 ≤ i 6= j ≤ m such that αi ≡ αj mod (q− 1).
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Definition 2.15 (LinnikPowerbad number (or prime)). A number (or prime)
q is called LinnikPowerbad for a polynomial F(x) if P(q) is Powerbad prime
for F(x).

Lemma 2.16. There are at most (m
2 ) log d LinnikPowerbad primes.

Proof. By way of contradiction, assume that there are more than (m
2 ) log d

LinnikPowerbad primes. Let these primes be q1, q2, . . . , qk, here k > (m
2 ) log d.

Then we have that for all l ∈ [k] there are i 6= j such that αi ≡ αj mod
(P(ql)− 1). Since k > (m

2 ) log d, by pigeonhole principle there exist t (more
than log d) primes r1, r2, . . . , rt in q1, q2, . . . , qk such that we have two differ-
ent indices i ∈ [m] and j ∈ [m] satisfying ∀l ∈ [t] : αi ≡ αj mod (P(rl)− 1).
Hence ∀l ∈ [t] : (P(rl) − 1) | (αi − αj). This implies that ∀l ∈ [t] : rl |
(|αi − αj|). We have that |αi − αj| ≤ d. Using the Fact 2.1, |αi − αj| can
have at most log d distinct prime divisors. But we have t > log d distinct
prime divisors of |αi − αj|. Hence our assumption that there are more than
(m

2 ) log d LinnikPowerbad primes, is wrong. Thus there are at most (m
2 ) log d

LinnikPowerbad primes.

Definition 2.17 (Bad number (or prime)). A number (or prime) q is called
Bad for a polynomial F(x) if it is LinnikCoefficientbad or LinnikPowerbad or
both.

Lemma 2.18. There are at most (m
2 ) log d + 5m log H Bad primes.

Proof. Follows from the Lemma 2.13 and Lemma the 2.16.

Definition 2.19 (Good number (or prime)). A number (or prime) q is called
Good for a polynomial F(x) if it is not a Bad number (or prime).

Note that if we interpolate F(x) modulo a prime p then we obtain the
polynomial Fp(x).

Suppose q is some Good prime. If we interpolate F(x) modulo P(q)
then we shall get a list of all m coefficients modulo P(q) and correspond-
ing powers modulo (P(q) − 1). On the other hand, if q was a Bad prime
then by definition of Bad primes, we would obtain less than m coefficients
while interpolating modulo P(q). This happens because for a bad prime q,
some coefficient will be 0 modulo P(q) or two monomials will merge into
one. This argument gives us a test to find Good primes. Since we know
that there are at most (m

2 ) log d + 5m log H Bad primes, if we try more than
(m

2 ) log d + 5m log H primes then we shall surely find a Good prime. And
out of these primes, primes which give maximum number of coefficients
are surely Good primes. But we need to make sure that interpolation alone
does not take too much time. The following lemma makes sure that inter-
polation modulo a prime can be performed efficiently. From now on we use
b = (m

2 ) log d + 5m log H to denote the maximum number of Bad primes.
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Theorem 2.20 (Theorem 5.1 in [GG03]). Let F be a field. Also, let f (x) ∈
F[x] be a polynomial of degree less than n. Given the value of f (x) at n distinct
points u0, u1, . . . , un−1 ∈ F, interpolation of f (x) can be performed with O(n2)
operations in F.

Lemma 2.21. Interpolation Fp(x) of F(x) modulo a prime p can be computed in
time Õ(p2) from the values F(i) mod p, here i ranges from 0 to p− 1.

Proof. Fp(x) ∈ Fp[x] is a polynomial of degree p − 1, hence can be inter-
polated using O(p2) operations in Fp using the Theorem 2.20. For this we
need to know the value of Fp(x) at p distinct points in Fp. The value of
F(x) mod p is equal to Fp(x) at all points of Fp. Since each operation in Fp

can be performed in O(log2 p) bit operations using Fact 2.5, interpolation
Fp(x) of F(x) modulo a prime p can be computed in time Õ(p2).

Now we describe the algorithm to find a Good prime.

Algorithm 2.1 Algorithm to find a Good prime and exact value of m
Input: Black-box for polynomial F(x).
Output: A Good prime and the exact value of number of monomials in F(x).

1. Let b = (m
2 ) log d + 5m log H. Compute b + 1 primes p1 < p2 < . . . <

pb+1 and also P(p1), P(p2), . . . , P(pb+1).

2. Interpolate F(x) modulo P(p1), P(p2), . . . , P(pb+1) to obtain
FP(p1)(x), FP(p2)(x), . . . , FP(pb+1)(x).

3. Find any prime pi such that FP(pi)(x) has maximum number of mono-
mials among FP(p1)(x), FP(p2)(x), . . . , FP(pb+1)(x).

4. Output pi as a Good prime and the number of monomials in FP(pi)(x)
as m.

Claim 2.22. Algorithm 2.1 finds a Good prime and m in time Õ(b2L+1).

Proof. Correctness follows from the earlier discussion. Since b = (m
2 ) log d+

5m log H, Step 1 find all the required primes in time Õ(bL+1). Here we use
the Fact 2.2 to make sure that pb+1 (and hence P(pb+1), due to the Theorem
2.3) is of absolute value Õ(bL). To check for primality of a number, we can
use AKS algorithm [AKS04]. The total time of Step 1 is still Õ(bL+1). Since
all primes in Step 1 are of magnitudeÕ(bL+1), computing FP(pi)(x) takes
Õ(b2L) due to Lemma 2.21. Hence Step 2 takes(b + 1)Õ(b2L) = Õ(b2L+1)
time. Step 3 and 4 trivially take Õ(b) time. Hence the total time taken by
Algorithm 2.1 is Õ(b2L+1).
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From now on, let q0 be the Good prime found by Algorithm 2.1 and also
let g = P(q0) − 1. Note that absolute value of g is poly(m, log d, log H).
Now we shall not find Good primes but we shall try to find Good numbers
of the form gp, where p is some prime.

2.5.2 Finding many Goodg primes

Definition 2.23 (Badg prime). A prime q is called Badg for polynomial F(x)
if gq is Bad number. (Note that the term “Badg” depends on the number g,
which will be chosen as above and will be fixed throughout the remainder
of this section.)

Definition 2.24 (Goodg prime). A prime q is called Goodg for the polyno-
mial F(x) if it is not Badg.

Lemma 2.25. There are at most b = (m
2 ) log d + 5m log H Badg primes.

Proof. It is easy to extend the proof of Lemma 2.13 to show that there are at
most 5m log H primes p such that gp is LinnikCoefficientbad number. And
similarly proof of Lemma 2.16 can be extended to show that gp is Lin-
nikPowerbad number for at most (m

2 ) log d many primes p. Thus there are
at most (m

2 ) log d + 5m log H Badg primes.

From now on, we use t to denote the number max{dlog He+ 1, dlog de}.
The below written algorithm finds t Goodg primes q1, q2, . . . , qt in time poly(m, log d, log H)
and also performs the interpolation of F(x) modulo P(gq1), P(gq2), . . . , P(gqt),
i.e., it finds FP(gq1)(x), FP(gq2)(x),. . . , FP(gqt)(x).

Algorithm 2.2 Algorithm to find a t Goodg primes and corresponding inter-
polation
Input: Black-box for polynomial F(x), g = p(q0) − 1 and m. Here q0 is
the Good prime obtained by Algorithm 2.1 and m is the exact numbers of
monomials in F(x) given by Algorithm 2.1. Let b = (m

2 ) log d + 5m log H
and t = max{dlog He+ 1, dlog de}.
Output: t Goodg primes q1, q2, . . . , qt and
FP(gq1)(x), FP(gq2)(x), . . . , FP(gqt)(x).

1. Compute b + t primes p1 < p2 < . . . < pb+t and also
P(gp1), P(gp2), . . . , P(gpb+t).

2. Interpolate F(x) modulo P(gp1), P(gp2), . . . , P(gpb+t) to obtain
FP(gp1)(x), FP(gp2)(x), . . . , FP(gpb+t)(x).

3. Find any t Goodg primes q1, q2, . . . , qt from p1 < p2 < . . . < pb+t such
that FP(gq1)(x), FP(gq2)(x), . . . , FP(gqt)(x) all have exactly m monomials.
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Claim 2.26. Algorithm 2.2 finds t Goodg primes and performs the corre-
sponding interpolation in time Õ(b2L2+2L+1).

Proof. Correctness follows from Lemma 2.25. We just need to show the
desired time bound. Step 1 takes Õ(bL2+L+1) time since b + t and g are
of absolute value O(b) and Õ(bL) respectively. In Step 2, since P(gpi)

is also of absolute valueÕ(bL2+L) , we can compute FP(gp1)(x), FP(gp2)(x),
. . . FP(gpb+t)(x) in time Õ(b2L2+2L+1) due to Lemma 2.21. Therefore Step 2
takesÕ(b2L2+2L+1) time. Step 3 clearly takes ˜O(b) time. Hence total time
taken by Algorithm 2.2 is Õ(b2L2+2L+1).

2.5.3 Main Algorithm for Interpolation

After applying Algorithm 2.2, we have found FP(gq1)(x), FP(gq2)(x), . . . ,
FP(gqt)(x) for t Goodg primes q1, q2, . . . , qt. We need to use FP(gq1)(x),
FP(gq2)(x), . . . , FP(gqt)(x) to compute F(x).

Note that each FP(gqi)(x) is nothing but a list of size m, each member
of the list is a pair of some coefficient mod P(gqi) and a corresponding
power mod (P(gqi)− 1). From now on, assume that each FP(gqi)(x) is of
the following form.

FP(gqi)(x) =
m

∑
j=1

cijxαij

We can construct the ci’s and the αi’s from the cij’s and the αij’s using
Chinese remaindering but we do not know which are the correct indexes
to join. For example, we know that c1 appears in FP(gqi)(x) as some cij =
c1 mod P(gqi) but we do not know the index j. Similarly for the powers
αi’s. We know α1 appears in FP(gqi)(x) as some αij = α1 mod (P(gqi)− 1)
but we do not know the index j. But we shall show how to use the Chinese
remaindering to compute ci’s and αi’s from cij’s and αij’s. We shall need the
following lemma for this purpose.

Lemma 2.27. Let u, v be distinct positive integers ≤ t, and s = gcd(P(gqu)−
1, P(gqv) − 1). Then for any j ∈ [m], there exists a unique j′ ∈ [m] such that
αuj ≡ αvj′ mod s.

Proof. First we show the existence of j′. We know that αuj ≡ αi (mod P(gqu)−
1) for some i ∈ [m]. Let j′ be such that αvj′ ≡ αi (mod P(gqv)− 1). Since αi
is a solution to

x ≡ αuj mod (P(gqu)− 1)

x ≡ αvj′ mod (P(gqv)− 1),
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by using Theorem 2.8, we need to have αuj ≡ αvj′ (mod gcd(P(gqu) −
1, P(gqv)− 1)). Therefore αuj ≡ αvj′ mod s. Now for uniqueness, by way
of contradiction assume that there exists j′′ 6= j′ such that αuj ≡ αvj′′ mod s.
Then we get that αvj′ ≡ αvj′′ mod s. Let k be such that αvj′′ ≡ αk (mod P(gqv)−
1). Thus αvj′′ ≡ αk (mod s). We also have αvj′ ≡ αi (mod s). Altogether,
we have the following congruences

αvj′ ≡ αvj′′ mod s

αvj′ ≡ αi mod s

αvj′′ ≡ αk mod s.

Hence αi ≡ αk (mod s). Note that g | s. It implies that αi ≡ αk (mod g).
But this cannot happen because g = (P(q0)− 1) and q0 was chosen to be a
Good prime. Therefore there does not exist such j′′ 6= j′.

Lemma 2.27 gives us a method to find the correct αij’s, from which we
can recover all αu’s. Below described algorithm completes the interpolation
algorithm. It takes FP(gq1)(x), FP(gq2)(x), . . . , FP(gqt)(x) and P(gq1), P(gq2), . . . ,
P(gqt) as input and outputs F(x). We shall also show that it runs in the time
poly(m, log d, log H).
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Algorithm 2.3 Algorithm to find F(x)
Input: t Goodg primes q1, q2, . . . , qt and FP(gq1)(x), FP(gq2)(x), . . . , FP(gqt)(x).
Output: F(x).

1. for j = 1 to m

(a) for i = 2 to t

i. si = gcd(P(gq1)− 1, P(gqi)− 1).
ii. Find kij ∈ [m] such that αikij ≡ α1j mod si .

(b) Solve the following equations by Chinese remaindering to ob-
tain cj

x ≡ c1j mod P(gq1)

x ≡ c2k2j mod P(gq2)

...
...

...
x ≡ ctktj mod P(gqt)

(c) Solve the following equations by Chinese remaindering to ob-
tain αj

x ≡ α1j mod (P(gq1)− 1)
x ≡ α2k2j mod (P(gq2)− 1)
...

...
...

x ≡ αtktj mod (P(gqt)− 1)

(d) If cj > H then cj = cj−∏t
i=1 P(gqi).

2. end for loop

3. Output F(x) as F(x) = ∑m
i=1 cixαi .

Claim 2.28. Algorithm 2.3 finds F(x) in time Õ(b2).

Proof. Algorithm 2.3 applies Lemma 2.27 repeatedly. Step 1a finds the cor-
responding alignment of monomials. Here, u of Lemma 2.27 is fixed to
be 1 whereas v runs from 2 to t. Step 1b computes the coefficient of the
monomial whose alignment we found in Step 1a. Step 1c does the similar
computation for the power of the corresponding monomial. Step 1d takes
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care of the fact that ci can be negative also. And since t ≥ max{dlog He+
1, dlog de}, we have ∏t

i=1 P(gqi) > 2H and lcm{P(gq1)− 1, P(gq2)− 1, . . . , P(gqt)−
1} > d. Hence correctness follows. We just have to show a running time
upper bound of poly(m, log d, log H). The main loop runs m times. So we
shall just show that one iteration of the loop takes poly(m, log d, log H) time.
Step 1a runs a loop t times. Time taken by Step 1(a)i is also ˜O(log b) due to
Fact 2.6 and the fact that P(gqi) is of size Õ(bL2+L). Step 1(a)ii clearly works
in time Õ(b) as we just need to iterate over m monomials of FP(gqi)(x) and
find the correct kij. Step 1b works in time Õ(t2 · log2 b) because of the fact
that log2(∏t

i=1 P(gqi)) = Õ(t2 · log2 b) = and Lemma 2.9. Similarly, Step
1c works in time Õ(t2 · log2 b). The rest of the steps trivially work in time
Õ(b2). Hence Algorithm 2.3 works in time Õ(b2).

Remark 2.29. Combining Algorithm 2.1, 2.2 and 2.3, we can see that in-
terpolation of F(x) can be performed in the timeÕ(b2L2+2L+1). Here b =
(m

2 ) log d + 5m log H and L is the constant we encountered in Theorem 2.3.

2.6 Multivariate Interpolation

In the last section, we presented the algorithm to interpolate univariate
polynomials which worked in time Õ(b2L2+2L+1) = poly(m, log d, log H).
Now we show how to use that algorithm to interpolate multivariate poly-
nomials. We need the following lemma for that, which goes back to Kro-
necker.

Lemma 2.30 (See e.g. Lemma 1 in [BHLD08]). Let K be a ring. Let f ∈
K[x1, . . . , xn] be a polynomial of the degree at most d. Then the substitution xi 7→
X(d+1)i−1

maps f to a univariate polynomial g ∈ K[X] of degree at most (d +
1)n − 1 such that any two distinct monomials in f map to distinct monomials
in g. In particular, if f is not identically zero in K[x1, . . . , xn], then g is not
identically zero in K[X].

Substitution in Lemma 2.30 converts f into a univariate of the degree at
most (d + 1)n − 1 . And given f in univariate, getting back multivariate f
is also easy. This gives us following algorithm to interpolate multivariate
polynomials.
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Algorithm 2.4 Algorithm to interpolate Multivariate polynomial
Input: Black-box for polynomial P(x1, x2, . . . , xn).
Output: Polynomial P(x1, x2, . . . , xn).

1. Given the n-variate polynomial P(x1, x2, . . . , xi, . . . , xn) of
degree at most d, interpolate the univariate polynomial
P′(X)=P(X, X(d+1), . . . , X(d+1)i−1

, . . . , X(d+1)n−1
) of degree at most

(d + 1)n − 1.

2. Convert P′ to P by computing the corresponding unique n-variate
monomial for each univariate monomial in P.

Claim 2.31. Algorithm 2.4 interpolates any n-variate polynomial of degree
at most d and works in time poly(m, n, log d, log H).

Proof. Correctness follows from Lemma 2.30. The running time for interpo-
lating P′ is poly(m, log((d + 1)n − 1), log H) = poly(m, n, log d, log H) due
to Lemma 2.28. We just need to make sure that the substitution xi 7→
X(d+1)i−1

can be computed efficiently. Note that all the numbers encoun-
tered in the algorithm for univariate polynomial interpolation are of abso-
lute value poly(m, n, log d, log H). And for the purpose of asking the black-
box, we just need to compute X(d+1)i−1

mod N for some number N of abso-
lute value poly(m, n, log d, log H). Hence X(d+1)i−1

mod N can be computed
in time poly(m, n, log d, log H) using Lemma 2.7. Step 2 is just a trivial con-
version to base (d + 1).

2.7 Conclusion and applications

The reader should note that all the numbers used in our algorithm have
magnitude poly(m, n, log d, log H). This makes our algorithm perfectly suit-
able for interpolating sparse polynomials represented by arithmetic cir-
cuits. For an extensive discussion on arithmetic circuits, we refer reader
to a recent survey on arithmetic circuits by Shpilka and Yehudayoff [SY10].
Let C be an arithmetic circuit of size s and description length l which com-
putes the polynomial P(x1, x2, . . . , xn). Here the size s is the number of
gates in the circuit and the description length l is the length of a reasonable
encoding of the circuit as a binary string. In particular, 2s is a bound on the
degree of P and every constant appearing in the circuit is bounded by l.

In our black-box model, we assumed that we can obtain the value of
P at any point modulo some integer in unit time. But it is also easy to
see that the value of P at points we encountered can be obtained in time
poly(m, n, s, l, log d, log H). The following algorithm exactly performs this
task.
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Algorithm 2.5 Algorithm to Evaluate circuit
Input: A description of length l of a division free circuit C (over Z) of size
s, (a1, a2, . . . , an) ∈ Zn and N ∈N+.
Output: C(a1, a2, . . . , an) mod N.

1. Evaluate every gate of C modulo N.

2. Return result of output gate.

Claim 2.32. Algorithm 2.5 runs in time poly(s, l, log N, maxi log(|ai|+ 1)).

Proof. Using Fact 2.5, evaluation at each gate of C can be performed in time
O(s · log2 N). We may need to perform more bit operations when we have
to deal with constants in C and ai’s. Let c be the constant used in C of
maximum magnitude. We have that log(|c| + 1) ≤ l. While evaluating
gates which have a constant c as input, we perform O(s · (log(|c| + 1) ·
log N)2) bit operations. Similarly while evaluating input gates where we
have to deal with ai’s, we perform O(s · (log(|ai| + 1) · log N)2) bit oper-
ations. Since we have to do at most s evaluations, Algorithm 2.5 runs in
time O(s2.(maxi log(|ai|+ 1) · log(|c|+ 1) · log N)2) time. Since log c ≤ l,
the whole algorithm takes O(s2.(maxi log(|ai|+ 1) · l · log N)2) time. Hence
Algorithm 2.5 runs in time poly(s, l, log N, maxi log(|ai|+ 1)).

Using Claim 2.32 it is easy to see that our algorithm for black-box in-
terpolation can be used to interpolate sparse polynomial represented by
circuits.

Corollary 2.33. A polynomial P with at most m monomials represented by an
arithmetic circuit C of size s and description lengthl can be interpolated in time
poly(m, log H, l), here H is bound on magnitude of coefficients of P.

Proof. Combining Algorithm 2.5 with Algorithm 2.4 gives us a method to
interpolate P in time poly(s, l, m, n, log H, log d). Since we have that d ≤ 2s

and n ≤ s, we get that whole algorithm runs in the time poly(m, log H, s, l).
Also, we have s ≤ l. Hence whole algorithm runs in the time poly(m, log H, l).

Remark 2.34. If we use faster algorithms for computing Fp(x), such as Õ(p)
algorithm in [BCS97], then we can reduce the running time of our algorithm
to Õ(bL2+L+1).

Remark 2.35. Recently, the constant L of Theorem 2.3 has been improved to
5 in [Xyl11].
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