Polynomial Interpolation And Identity testing

Gorav Jindal
Saarland University

PhD Application Talk, 7 October 2013

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work
(4) Questions?

Introduction

-

Polynomial Interpolation

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work

4 Questions?

Polynomial Interpolation And Identity testing

Polynomial Interpolation

- Black-box Model
- \mathcal{R} is the underlying ring
- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

Figure: Traditional Black-Box Model

- Ask value of P at some set of points and output P as a list of coefficients along with corresponding monomials

Previous work

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work
(4) Questions?

Polynomial Interpolation And Identity testing

Previous work

- Lot of previous research in Black-box polynomial interpolation.
- Randomized algorithm by Zippel [Zip79].
- Technique for deterministic algorithm by Grigoriev and Karpinski [GK87] .
- Deterministic algorithm by Ben-Or and Tiwari [BO88], using the technique of [GK87].
- Makes $2 m$ queries to the given black box.

Over finite fields

- Studied extensively in [Wer94, GKS90, CDGK91].
- NC algorithm for interpolating m-sparse polynomials over finite fields [GKS90].
- $O\left(\log ^{3}(n m)\right)$ Boolean parallel time.
- $O\left(n^{2} m^{6} \log ^{2}(n m)\right)$ processors.
- Polynomial interpolation over fields of large characteristic by Klivans and Spielman [KS01].
- Interpolation over integers.
- Known algorithms take time polynomial in d.
(1) Introduction
- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work
(4) Questions?

Our New Black-Box Model

- Works over Integers.
- Uses access to the black-box in a new way.

Figure: Our Black-Box Model

Our New Black-Box Model

- Works over Integers.
- Uses access to the black-box in a new way.

Figure: Our Black-Box Model

Why this model makes sense?

- No Extra information.
- May help in designing algorithms running in time sub-linear in d.
- Traditional black-box model output will have $\Omega(d)$ bits.
- Generalized version of arithmetic circuits over integers.

Our contribution

Theorem

In the new black-box model, there is an algorithm to interpolate m-sparse polynomials in time poly $(m, n, \log d, \log H)$.

- First algorithm with sub-linear dependence on degree d.
- Running time is polynomial in output size.
- Output size $=m \cdot(n \log d+\log H)$.

Preliminaries

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work
(4) Questions?

Polynomial Interpolation And Identity testing

Interpolating Modulo prime p

- $F(x)=\sum_{i=1}^{m} c_{i} x^{\alpha_{i}},\left|c_{i}\right| \leq H$ and $\alpha_{i} \leq d$.
- Interpolating $F(x)$ modulo prime p.
- Ask value of $F(x) \bmod p$ at $\{0,1,2, \ldots, p-1\}$
- Interpolate to obtain $F_{p}(x)=\sum_{i=1}^{m}\left(c_{i} \bmod p\right) x^{\alpha_{i} \bmod (p-1)}$
- Want all coefficients, but choice of p may bad.
- If some coefficient vanishes modulo p
- $\operatorname{Or} \alpha_{i} \equiv \alpha_{j} \bmod (p-1)$

Interpolating Modulo prime p

- $F(x)=\sum_{i=1}^{m} c_{i} x^{\alpha_{i}},\left|c_{i}\right| \leq H$ and $\alpha_{i} \leq d$.
- Interpolating $F(x)$ modulo prime p.
- Ask value of $F(x) \bmod p$ at $\{0,1,2, \ldots, p-1\}$
- Interpolate to obtain $F_{p}(x)=\sum_{i=1}^{m}\left(c_{i} \bmod p\right) x^{\alpha_{i} \bmod (p-1)}$
- Want all coefficients, but choice of p may bad.
- If some coefficient vanishes modulo p
- $\operatorname{Or} \alpha_{i} \equiv \alpha_{j} \bmod (p-1)$.

How to avoid bad primes?

- Avoiding primes modulo which some coefficient vanishes
- A number cannot have too many distinct prime divisors
- At most mlog H bad primes
- Avoiding primes modulo which two monomials merge
- p is bad when $(p-1) \mid\left(\alpha_{i}-\alpha_{j}\right)$
- Difficult to bound the number of primes p such that $(p-1)$ divides an integer

Polynomial Interpolation And Identity testing

How to avoid bad primes?

- Avoiding primes modulo which some coefficient vanishes
- A number cannot have too many distinct prime divisors
- At most mlog H bad primes
- Avoiding primes modulo which two monomials merge
- p is bad when $(p-1) \mid\left(\alpha_{i}-\alpha_{j}\right)$
- Difficult to bound the number of primes p such that $(p-1)$ divides an integer

Primes in AP

- For $k \in \mathbb{N}^{+}$
- Consider primes in AP $1+k, 1+2 k, 1+3 k, \ldots$
- $P(k)=$ Smallest prime in above AP

Theorem (Linnik's Theorem)

$\exists k_{0}, L \in \mathbb{N}^{+}$such that $\forall k>k_{0}: P(k) \leq k^{L}$

- Interpolate modulo $p=P(q)$ for prime q
- Makes sure that $p-1$ cannot divide an integer for too many such p

Polynomial Interpolation And Identity testing

Primes in AP

- For $k \in \mathbb{N}^{+}$
- Consider primes in AP $1+k, 1+2 k, 1+3 k, \ldots$
- $P(k)=$ Smallest prime in above AP

Theorem (Linnik's Theorem)

$\exists k_{0}, L \in \mathbb{N}^{+}$such that $\forall k \geq k_{0}: P(k) \leq k^{L}$

- Interpolate modulo $p=P(q)$ for prime q
- Makes sure that $p-1$ cannot divide an integer for too many such p
- Want $P\left(q_{1}\right) \neq P\left(q_{2}\right)$ for distinct primes q_{1} and q_{2}.
- May not be always true.
- But $P(q)$ can not be same for too many distinct primes q.

Lemma (Lemma 2 in [BHLVog]

- Want $P\left(q_{1}\right) \neq P\left(q_{2}\right)$ for distinct primes q_{1} and q_{2}.
- May not be always true.
- But $P(q)$ can not be same for too many distinct primes q.

Lemma (Lemma 2 in [BHLV09])
Let $k_{0}<q_{1}<q_{2}<\ldots<q_{v}$ and $\forall i \in[v]: P\left(q_{i}\right)=p$. Then $v \leq 5$.

Good primes

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work

4 Questions?

Polynomial Interpolation And Identity testing

> Definition (Bad number (or prime))
> A number (or prime) q is Bad for a polynomial $F(x)$ if $P(q) \mid c_{i}$ or $(P(q)-1) \mid\left(\alpha_{j}-\alpha_{k}\right)$.

- How many Bad primes?
- At most $5 m \log H$ bad for coefficients
- At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b=\binom{m}{2} \log d+5 m \log H$ Bad primes.

Definition (Good number (or prime))
A number (or prime) q is called Good for a polynomial $F(x)$ if it is not Bad.

Definition (Bad number (or prime))

A number (or prime) q is Bad for a polynomial $F(x)$ if $P(q) \mid c_{i}$ or $(P(q)-1) \mid\left(\alpha_{j}-\alpha_{k}\right)$.

- How many Bad primes?
- At most $5 m \log H$ bad for coefficients
- At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b=\binom{m}{2} \log d+5 m \log H$ Bad primes.

Definition (Good number (or prime))
A number (or prime) q is called Good for a polynomial $F(x)$ if it is not Bad.

Definition (Bad number (or prime))

A number (or prime) q is Bad for a polynomial $F(x)$ if $P(q) \mid c_{i}$ or $(P(q)-1) \mid\left(\alpha_{j}-\alpha_{k}\right)$.

- How many Bad primes?
- At most $5 m \log H$ bad for coefficients
- At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b=\binom{m}{2} \log d+5 m \log H$ Bad primes.

Definition (Good number (or prime))

A number (or prime) q is called Good for a polynomial $F(x)$ if it is not Bad.

Finding a Good prime

- Interpolating modulo $P\left(q^{\prime}\right)$ for Bad prime q^{\prime}.
- We get less than m monomials in $F_{P\left(q^{\prime}\right)}(x)$.
- Interpolating modulo $P(q)$ for Good prime q.
- We get exactly m monomials in $F_{P(q)}(x)$.
- Interpolate modulo $b+1$ primes $P\left(p_{1}\right), P\left(p_{2}\right), \ldots, P\left(p_{b+1}\right)$ for distinct primes $p_{1}<p_{2}<\ldots<p_{b+1}$.
- p_{i} is Good if $F_{P\left(p_{i}\right)}(x)$ has maximum number of monomials.

Finding a Good prime

- Interpolating modulo $P\left(q^{\prime}\right)$ for Bad prime q^{\prime}.
- We get less than m monomials in $F_{P\left(q^{\prime}\right)}(x)$.
- Interpolating modulo $P(q)$ for Good prime q.
- We get exactly m monomials in $F_{P(q)}(x)$.
- Interpolate modulo $b+1$ primes $P\left(p_{1}\right), P\left(p_{2}\right), \ldots, P\left(p_{b+1}\right)$ for distinct primes $p_{1}<p_{2}<\ldots<p_{b+1}$.
- p_{i} is Good if $F_{P\left(p_{i}\right)}(x)$ has maximum number of monomials.

Finding many Good primes

- $t=\max \{\lceil\log H\rceil+1,\lceil\log d\rceil\}$
- Enough to find t Good primes.
- Above method can find t Good primes
- Use Chinese remaindering after interpolation modulo primes?
- Order of coefficients/powers unknown.

Polynomial Interpolation And Identity testing

Finding many Good primes

- $t=\max \{\lceil\log H\rceil+1,\lceil\log d\rceil\}$
- Enough to find t Good primes.
- Above method can find t Good primes
- Use Chinese remaindering after interpolation modulo Good primes?
- Order of coefficients/powers unknown.

Goodg primes

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work

4 Questions?

Polynomial Interpolation And Identity testing

Goodg primes

Finding many Goodg primes

- $q_{0}=$ Good prime already found

$$
\text { - } g=P\left(q_{0}\right)-1
$$

Definition (Badg prime)

Prime a is Badg for a polynomial $F(x)$ if $g q$ is Bad number for $F(x)$.

Definition (Goodg prime)

A prime a is called Goodg for a polynomial $F(x)$ if it is not Badg.

Polynomial Interpolation And Identity testing

Finding many Goodg primes

- $q_{0}=$ Good prime already found

$$
g=P\left(q_{0}\right)-1
$$

Definition (Badg prime)

Prime q is Badg for a polynomial $F(x)$ if $g q$ is Bad number for $F(x)$.

Definition (Goodg prime)

A prime q is called Goodg for a polynomial $F(x)$ if it is not Badg.

Finding t Goodg primes

- At most $b=\binom{m}{2} \log d+5 m \log H$ Badg primes.
- Try $b+t$ primes
- Pick t Goodg primes.
- Why Goodg primes are better than Good primes?
- Can use Chinese remaindering.

Polynomial Interpolation And Identity testing

Finding t Goodg primes

- At most $b=\binom{m}{2} \log d+5 m \log H$ Badg primes.
- Try $b+t$ primes
- Pick t Goodg primes.
- Why Goodg primes are better than Good primes?
- Can use Chinese remaindering.

Outline

(1) Introduction

- Polynomial Interpolation
- Previous work
- New Black-box model
(2) Uni-variate interpolation
- Preliminaries
- Good primes
- Goodg primes
- Final algorithm
(3) Applications and Other work

4) Questions?

Determining the order

- We have t Goodg primes $q_{1}, q_{2}, \ldots, q_{t}$.
- Also $F_{P\left(g q_{1}\right)}(x), F_{P\left(g q_{2}\right)}(x), \ldots, F_{P\left(g q_{t}\right)}(x)$
- $F_{P\left(g q_{i}\right)}(x)=\sum_{j=1}^{m} c_{i j} x^{\alpha_{i j}}$

Lemma

$u \neq v \in[t]$, and $s=\operatorname{gcd}\left(P\left(g q_{u}\right)-1, P\left(g q_{v}\right)-1\right)$. Then $\forall j \in[m]$,
there exists a unique $j^{\prime} \in[\mathrm{m}]$ such that $\alpha_{u j} \equiv \alpha_{v j^{\prime}} \bmod s$.

Determining the order

- We have t Goodg primes $q_{1}, q_{2}, \ldots, q_{t}$.
- Also $F_{P\left(g q_{1}\right)}(x), F_{P\left(g q_{2}\right)}(x), \ldots, F_{P\left(g q_{t}\right)}(x)$
- $F_{P\left(g q_{i}\right)}(x)=\sum_{j=1}^{m} c_{i j} x^{\alpha_{i j}}$

Lemma

$u \neq v \in[t]$, and $s=\operatorname{gcd}\left(P\left(g q_{u}\right)-1, P\left(g q_{v}\right)-1\right)$. Then $\forall j \in[m]$, there exists a unique $j^{\prime} \in[m]$ such that $\alpha_{u j} \equiv \alpha_{v j^{\prime}} \bmod s$.

Completing the Interpolation

- For $j=1$ to m
- For $i=2$ to t
- $s_{i}=\operatorname{gcd}\left(P\left(g q_{1}\right)-1, P\left(g q_{i}\right)-1\right)$.
- Find $k_{i j} \in[m]$ such that $\alpha_{i k_{i j}} \equiv \alpha_{1 j} \bmod s_{i}$.
- Compute α_{j} using CRT from $\alpha_{1 j}, \alpha_{2 k_{2 j}}, \ldots, \alpha_{t k_{t j}}$.
- Compute c_{j} using CRT from $c_{1 j}, c_{2 k_{2 j}}, \ldots, c_{t k_{t j}}$.
- Runs in time poly $(m, \log d, \log H)$
- Polynomial in output size.

Polynomial Interpolation And Identity testing

Completing the Interpolation

- For $j=1$ to m
- For $i=2$ to t
- $s_{i}=\operatorname{gcd}\left(P\left(g q_{1}\right)-1, P\left(g q_{i}\right)-1\right)$.
- Find $k_{i j} \in[m]$ such that $\alpha_{i k_{j j}} \equiv \alpha_{1 j} \bmod s_{i}$.
- Compute α_{j} using CRT from $\alpha_{1 j}, \alpha_{2 k_{2 j}}, \ldots, \alpha_{t k_{t j}}$.
- Compute c_{j} using CRT from $c_{1 j}, c_{2 k_{2 j}}, \ldots, c_{t k_{k j}}$.
- Runs in time poly $(m, \log d, \log H)$
- Polynomial in output size.

Applications and Other work

- Easily adaptable to Multivariate interpolation.
- Can interpolate polynomials represented by arithmetic circuits.
- Other work
- Polynomial Identity Testing
- Faster deterministic algorithm.
- Randomness efficient randomized algorithm.
- Optimal randomness efficient randomized algorithm in a special case.

Questions?

Thank you

Polynomial Interpolation And Identity testing

Questions?

Thank you

Polynomial Interpolation And Identity testing

Chinese remaindering

Theorem (Generalized Chinese Remainder Theorem[BS96])

$m_{1}, m_{2}, \ldots, m_{k}$ be positive integers. Define $m=m_{1} m_{2} \ldots m_{k}$, and $m^{\prime}=\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. The system S of congruences

$$
x \equiv x_{i} \bmod m_{i}, 1 \leq i \leq k
$$

has a solution iff $x_{i} \equiv x_{j}\left(\bmod \operatorname{gcd}\left(m_{i}, m_{j}\right)\right)$ for all $i \neq j$. If the solution exists, it is unique $\left(\bmod m^{\prime}\right)$.
We can determine if S has a solution, using $O\left((\log m)^{2}\right)$ bit operations, and if so, we can find the unique solution $\left(\bmod m^{\prime}\right)$, using $O\left((\log m)^{2}\right)$ bit operations.

Multivariate interpolation

- Use the Kronecker substitution
- Substitute $x_{i} \mapsto X^{(d+1)^{i-1}}$ to convert to uni-variate.
- Interpolate the uni-variate polynomial of degree at most $(d+1)^{n}-1$
- Convert back to multivariate.
- Runs in time $\operatorname{poly}\left(m, \log \left((d+1)^{n}-1\right), \log H\right)=\operatorname{poly}(m, n, \log d, \log H)$.

Polynomial identity testing

$$
\xrightarrow{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}} P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad P\left(a_{1}, a_{2}, \ldots, a_{n}\right)==0
$$

- $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=m$-sparse polynomial of unbounded degree over reals.
- Want to test whether $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a zero polynomial.

Our contribution

- Improved deterministic algorithm running time from $\tilde{O}\left(m^{3} n^{3}\right)[B E 11]$ to $\tilde{O}\left(m^{2} n\right)$.
- Want randomized algorithm running in time poly $(n, \log m)$.
- Lower bound of $\Omega(\log m)$ random bits known.
- Upper bound of $O\left(\log ^{2} m\right)$ random bits known [BE11].
- Improved upper bound to $O\left(\frac{\log ^{2} m}{\log \log m}\right)$ random bits.
- In case $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has degree bounded by $\operatorname{poly}(m)$ and coefficients are rationals.
- Achieved upper bound of $O(\log m)$ random bits.

Polynomial Interpolation And Identity testing

Our contribution

- Improved deterministic algorithm running time from $\tilde{O}\left(m^{3} n^{3}\right)[B E 11]$ to $\tilde{O}\left(m^{2} n\right)$.
- Want randomized algorithm running in time poly $(n, \log m)$.
- Lower bound of $\Omega(\log m)$ random bits known.
- Upper bound of $O\left(\log ^{2} m\right)$ random bits known [BE11].
- Improved upper bound to $O\left(\frac{\log ^{2} m}{\log \log m}\right)$ random bits.
- In case $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has degree bounded by poly (m) and coefficients are rationals.
- Achieved upper bound of $O(\log m)$ random bits.

Polynomial Interpolation And Identity testing

Our contribution

- Improved deterministic algorithm running time from $\tilde{O}\left(m^{3} n^{3}\right)[B E 11]$ to $\tilde{O}\left(m^{2} n\right)$.
- Want randomized algorithm running in time poly $(n, \log m)$.
- Lower bound of $\Omega(\log m)$ random bits known.
- Upper bound of $O\left(\log ^{2} m\right)$ random bits known [BE11].
- Improved upper bound to $O\left(\frac{\log ^{2} m}{\log \log m}\right)$ random bits.
- In case $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ has degree bounded by poly (m) and coefficients are rationals.
- Achieved upper bound of $O(\log m)$ random bits.

Markus Bläser and Christian Engels.
Randomness Efficient Testing of Sparse Black Box Identities of Unbounded Degree over the Reals.
In Thomas Schwentick and Christoph Dürr, editors, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), volume 9 of Leibniz International Proceedings in Informatics (LIPICs), pages 555-566, Dagstuhl, Germany, 2011. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
國 Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi.
Deterministically testing sparse polynomial identities of unbounded degree.
Information Processing Letters, 109(3):187-192, 2009.

围 Michael Ben-Or.
A deterministic algorithm for sparse multivariate polynomial interpolation.
In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC '88, pages 301-309, New York, NY, USA, 1988. ACM.
E. Bach and J.O. Shallit.

Algorithmic Number Theory: Efficient Algorithms.
Number v. 1 in Algorithmic Number Theory. The Mit Press, 1996.

嗇 Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski.
On zero-testing and interpolation of k-sparse multivariate polynomials over finite fields.

Theoretical Computer Science, 84(2):151-164, 1991.

囯 Dima Grigoriev and Marek Karpinski.
The matching problem for bipartite graphs with polynomially bounded permanents is in NC (extended abstract). In FOCS, pages 166-172, 1987.

囯 Dima Yu. Grigoriev, Marek Karpinski, and Michael F. Singer. Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields.
SIAM J. COMPUT, 19(6):1059-1063, 1990.

- Adam R. Klivans and Daniel Spielman.

Randomness efficient identity testing of multivariate polynomials.

In Proceedings of the thirty-third annual ACM symposium on Theory of computing, STOC '01, pages 216-223, New York, NY, USA, 2001. ACM.
國 Kai Werther.
The complexity of sparse polynomial interpolation over finite fields.
Applicable Algebra in Engineering, Communication and Computing, 5(2):91-103, 1994.
國 Richard Zippel.
Probabilistic algorithms for sparse polynomials.
In EdwardW. Ng, editor, Symbolic and Algebraic Computation, volume 72 of Lecture Notes in Computer Science, pages 216-226. Springer Berlin Heidelberg, 1979.

