Uni-variate interpolation 00000 0000 000 Applications and Other work $_{\rm O}$

Questions?

Saarland University

Polynomial Interpolation And Identity testing

Gorav Jindal

Saarland University

PhD Application Talk, 7 October 2013

Gorav Jindal

Uni-variate interpolation 00000 0000 000 Applications and Other work ○ Questions?

Outline

Introduction
00
000
0000

Uni-variate interpolation 00000 0000 000 Applications and Other work 0 Questions?

Polynomial Interpolation

Outline

(

1	Introduction
	• Polynomial Interpolation
	 Previous work
	New Black-box model
2	Uni-variate interpolation
	 Preliminaries
	 Good primes
	 Goodg primes
	 Final algorithm
3	Applications and Other wo
4	Questions?

Gorav Jindal

Introduction
00
000
0000

Uni-variate interpolation 00000 0000 000 Applications and Other work ○

Image: A math a math

Questions?

Saarland University

Polynomial Interpolation

Polynomial Interpolation

- Black-box Model
 - $\bullet~ \mathcal{R}$ is the underlying ring
 - $P(x_1, x_2, ..., x_n) \in \mathcal{R}[x_1, x_2, ..., x_n]$,

$$\xrightarrow{(a_1, a_2, \ldots, a_n)} P(x_1, x_2, \ldots, x_n) \xrightarrow{P(a_1, a_2, \ldots, a_n)}$$

Figure: Traditional Black-Box Model

• Ask value of *P* at some set of points and output *P* as a list of coefficients along with corresponding monomials

troduction	
00	
000	

Ini-variate interpolation 10000 1000 1000 Applications and Other work

Questions?

Previous work

In O

Outline

1	Introduction
	 Polynomial Interpolation
	 Previous work
	New Black-box model
2	Uni-variate interpolation
	 Preliminaries
	 Good primes
	 Goodg primes
	 Final algorithm
3	Applications and Other work
4	Questions?

・ロト ・日子・ ・ ヨト

Introduction ○○ ○●○ ○○○○	Uni-variate interpolation 0000 000 000 000	Applications and Other work O	Questions? 00000
Previous work			
Previous v	vork		

- Lot of previous research in Black-box polynomial interpolation.
 - Randomized algorithm by Zippel [Zip79].
 - Technique for deterministic algorithm by Grigoriev and Karpinski [GK87] .
 - Deterministic algorithm by Ben-Or and Tiwari [BO88], using the technique of [GK87].

Saarland University

• Makes 2*m* queries to the given black box.

Introduction ○○ ○○● ○○○○	Uni-variate interpolation 00000 0000 000 000	Applications and Other work O	Questions? 00000
Previous work			
Over finite	e fields		

- Studied extensively in [Wer94, GKS90, CDGK91].
- NC algorithm for interpolating *m*-sparse polynomials over finite fields [GKS90].
 - $O(\log^3(nm))$ Boolean parallel time.
 - $O(n^2 m^6 \log^2(nm))$ processors.
- Polynomial interpolation over fields of large characteristic by Klivans and Spielman [KS01].
- Interpolation over integers.
 - Known algorithms take time polynomial in d.

Goray linda

00 000 0000 Uni-variate interpolation 00000 0000 000 Applications and Other work 0

Questions?

New Black-box model

Outline

- Polynomial Interpolation
- Previous work
- New Black-box model
- 2 Uni-variate interpolation
 - Preliminaries
 - Good primes
 - Goodg primes
 - Final algorithm

Introduction	n

0000

Uni-variate interpolation 00000 0000 000 Applications and Other work

Image: A mathematical states and a mathem

Questions?

Saarland University

New Black-box model

Our New Black-Box Model

- Works over Integers.
- Uses access to the black-box in a new way.

$$(a_1, a_2, \dots, a_n) \xrightarrow{P(x_1, x_2, \dots, x_n)} P(a_1, a_2, \dots, a_n) \mod N$$

Figure: Our Black-Box Model

Gorav Jindal

ln tr o du	ctior
~ ~ ~	

0000

Uni-variate interpolation 00000 0000 000 Applications and Other work O

Questions?

Saarland University

New Black-box model

Our New Black-Box Model

- Works over Integers.
- Uses access to the black-box in a new way.

$$(a_1, a_2, \dots, a_n) \xrightarrow{P(a_1, a_2, \dots, a_n) \mod N} P(x_1, x_2, \dots, x_n) \xrightarrow{P(a_1, a_2, \dots, a_n) \mod N}$$

Figure: Our Black-Box Model

Gorav Jindal

Introduction	Uni-variate interpolation	Applicati
00 000 00●0	00000 0000 000 000	
N DI LI	1.1	

Applications and Other work \odot

Questions?

Saarland University

Why this model makes sense?

- No Extra information.
- May help in designing algorithms running in time sub-linear in *d*.
 - Traditional black-box model output will have $\Omega(d)$ bits.
- Generalized version of arithmetic circuits over integers.

In troduction ○○ ○○○ ○○○●	Uni-variate interpolation 00000 0000 000 000	Applications and Other work O	Questions? 00000
New Black-box model			

Our contribution

Theorem

In the new black-box model, there is an algorithm to interpolate m-sparse polynomials in time poly $(m, n, \log d, \log H)$.

• First algorithm with sub-linear dependence on degree d.

Saarland University

- Running time is polynomial in output size.
 - Output size = $m \cdot (n \log d + \log H)$.

Gorav Jindal

Introduction	
000	
0000	

Uni-variate interpolation ●0000 0000 000 Applications and Other work 0 Questions?

Saarland University

Preliminaries

Outline

Gorav Jindal

Uni-variate interpolation 0●000 0000 000 Applications and Other work ○

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Questions?

Saarland University

Preliminaries

Interpolating Modulo prime *p*

- $F(x) = \sum_{i=1}^m c_i x^{\alpha_i}$, $|c_i| \leq H$ and $\alpha_i \leq d$.
- Interpolating F(x) modulo prime p.
 - Ask value of $F(x) \mod p$ at $\{0, 1, 2, ..., p-1\}$
 - Interpolate to obtain $F_p(x) = \sum_{i=1}^m (c_i \mod p) x^{\alpha_i \mod (p-1)}$

• Want all coefficients, but choice of p may bad.

- If some coefficient vanishes modulo p
- Or $\alpha_i \equiv \alpha_j \mod (p-1)$.

Gorav Jindal

Uni-variate interpolation 0●000 0000 000 Applications and Other work ○

Questions?

Saarland University

Preliminaries

Interpolating Modulo prime *p*

- $F(x) = \sum_{i=1}^m c_i x^{\alpha_i}$, $|c_i| \leq H$ and $\alpha_i \leq d$.
- Interpolating F(x) modulo prime p.
 - Ask value of $F(x) \mod p$ at $\{0, 1, 2, ..., p-1\}$
 - Interpolate to obtain $F_p(x) = \sum_{i=1}^m (c_i \mod p) x^{\alpha_i \mod (p-1)}$
- Want all coefficients, but choice of p may bad.
 - If some coefficient vanishes modulo p
 - Or $\alpha_i \equiv \alpha_j \mod (p-1)$.

Gorav Jindal

Uni-variate interpolation 00000 000 Applications and Other work 0

Image: A math a math

Questions?

Saarland University

Preliminaries

How to avoid bad primes?

- Avoiding primes modulo which some coefficient vanishes
 - A number cannot have too many distinct prime divisors
 - At most *m* log *H* bad primes
- Avoiding primes modulo which two monomials merge
 - p is bad when $(p-1) \mid (\alpha_i \alpha_j)$
 - Difficult to bound the number of primes p such that (p−1) divides an integer

Gorav Jindal

ntroduction Uni-variate interpolation 0 00€00 000 0000 0000 0000 0000 000 Applications and Other work

Questions?

Preliminaries

How to avoid bad primes?

- Avoiding primes modulo which some coefficient vanishes
 - A number cannot have too many distinct prime divisors
 - At most *m* log *H* bad primes
- Avoiding primes modulo which two monomials merge
 - p is bad when $(p-1) \mid (\alpha_i \alpha_j)$
 - Difficult to bound the number of primes p such that (p-1) divides an integer

Image: A math a math

Introduction 00 000 0000	Uni-variate interpolation ○○○●○ ○○○○ ○○○	Applications and Other work O	Questions? 00000
Preliminaries			
Primes in	AP		

- For $k \in \mathbb{N}^+$
 - Consider primes in AP $1 + k, 1 + 2k, 1 + 3k, \ldots$
 - P(k) =Smallest prime in above AP

Theorem (Linnik's Theorem)

 $\exists k_0, L \in \mathbb{N}^+$ such that $\forall k \geq k_0 : P(k) \leq k^L$

- Interpolate modulo p = P(q) for prime q
 - Makes sure that p 1 cannot divide an integer for too many such p

<ロ> <同> <同> <同> < 同> < 同> <

Saarland University

Introduction 00 000 0000	Uni-variate interpolation ○○○●○ ○○○○ ○○○	Applications and Other work O	Questions? 00000
Preliminaries			
Primes in	AP		

- For $k \in \mathbb{N}^+$
 - Consider primes in AP $1 + k, 1 + 2k, 1 + 3k, \ldots$
 - P(k) =Smallest prime in above AP

Theorem (Linnik's Theorem)

 $\exists k_0, L \in \mathbb{N}^+$ such that $\forall k \geq k_0 : P(k) \leq k^L$

- Interpolate modulo p = P(q) for prime q
 - Makes sure that p 1 cannot divide an integer for too many such p

Image: A math a math

Saarland University

Gorav Jindal

00 000 0000	0000 0000 000	0	00000
Preliminaries	000		

Interpolating Modulo P(q)

- Want $P(q_1) \neq P(q_2)$ for distinct primes q_1 and q_2 .
 - May not be always true.
 - But P(q) can not be same for too many distinct primes q.

Saarland University

Lemma (Lemma 2 in [BHLV09]) Let $k_0 < q_1 < q_2 < ... < q_v$ and $\forall i \in [v] : P(q_i) = p$. Then $v \le 5$.

Gorav Jindal

Introduction 000 0000 0000	Uni-variate interpolation 0000● 0000 000 000	Applications and Other work O	Questions? 00000
Preliminaries			

Interpolating Modulo P(q)

- Want $P(q_1) \neq P(q_2)$ for distinct primes q_1 and q_2 .
 - May not be always true.
 - But P(q) can not be same for too many distinct primes q.

メロト メロト メヨト メ

Saarland University

Lemma (Lemma 2 in [BHLV09])

Let $k_0 < q_1 < q_2 < \ldots < q_v$ and $\forall i \in [v] : P(q_i) = p$. Then $v \leq 5$.

Gorav Jindal

ln tr o du	ction
000	
0000	

Uni-variate interpolation 000

Applications and Other work

Questions?

Good primes

Outline

Gorav Jindal

Introduction	
000	
0000	

Uni-variate interpolation ○○○○○ ○●○○ Applications and Other work

Questions?

Saarland University

Good primes

Interpolating Modulo P(q)

Definition (Bad number (or prime))

A number (or prime) q is Bad for a polynomial F(x) if $P(q) | c_i$ or $(P(q) - 1) | (\alpha_j - \alpha_k)$.

- How many Bad primes?
 - At most 5*m* log *H* bad for coefficients
 - At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b = \binom{m}{2} \log d + 5m \log H$ Bad primes.

Definition (Good number (or prime))

A number (or prime) *q* is called Good for a polynomial *F*(x) if it is not Bad.

Gorav Jindal

Introduction	
000	
0000	

Uni-variate interpolation ○○○○○ ○●○○ ○○○ Applications and Other work O Questions?

Saarland University

Good primes

Interpolating Modulo P(q)

Definition (Bad number (or prime))

A number (or prime) q is Bad for a polynomial F(x) if $P(q) | c_i$ or $(P(q) - 1) | (\alpha_j - \alpha_k)$.

- How many Bad primes?
 - At most 5*m* log *H* bad for coefficients
 - At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b = \binom{m}{2} \log d + 5m \log H$ Bad primes.

Definition (Good number (or prime))

A number (or prime) *q* is called Good for a polynomial *F*(x) if it is not Bad.

Gorav Jindal

Introduction	
000	
0000	

Uni-variate interpolation ○○○○○ ○●○○ Applications and Other work O Questions?

Good primes

Interpolating Modulo P(q)

Definition (Bad number (or prime))

A number (or prime) q is Bad for a polynomial F(x) if $P(q) | c_i$ or $(P(q) - 1) | (\alpha_j - \alpha_k)$.

- How many Bad primes?
 - At most 5*m* log *H* bad for coefficients
 - At most $\binom{m}{2} \log d$ bad for monomial merging
- At most $b = \binom{m}{2} \log d + 5m \log H$ Bad primes.

Definition (Good number (or prime))

A number (or prime) q is called Good for a polynomial F(x) if it is not Bad.

Gorav Jindal

Saarland University

Introduction	Uni-variate interpolation	Applications and Other work	Questions?
00	00000		
000			
Good primes			
The second se			

• Interpolating modulo P(q') for Bad prime q'.

prime

- We get less than m monomials in $F_{P(q')}(x)$.
- Interpolating modulo P(q) for Good prime q.
 - We get exactly m monomials in $F_{P(q)}(x)$.
- Interpolate modulo b + 1 primes P(p₁), P(p₂),..., P(p_{b+1}) for distinct primes p₁ < p₂ < ... < p_{b+1}.
 - p_i is Good if $F_{P(p_i)}(x)$ has maximum number of monomials.

Image: A math a math

Saarland University

Finding a G<u>ood</u>

Introduction 00 000 0000	Uni-variate interpolation ○○○○○ ○○○○ ○○○	Applications and Other work O	Questions? 00000
Good primes			

Finding a Good prime

- Interpolating modulo P(q') for Bad prime q'.
 - We get less than m monomials in $F_{P(q')}(x)$.
- Interpolating modulo P(q) for Good prime q.
 - We get exactly *m* monomials in $F_{P(q)}(x)$.
- Interpolate modulo b + 1 primes P(p₁), P(p₂),..., P(p_{b+1}) for distinct primes p₁ < p₂ < ... < p_{b+1}.
 - p_i is Good if $F_{P(p_i)}(x)$ has maximum number of monomials.

イロト イポト イヨト イ

Saarland University

Uni-variate interpolation 0000 000 000 Applications and Other work ○

Questions?

Saarland University

Good primes

Finding many Good primes

- $t = \max\{\lceil \log H \rceil + 1, \lceil \log d \rceil\}$
- Enough to find t Good primes.
 - Above method can find t Good primes
- Use Chinese remaindering after interpolation modulo Good primes?
 - Order of coefficients/powers unknown.

Gorav Jindal

Uni-variate interpolation 0000 000 000 Applications and Other work 0 Questions?

Good primes

Finding many Good primes

- $t = \max\{\lceil \log H \rceil + 1, \lceil \log d \rceil\}$
- Enough to find t Good primes.
 - Above method can find t Good primes
- Use Chinese remaindering after interpolation modulo Good primes?
 - Order of coefficients/powers unknown.

ln tr o du	
000	
0000	

Uni-variate interpolation 00

Applications and Other work

Questions?

Goodg primes

Outline

Introdu	
000	
0000	
Gooda	nrimes
GOOGE	0111103

Uni-variate interpolation 00000 0000 000 Applications and Other work ○

Questions? 00000

Finding many Goodg primes

• $q_0 = \text{Good}$ prime already found

•
$$g = P(q_0) - 1$$

Definition (Badg prime)

Prime q is Badg for a polynomial F(x) if gq is Bad number for F(x).

Definition (Goodg prime)

A prime q is called Goodg for a polynomial F(x) if it is not Badg.

Gorav Jindal

Polynomial Interpolation And Identity testing

Introduction	
000	
0000	

Uni-variate interpolation 00000 0000 0●0 Applications and Other work ○

Questions?

Goodg primes

Finding many Goodg primes

•
$$g = P(q_0) - 1$$

Definition (Badg prime)

Prime q is Badg for a polynomial F(x) if gq is Bad number for F(x).

Definition (Goodg prime)

A prime q is called Goodg for a polynomial F(x) if it is not Badg.

Gorav Jindal

Polynomial Interpolation And Identity testing

・ロト ・回ト ・ヨト

Introduction 00 000 0000	Uni-variate interpolation ○○○○○ ○○● ○○●	Applications and Other work 0	Questions? 00000
Goodg primes			

Finding *t* Goodg primes

- At most $b = {m \choose 2} \log d + 5m \log H$ Badg primes.
- Try b + t primes
 - Pick t Goodg primes.
- Why Goodg primes are better than Good primes?
 - Can use Chinese remaindering.

Gorav Jindal

Polynomial Interpolation And Identity testing

Image: A math a math

Introduction 00 000 0000	Uni-variate interpolation ○○○○○ ○○● ○○●	Applications and Other work 0	Questions? 00000
Goodg primes			

Finding *t* Goodg primes

- At most $b = {m \choose 2} \log d + 5m \log H$ Badg primes.
- Try b + t primes
 - Pick t Goodg primes.
- Why Goodg primes are better than Good primes?

Image: A math a math

Saarland University

• Can use Chinese remaindering.

Introduction 00 000 0000	Uni-variate interpolation ○○○○○ ○○○○ ●○○	Applications and Other work O	Questions? 00000
Final algorithm			
Outline			

- Polynomial Interpolation
- Previous work
- New Black-box model
- 2 Uni-variate interpolation
 - Preliminaries
 - Good primes
 - Goodg primes
 - Final algorithm

Introduction	Uni-variate interpolation	Applications and Other work	Questions?
00 000 0000	00000 0000 000 0 0 0		
Final algorithm			

Determining the order

- We have t Goodg primes q_1, q_2, \ldots, q_t .
 - Also $F_{P(gq_1)}(x), F_{P(gq_2)}(x), \dots, F_{P(gq_t)}(x)$

•
$$F_{P(gq_i)}(x) = \sum_{j=1}^m c_{ij} x^{\alpha_{ij}}$$

_emma

 $u \neq v \in [t]$, and $s = \gcd(P(gq_u) - 1, P(gq_v) - 1)$. Then $\forall j \in [m]$, there exists a unique $j' \in [m]$ such that $\alpha_{uj} \equiv \alpha_{vj'} \mod s$.

Saarland University

Gorav Jindal

Introduction	Uni-variate interpolation	Applications and Other work	Questions?
00 000 0000	00000 0000 000 000		
Final algorithm			

Determining the order

- We have t Goodg primes q_1, q_2, \ldots, q_t .
 - Also $F_{P(gq_1)}(x), F_{P(gq_2)}(x), \dots, F_{P(gq_t)}(x)$

•
$$F_{P(gq_i)}(x) = \sum_{j=1}^m c_{ij} x^{\alpha_{ij}}$$

Lemma

 $u \neq v \in [t]$, and $s = \gcd(P(gq_u) - 1, P(gq_v) - 1)$. Then $\forall j \in [m]$, there exists a unique $j' \in [m]$ such that $\alpha_{uj} \equiv \alpha_{vj'} \mod s$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Saarland University

Gorav Jindal

Introduction	
000	

Uni-variate interpolation ○○○○○ ○○○○ ○○● Applications and Other work O

Questions? 00000

Saarland University

Final algorithm

Completing the Interpolation

- For j = 1 to m
 - For i = 2 to t
 - $s_i = \gcd(P(gq_1) 1, P(gq_i) 1).$
 - Find $k_{ij} \in [m]$ such that $\alpha_{ik_{ij}} \equiv \alpha_{1j} \mod s_i$.
 - Compute α_j using CRT from $\alpha_{1j}, \alpha_{2k_{2j}}, \ldots, \alpha_{tk_{tj}}$.
 - Compute c_j using CRT from $c_{1j}, c_{2k_{2j}}, \ldots, c_{tk_{tj}}$.
- Runs in time poly(m, log d, log H)
 - Polynomial in output size.

Gorav Jindal

Introduction	
000	

Uni-variate interpolation ○○○○○ ○○○○ ○○● Applications and Other work ○

Questions?

Saarland University

Final algorithm

Completing the Interpolation

- For j = 1 to m
 - For i = 2 to t
 - $s_i = \gcd(P(gq_1) 1, P(gq_i) 1).$
 - Find $k_{ij} \in [m]$ such that $\alpha_{ik_{ij}} \equiv \alpha_{1j} \mod s_i$.
 - Compute α_j using CRT from $\alpha_{1j}, \alpha_{2k_{2j}}, \ldots, \alpha_{tk_{tj}}$.
 - Compute c_j using CRT from $c_{1j}, c_{2k_{2j}}, \ldots, c_{tk_{tj}}$.
- Runs in time poly(m, log d, log H)
 - Polynomial in output size.

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions?

Saarland University

Applications and Other work

- Easily adaptable to Multivariate interpolation.
- Can interpolate polynomials represented by arithmetic circuits.
- Other work
 - Polynomial Identity Testing
 - Faster deterministic algorithm.
 - Randomness efficient randomized algorithm.
 - Optimal randomness efficient randomized algorithm in a special case.

Gorav Jindal

Introduction	
000	
0000	

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions?

Thank you

Gorav Jindal

Saarland University

・ロト ・日子・ ・ ヨト

Introduction	
000	
0000	

Uni-variate interpolation 00000 0000 000 Applications and Other work

A B > 4
 B > 4
 B
 B > 4
 B
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Questions?

Thank you

Gorav Jindal

Saarland University

Uni-variate interpolation 00000 0000 000 Applications and Other work O Questions?

Chinese remaindering

Theorem (Generalized Chinese Remainder Theorem[BS96])

 m_1, m_2, \ldots, m_k be positive integers. Define $m = m_1 m_2 \ldots m_k$, and $m' = lcm(m_1, m_2, \ldots, m_k)$. The system S of congruences

$$x \equiv x_i \mod m_i, 1 \le i \le k$$

has a solution iff $x_i \equiv x_j \pmod{\text{gcd}(m_i, m_j)}$ for all $i \neq j$. If the solution exists, it is unique (mod m'). We can determine if S has a solution, using $O((\log m)^2)$ bit operations, and if so, we can find the unique solution (mod m'), using $O((\log m)^2)$ bit operations.

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions?

Multivariate interpolation

- Use the Kronecker substitution
 - Substitute $x_i \mapsto X^{(d+1)^{i-1}}$ to convert to uni-variate.
- Interpolate the uni-variate polynomial of degree at most $(d+1)^n-1$
- Convert back to multivariate.
- Runs in time $poly(m, log((d+1)^n - 1), log H) = poly(m, n, log d, log H).$

Introduction
000
0000

Uni-variate interpolation 00000 0000 000 Applications and Other work O

Questions?

Saarland University

Polynomial identity testing

$$(a_1, a_2, \ldots, a_n) \in \mathbb{R}^n \longrightarrow P(x_1, x_2, \ldots, x_n) \xrightarrow{P(a_1, a_2, \ldots, a_n) == 0}$$

- P(x₁, x₂,..., x_n) = m-sparse polynomial of unbounded degree over reals.
- Want to test whether $P(x_1, x_2, ..., x_n)$ is a zero polynomial.

Gorav Jindal

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions?

Our contribution

• Improved deterministic algorithm running time from $\tilde{O}(m^3 n^3)$ [BE11] to $\tilde{O}(m^2 n)$.

• Want randomized algorithm running in time poly(n, log m).

- Lower bound of $\Omega(\log m)$ random bits known.
- Upper bound of $O(\log^2 m)$ random bits known [BE11].
- Improved upper bound to $O\left(\frac{\log^2 m}{\log\log m}\right)$ random bits.
- In case P(x₁, x₂,..., x_n) has degree bounded by poly(m) and coefficients are rationals.
 - Achieved upper bound of $O(\log m)$ random bits.

Gorav Jindal

Saarland University

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions? 0000●

Our contribution

- Improved deterministic algorithm running time from $\tilde{O}(m^3 n^3)$ [BE11] to $\tilde{O}(m^2 n)$.
- Want randomized algorithm running in time poly(n, log m).
 - Lower bound of $\Omega(\log m)$ random bits known.
 - Upper bound of $O(\log^2 m)$ random bits known [BE11].
 - Improved upper bound to $O\left(\frac{\log^2 m}{\log \log m}\right)$ random bits.
- In case P(x₁, x₂,..., x_n) has degree bounded by poly(m) and coefficients are rationals.
 - Achieved upper bound of $O(\log m)$ random bits.

Introduction
000
0000

Uni-variate interpolation 00000 0000 000 Applications and Other work

Questions? 0000●

Our contribution

- Improved deterministic algorithm running time from $\tilde{O}(m^3 n^3)$ [BE11] to $\tilde{O}(m^2 n)$.
- Want randomized algorithm running in time poly(n, log m).
 - Lower bound of $\Omega(\log m)$ random bits known.
 - Upper bound of $O(\log^2 m)$ random bits known [BE11].
 - Improved upper bound to $O\left(\frac{\log^2 m}{\log \log m}\right)$ random bits.
- In case P(x₁, x₂,..., x_n) has degree bounded by poly(m) and coefficients are rationals.
 - Achieved upper bound of $O(\log m)$ random bits.

Image: A math a math

Uni-variate interpolation

Applications and Other work

< □ > < 同 >

< ∃ >

Saarland University

Questions?

Markus Bläser and Christian Engels.

Randomness Efficient Testing of Sparse Black Box Identities of Unbounded Degree over the Reals.

In Thomas Schwentick and Christoph Dürr, editors, 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), volume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pages 555–566, Dagstuhl, Germany, 2011. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi. Deterministically testing sparse polynomial identities of unbounded degree.

Information Processing Letters, 109(3):187 – 192, 2009.

Michael Ben-Or.

A deterministic algorithm for sparse multivariate polynomial interpolation.

In Proceedings of the twentieth annual ACM symposium on Theory of computing, STOC '88, pages 301–309, New York, NY, USA, 1988. ACM.

🔋 E. Bach and J.O. Shallit.

Algorithmic Number Theory: Efficient Algorithms. Number v. 1 in Algorithmic Number Theory. The Mit Press, 1996.

Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski.

On zero-testing and interpolation of k-sparse multivariate polynomials over finite fields.

Uni-variate interpolation 00000 0000 000 Applications and Other work $_{\rm O}$

Questions? 0000●

Saarland University

Theoretical Computer Science, 84(2):151 – 164, 1991.

📄 Dima Grigoriev and Marek Karpinski.

The matching problem for bipartite graphs with polynomially bounded permanents is in NC (extended abstract). In *FOCS*, pages 166–172, 1987.

- Dima Yu. Grigoriev, Marek Karpinski, and Michael F. Singer. Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. COMPUT, 19(6):1059–1063, 1990.
- Adam R. Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate polynomials.

Questions? 0000●

In *Proceedings of the thirty-third annual ACM symposium on Theory of computing*, STOC '01, pages 216–223, New York, NY, USA, 2001. ACM.

Kai Werther.

The complexity of sparse polynomial interpolation over finite fields.

Applicable Algebra in Engineering, Communication and Computing, 5(2):91–103, 1994.

Richard Zippel.

Probabilistic algorithms for sparse polynomials.

In EdwardW. Ng, editor, *Symbolic and Algebraic Computation*, volume 72 of *Lecture Notes in Computer Science*, pages 216–226. Springer Berlin Heidelberg, 1979.

