A deterministic PTAS for commutative rank of matrix spaces

Markus Bläser ${ }^{1}$, Gorav Jindal ${ }^{2}$ and Anurag Pandey ${ }^{2}$
${ }^{1}$ Saarland University
${ }^{2}$ Max-Planck-Institute for Informatics

$$
\begin{gathered}
\text { CCC } 2017 \\
09 / 07 / 2017
\end{gathered}
$$

(1) Introduction

- Basic Problem
- Motivation
- Previous work
(2) Main algorithm
- A simple $\frac{1}{2}$-approximation algorithm
- Ideas for better approximation

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
- $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F}.

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
- $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F}.
- For vector spaces V, W
- Use notation $V \leq W$ to denote that V is a subspace of W.

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
- $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F}.
- For vector spaces V, W
- Use notation $V \leq W$ to denote that V is a subspace of W.

Definition (Matrix space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called a matrix space.

Problem

Problem

Given a matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, compute its "rank". \mathcal{B} is given as input by its set of generators, i.e, $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.

Problem

Problem

Given a matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, compute its "rank". \mathcal{B} is given as input by its set of generators, i.e, $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.

- Two notions of rank.
- Commutative rank.
- Non-commutative rank.

Commutative rank

Definition (Commutative rank)
 $\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, then
 Commutaive rank of $\mathcal{B}=\operatorname{rank}(\mathcal{B})=\max \{\operatorname{rank}(B) \mid B \in \mathcal{B}\}$.

Commutative rank

Definition (Commutative rank)

$\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, then
Commutaive rank of $\mathcal{B}=\operatorname{rank}(\mathcal{B})=\max \{\operatorname{rank}(B) \mid B \in \mathcal{B}\}$.

- $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called full-rank if $\operatorname{rank}(\mathcal{B})=n$.

A different Formulation

- Matrix space $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$, consider the matrix
- $B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of rational functions.

A different Formulation

- Matrix space $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$, consider the matrix
- $B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of rational functions.

Fact

If $|\mathbb{F}|>n$ then $\operatorname{rank}(\mathcal{B})=\operatorname{rank}(B)$.

A different Formulation

- Matrix space $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$, consider the matrix
- $B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ of rational functions.

Fact

If $|\mathbb{F}|>n$ then $\operatorname{rank}(\mathcal{B})=\operatorname{rank}(B)$.

- Gives a randomized polynomial time algorithm using Schwartz-Zippel lemma.
- Even an RNC algorithm.

Our contribution

- A deterministic PTAS for computing the Commutative rank.

Theorem

For any Matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, a deterministic poly-time algorithm which outputs a matrix $A \in \mathcal{B}$ such that

$$
\operatorname{rank}(A) \geq(1-\epsilon) \operatorname{rank}(\mathcal{B})
$$

Algorithm runs in time $n^{O\left(\frac{1}{\varepsilon}\right)}$.

Non-commutative rank

Definition (c-shrunk subspace)

$V \leq \mathbb{F}^{n}$ is a c-shrunk subspace of $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $\operatorname{rank}(\mathcal{B} V) \leq \operatorname{dim}(V)-c$.

Non-commutative rank

Definition (c-shrunk subspace)

$V \leq \mathbb{F}^{n}$ is a c-shrunk subspace of $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $\operatorname{rank}(\mathcal{B} V) \leq \operatorname{dim}(V)-c$.

Definition (Non-commutative rank)

$\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, if
$r=\max \{c \mid \exists c$-shrunk subspaceof $\mathcal{B}\}$ then
Non-commutaive rank of $\mathcal{B}=\operatorname{ncr}(\mathcal{B})=n-r$.

Problem

Lemma (Fortin and Reutenauer, 2004)
 $\operatorname{rank}(\mathcal{B}) \leq \operatorname{ncr}(\mathcal{B}) \leq 2 \cdot \operatorname{rank}(\mathcal{B})$

Problem

Lemma (Fortin and Reutenauer, 2004)
 $\operatorname{rank}(\mathcal{B}) \leq \operatorname{ncr}(\mathcal{B}) \leq 2 \cdot \operatorname{rank}(\mathcal{B})$

Lemma (Derksen and Makam, 2016)
There exist $\mathcal{B} \leq \mathbb{F}^{n \times n}$ such that $\frac{\operatorname{ncr}(\mathcal{B})}{\operatorname{rank}(\mathcal{B})}$ gets arbitrarily close to 2 as $n \rightarrow \infty$.

Why study this problem?

- Generalizes several computational problems from algebra and combinatorics.
- Bipartite matching
- Linear Matroid intersection.
- Maximum matching
- Linear matroid parity problem
- Polynomial identity testing(PIT) of Algebraic branching programs(ABP)

Special cases

- NP-complete when the field \mathbb{F} is of constant size.

Special cases

- NP-complete when the field \mathbb{F} is of constant size.
- Deterministic polynomial time algorithms when B_{i} 's all are of rank 1.
- Subsumes bipartite maximum matching, linear matroid intersection.
- Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].

Special cases

- NP-complete when the field \mathbb{F} is of constant size.
- Deterministic polynomial time algorithms when B_{i} 's all are of rank 1.
- Subsumes bipartite maximum matching, linear matroid intersection.
- Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].

Algorithms for Non-commutative rank

- Gurvits, 2004 : Deterministic poly-time algorithms for "compression spaces"
- Matrix space \mathcal{B} is a compression space if $\operatorname{rank}(\mathcal{B})=\operatorname{ncr}(\mathcal{B})$.

Algorithms for Non-commutative rank

- Gurvits, 2004 : Deterministic poly-time algorithms for "compression spaces"
- Matrix space \mathcal{B} is a compression space if $\operatorname{rank}(\mathcal{B})=\operatorname{ncr}(\mathcal{B})$.

Theorem (GGOW 2015, Ivanyos et al.,2015)

There is a deterministic poly-time algorithm which computes the $\operatorname{ncr}(\mathcal{B})$ for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

Approximation algorithms for Commutative rank

- Using $\operatorname{rank}(\mathcal{B}) \leq \operatorname{ncr}(\mathcal{B}) \leq 2 \cdot \operatorname{rank}(\mathcal{B})$, one gets a deterministic poly-time algorithms for $\frac{1}{2}$-approximation of Commutative rank.
- These Non-commutative rank computation algorithms were the only algorithms which compute any constant factor approximation of the commutative rank.

Approximation algorithms for Commutative rank

- Leads to a natural question whether this approximation ratio of $\frac{1}{2}$ can be improved?
- We devise a deterministic poly-time algorithm which improves this approximation ratio to $1-\epsilon$ for arbitrary constant $0<\epsilon<1$.

Main Idea

- $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$.
- $B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
- We have some $A \in \mathcal{B}$ with some rank r.
- Want to find $A^{\prime} \in \mathcal{B}$ with $\operatorname{rank}\left(A^{\prime}\right)>r$.

Main Idea

- $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$.
- $B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
- We have some $A \in \mathcal{B}$ with some rank r.
- Want to find $A^{\prime} \in \mathcal{B}$ with $\operatorname{rank}\left(A^{\prime}\right)>r$.
- WLOG assume $A=\left[\begin{array}{cccc}I_{r} & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & 0\end{array}\right]$.
- Consider the matrix $A+B \in \mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{n \times n}$.

A simple $\frac{1}{2}$-approximation algorith m Ideas for better approximation

Main idea(Cont.)

- $A+B=\left[\begin{array}{cc}I_{r}+B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.

Main idea(Cont.)

- $A+B=\left[\begin{array}{cc}I_{r}+B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.
- Suppose $B_{22}=0$ then $\operatorname{rank}(A+B)=\operatorname{rank}(B) \leq 2 r$.
- $\operatorname{rank}(A)$ is already $\frac{1}{2}$-approximation of $\operatorname{rank}(B)$.

Main idea(Cont.)

- $A+B=\left[\begin{array}{cc}I_{r}+B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.
- Suppose $B_{22}=0$ then $\operatorname{rank}(A+B)=\operatorname{rank}(B) \leq 2 r$.
- $\operatorname{rank}(A)$ is already $\frac{1}{2}$-approximation of $\operatorname{rank}(B)$.
- Otherwise $B_{22} \neq 0, c\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero entry of B_{22}.

Main idea(Cont.)

- Consider the Minor M of $A+B$ which has $c\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ as the last entry.
- $M=$

$$
\left[\begin{array}{cccc}
1+\ell_{11} & \ell_{12} & \ldots & a_{1} \\
\ell_{21} & 1+\ell_{22} & \ldots & a_{2} \\
\vdots & \vdots & \ddots & \vdots \\
b_{1} & b_{2} & \ldots & c\left(x_{1}, x_{2}, \ldots, x_{m}\right)
\end{array}\right]_{(r+1) \times(r+1)}
$$

Main idea(Cont.)

- Consider the Minor M of $A+B$ which has $c\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ as the last entry.

$$
\begin{aligned}
& M= \\
& {\left[\begin{array}{cccc}
1+\ell_{11} & \ell_{12} & \ldots & a_{1} \\
\ell_{21} & 1+\ell_{22} & \cdots & a_{2} \\
\vdots & \vdots & \ddots & \vdots \\
b_{1} & b_{2} & \ldots & c\left(x_{1}, x_{2}, \ldots, x_{m}\right)
\end{array}\right]_{(r+1) \times(r+1)}}
\end{aligned}
$$

- $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)=$ $c\left(x_{1}, x_{2}, \ldots, x_{m}\right)+$ terms of degree at least 2 .

Final Step

- If we can find a setting of $x=\lambda_{1}, x_{2}=\lambda_{2}, \ldots, x_{m}=\lambda_{m}$ such that $\operatorname{det}\left(M\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right) \neq 0$.
- Then we get a rank $r+1$ matrix in \mathcal{B}.
- $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$ has degree 1 monomials.

Final Step

- If we can find a setting of $x=\lambda_{1}, x_{2}=\lambda_{2}, \ldots, x_{m}=\lambda_{m}$ such that $\operatorname{det}\left(M\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right) \neq 0$.
- Then we get a rank $r+1$ matrix in \mathcal{B}.
- $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$ has degree 1 monomials.

Fact

If a non-zero polynomial $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ has a degree k monomial and $\operatorname{deg}(f) \leq n$, then one can find a non-zero assignment $x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, \ldots, x_{m}=\lambda_{m}$ for f, by trying $O\left((m n)^{k}\right)$ choices.

Final Step

- If we can find a setting of $x=\lambda_{1}, x_{2}=\lambda_{2}, \ldots, x_{m}=\lambda_{m}$ such that $\operatorname{det}\left(M\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right) \neq 0$.
- Then we get a rank $r+1$ matrix in \mathcal{B}.
- $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$ has degree 1 monomials.

Fact

If a non-zero polynomial $f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ has a degree k monomial and $\operatorname{deg}(f) \leq n$, then one can find a non-zero assignment $x_{1}=\lambda_{1}, x_{2}=\lambda_{2}, \ldots, x_{m}=\lambda_{m}$ for f, by trying $O\left((m n)^{k}\right)$ choices.

- Gives a "rank increasing assignment of x_{i} 's" by trying $O(m n)$ choices.
- Gives a matrix of bigger rank in \mathcal{B}.

What if $B_{22}=0$

- $B_{22} \neq 0$ was needed for rank increase.
- What if $B_{22}=0 ? \Longrightarrow$ Only $\frac{1}{2}$-approximation.

What if $B_{22}=0$

- $B_{22} \neq 0$ was needed for rank increase.
- What if $B_{22}=0 ? \Longrightarrow$ Only $\frac{1}{2}$-approximation.
- $B_{22} \neq 0$ made sure that $\operatorname{det}(M)$ has degree 1 monomials.
- What if we look for degree 2 monomials?
- When does $\operatorname{det}(M)$ has degree two monomials?

What if $B_{22}=0$

- $B_{22}=0$, consider any $(r+1) \times(r+1)$ minor M of $A+B$ with $I_{r}+B_{11}$ always being there.
$-M=\left[\begin{array}{cccc}1+\ell_{11} & \ell_{12} & \ldots & a_{1} \\ \ell_{21} & 1+\ell_{22} & \ldots & a_{2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1} & b_{2} & \ldots & 0\end{array}\right]_{(r+1) \times(r+1)}$

What if $B_{22}=0$

- $B_{22}=0$, consider any $(r+1) \times(r+1)$ minor M of $A+B$ with $I_{r}+B_{11}$ always being there.
$-M=\left[\begin{array}{cccc}1+\ell_{11} & \ell_{12} & \ldots & a_{1} \\ \ell_{21} & 1+\ell_{22} & \ldots & a_{2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1} & b_{2} & \ldots & 0\end{array}\right]_{(r+1) \times(r+1)}$

Lemma

If $B_{22}=0$ then
$\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)=-\sum_{i=1}^{r} a_{i} b_{i}+$ terms of degree at least 3 .

$\frac{2}{3}$-approximation

- If degree two terms for all choices of M are zero then
- $B_{21} B_{12}=0$
- $B_{22}=0$

$\frac{2}{3}$-approximation

- If degree two terms for all choices of M are zero then
- $B_{21} B_{12}=0$
- $B_{22}=0$

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{3}{2} r$.

Proof.

If $\operatorname{rank}\left(B_{12}\right) \leq \frac{r}{2}$ then trivial. Otherwise rank $\operatorname{rank}\left(B_{21}\right) \leq \frac{r}{2}$ by rank-nullity theorem. Either way, $\operatorname{rank}(B) \leq \frac{3}{2} r$.

$\frac{2}{3}$-approximation

- If degree two terms for all choices of M are zero then
- $B_{21} B_{12}=0$
- $B_{22}=0$

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{3}{2} r$.

Proof.

If $\operatorname{rank}\left(B_{12}\right) \leq \frac{r}{2}$ then trivial. Otherwise rank $\operatorname{rank}\left(B_{21}\right) \leq \frac{r}{2}$ by rank-nullity theorem. Either way, $\operatorname{rank}(B) \leq \frac{3}{2} r$.

- Thus if no degree 2 terms then we are done already
- Otherwise increase the rank by trying $O\left((m n)^{2}\right)$ choices.

Degree 3 terms

- We saw that if degree one and degree two terms for all choices of M are zero then
- $B_{21} B_{12}=0$
- $B_{22}=0$
- What if degree three terms are also zero?

Lemma

If degree 1,2 and 3 terms are all zero in $\operatorname{det}(M)$ for all M then $B_{22}=0, B_{21} B_{12}=0$ and $B_{21} B_{11} B_{12}=0$.

$\frac{3}{4}$-approximation

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{4}{3} r$.

COMPUTATIUNAL COMPLEXITYCONFERENCE

$\frac{3}{4}$-approximation

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{4}{3} r$.

- Thus if no degree $1,2,3$ terms then we are done already.
- Otherwise increase the rank by trying $O\left((m n)^{3}\right)$ choices.

Generalizing above ideas

- We have some $A \in \mathcal{B}$, with $\operatorname{rank}(A)=r$.
- Above discussion hints to the following conjecture.

Generalizing above ideas

- We have some $A \in \mathcal{B}$, with $\operatorname{rank}(A)=r$.
- Above discussion hints to the following conjecture.

Conjecture

For any $k \leq n$, either $\operatorname{rank}(\mathcal{B}) \leq r\left(1+\frac{1}{k}\right)$ or we can increase the rank by trying $O\left((m n)^{k}\right)$ choices.

- We prove this conjecture by so called "Wong Sequences".

Final algorithm

- Set $k=O\left(\frac{1}{\epsilon}\right)$ and we get the desired approximation ratio.
- Running time is $n^{O\left(\frac{1}{\epsilon}\right)}$.

Final algorithm

- Set $k=O\left(\frac{1}{\epsilon}\right)$ and we get the desired approximation ratio.
- Running time is $n^{O\left(\frac{1}{\epsilon}\right)}$.
- We also show tight examples where this approach does not give better than $(1-\epsilon)$ approximation ratio.
- So analysis above is tight.

Thanks

Thanks for listening

