A deterministic PTAS for commutative rank of matrix spaces

Markus Bläser¹, Gorav Jindal² and Anurag Pandey²

 $^1 {\rm Saar} | {\rm and} \ {\rm University}$ $^2 {\rm Max-P} | {\rm anck-Institute} \ {\rm for} \ {\rm Informatics}$

CCC 2017 09/07/2017

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

1 Introduction

- Basic Problem
- Motivation
- Previous work

(2) Main algorithm

- A simple $\frac{1}{2}$ -approximation algorithm
- Ideas for better approximation

COMPUTATIONAL COMPLE NEERENCE Image: A Image: A

< A

Basic Problem Motivation Previous work

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
 - $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F} .
- For vector spaces V, W
 - Use notation $V \leq W$ to denote that V is a subspace of W.

Definition (Matrix space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n imes n}$ is called a matrix space.

COMPUTATIONAL COMPLEXITY CONFERENCE

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Basic Problem Motivation Previous work

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
 - $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F} .

COMPUTATIONAL COMPLEXITY CONFERENCE

э

イロト イポト イヨト イヨト

- For vector spaces V, W
 - Use notation $V \leq W$ to denote that V is a subspace of W.

Definition (Matrix space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n imes n}$ is called a matrix space.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

Basic Problem Motivation Previous work

Setup

- \mathbb{F} be any field, $n \in \mathbb{Z}_{>0}$.
 - $\mathbb{F}^{n \times n}$ is the (vector) space of all $n \times n$ matrices with entries in \mathbb{F} .
- For vector spaces V, W
 - Use notation $V \leq W$ to denote that V is a subspace of W.

COMPUTATIONAL COMPLEXIT

-

Definition (Matrix space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n imes n}$ is called a matrix space.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

Basic Problem Motivation Previous work

Problem

Problem

Given a matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, compute its "rank". \mathcal{B} is given as input by its set of generators, i.e. $\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle$.

- Two notions of rank.
 - Commutative rank.
 - Non-commutative rank.

COMPUTATIONAL COMPLEXITY CONFERENCE

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

Basic Problem Motivation Previous work

Problem

Problem

Given a matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, compute its "rank". \mathcal{B} is given as input by its set of generators, i.e. $\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle$.

- Two notions of rank.
 - Commutative rank.
 - Non-commutative rank.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

COMPUTATIONAL COMPLEXIT < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

Basic Problem Motivation Previous work

Commutative rank

Definition (Commutative rank)

 $\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, then Commutaive rank of $\mathcal{B} = \operatorname{rank}(\mathcal{B}) = \max\{\operatorname{rank}(\mathcal{B}) \mid \mathcal{B} \in \mathcal{B}\}.$

• $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called **full-rank** if $\operatorname{rank}(\mathcal{B}) = n$.

Basic Problem Motivation Previous work

Commutative rank

Definition (Commutative rank)

 $\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, then Commutaive rank of $\mathcal{B} = \operatorname{rank}(\mathcal{B}) = \max\{\operatorname{rank}(B) \mid B \in \mathcal{B}\}.$

• $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called full-rank if $\operatorname{rank}(\mathcal{B}) = n$.

COMPUTATIONAL COMPLEXITY CONFERENCE

A different Formulation

- Matrix space $\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle \leq \mathbb{F}^{n imes n}$, consider the matrix
 - $B = x_1B_1 + x_2B_2 + \ldots + x_mB_m$ over the field $\mathbb{F}(x_1, x_2, \ldots, x_m)$ of rational functions.

Fact

If $|\mathbf{F}| > n$ then $\operatorname{rank}(\mathcal{B}) = \operatorname{rank}(\mathcal{B})$.

- Gives a randomized polynomial time algorithm using Schwartz–Zippel lemma.
 - Even an RNC algorithm.

COMPUTATIONAL COMPLEXITY CONFERENCE

э

A different Formulation

- Matrix space $\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle \leq \mathbb{F}^{n imes n}$, consider the matrix
 - $B = x_1B_1 + x_2B_2 + \ldots + x_mB_m$ over the field $\mathbb{F}(x_1, x_2, \ldots, x_m)$ of rational functions.

Fact

If $|\mathbb{F}| > n$ then rank $(\mathcal{B}) = \operatorname{rank}(B)$.

- Gives a randomized polynomial time algorithm using Schwartz–Zippel lemma.
 - Even an RNC algorithm.

COMPUTATIONAL COMPLEXITY CONFERENCE

3

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

A different Formulation

- Matrix space $\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle \leq \mathbb{F}^{n imes n}$, consider the matrix
 - $B = x_1B_1 + x_2B_2 + \ldots + x_mB_m$ over the field $\mathbb{F}(x_1, x_2, \ldots, x_m)$ of rational functions.

COMPUTATIONAL COMPLEXITY < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3

Fact

If $|\mathbb{F}| > n$ then rank $(\mathcal{B}) = \operatorname{rank}(B)$.

- Gives a randomized polynomial time algorithm using Schwartz–Zippel lemma.
 - Even an RNC algorithm.

Basic Problem Motivation Previous work

Our contribution

• A deterministic PTAS for computing the Commutative rank.

Theorem

For any Matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ as input, a deterministic poly-time algorithm which outputs a matrix $A \in \mathcal{B}$ such that

$$\operatorname{rank}(A) \ge (1 - \epsilon) \operatorname{rank}(\mathcal{B}).$$

Algorithm runs in time $n^{O(\frac{1}{\epsilon})}$.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

COMPUTATIONAL COMPLEXIT < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

-

Basic Problem Motivation Previous work

Non-commutative rank

Definition (*c*-shrunk subspace)

 $V \leq \mathbb{F}^n$ is a *c*-shrunk subspace of $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $\mathrm{rank}(\mathcal{B}V) \leq \dim(V) - c.$

Definition (Non-commutative rank)

 $\mathcal{B} \leq \mathbb{F}^{n imes n}$ any matrix space, if $r = \max\{c \mid \exists c ext{-shrunk subspaceof } \mathcal{B}\}$ then Non-commutaive rank of $\mathcal{B} = \operatorname{ncr}(\mathcal{B}) = n - r$.

COMPUTATIONAL COMPLEXITY CONFERENCE

3

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Non-commutative rank

Definition (c-shrunk subspace)

 $V \leq \mathbb{F}^n$ is a c-shrunk subspace of $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $\mathrm{rank}(\mathcal{B}V) \leq \dim(V) - c.$

Definition (Non-commutative rank)

 $\mathcal{B} \leq \mathbb{F}^{n \times n}$ any matrix space, if $r = \max\{c \mid \exists c \text{-shrunk subspaceof } \mathcal{B}\}$ then Non-commutaive rank of $\mathcal{B} = \operatorname{ncr}(\mathcal{B}) = n - r$.

COMPUTATIONAL COMPLEXITY CONFERENCE

э

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Basic Problem Motivation Previous work

Problem

Lemma (Fortin and Reutenauer, 2004)

 $rank(\mathcal{B}) \leq ncr(\mathcal{B}) \leq 2 \cdot rank(\mathcal{B})$

Lemma (Derksen and Makam, 2016)

There exist $\mathcal{B} \leq \mathbb{F}^{n \times n}$ such that $\frac{\operatorname{ncr}(\mathcal{B})}{\operatorname{rank}(\mathcal{B})}$ gets arbitrarily close to 2 as $n \to \infty$.

COMPUTATIONAL COMPLEXITY CONFERENCE

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Basic Problem Motivation Previous work

Problem

Lemma (Fortin and Reutenauer, 2004)

 $rank(\mathcal{B}) \leq ncr(\mathcal{B}) \leq 2 \cdot rank(\mathcal{B})$

Lemma (Derksen and Makam, 2016)

There exist $\mathcal{B} \leq \mathbb{F}^{n \times n}$ such that $\frac{\operatorname{ncr}(\mathcal{B})}{\operatorname{rank}(\mathcal{B})}$ gets arbitrarily close to 2 as $n \to \infty$.

Why study this problem?

- Generalizes several computational problems from algebra and combinatorics.
 - Bipartite matching
 - Linear Matroid intersection.
 - Maximum matching
 - Linear matroid parity problem
- Polynomial identity testing(PIT) of Algebraic branching programs(ABP)

Basic Problem Motivation Previous work

Special cases

ullet NP-complete when the field ${\mathbb F}$ is of constant size.

- Deterministic polynomial time algorithms when B_i's all are of rank 1.
 - Subsumes bipartite maximum matching, linear matroid intersection.
 - Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].

COMPUTATIONAL COMPLEXITY CONFERENCE

Special cases

- NP-complete when the field ${\mathbb F}$ is of constant size.
- Deterministic polynomial time algorithms when B_i's all are of rank 1.
 - Subsumes bipartite maximum matching, linear matroid intersection.
 - Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].

COMPUTATIONAL COMPLEXI < □ > < □ > < □ > < □ > < □ > < □ >

Special cases

- NP-complete when the field ${\mathbb F}$ is of constant size.
- Deterministic polynomial time algorithms when B_i's all are of rank 1.
 - Subsumes bipartite maximum matching, linear matroid intersection.
 - Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].

COMPUTATIONAL COMPLEXI < □ > < □ > < □ > < □ > < □ > < □ >

Basic Problem Motivation Previous work

Algorithms for Non-commutative rank

- Gurvits, 2004 : Deterministic poly-time algorithms for "compression spaces"
 - Matrix space \mathcal{B} is a compression space if $rank(\mathcal{B}) = ncr(\mathcal{B})$.

Theorem (GGOW 2015, Ivanyos et al.,2015)

There is a deterministic poly-time algorithm which computes the $\operatorname{ncr}(\mathcal{B})$ for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

COMPUTATIONAL COMPLEXITY CONFER

Algorithms for Non-commutative rank

- Gurvits, 2004 : Deterministic poly-time algorithms for "compression spaces"
 - Matrix space \mathcal{B} is a compression space if $rank(\mathcal{B}) = ncr(\mathcal{B})$.

Theorem (GGOW 2015, lvanyos et al., 2015)

There is a deterministic poly-time algorithm which computes the $\operatorname{ncr}(\mathcal{B})$ for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

COMPUTATIONAL COMPLEXIA

Approximation algorithms for Commutative rank

- Using rank(B) ≤ ncr(B) ≤ 2 · rank(B), one gets a deterministic poly-time algorithms for ½-approximation of Commutative rank.
- These Non-commutative rank computation algorithms were the only algorithms which compute any constant factor approximation of the commutative rank.

COMPUTATIONAL COMPLEXIA

Approximation algorithms for Commutative rank

- Leads to a natural question whether this approximation ratio of $\frac{1}{2}$ can be improved?
- We devise a deterministic poly-time algorithm which improves this approximation ratio to $1-\epsilon$ for arbitrary constant $0<\epsilon<1.$

COMPUTATIONAL COMPLEXIT < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Main Idea

•
$$\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle \leq \mathbb{F}^{n \times n}$$

• $B = x_1 B_1 + x_2 B_2 + \dots + x_m B_m$ over the field
 $\mathbb{F}(x_1, x_2, \dots, x_m)$

- We have some $A \in \mathcal{B}$ with some rank r.
 - Want to find $A' \in \mathcal{B}$ with $\operatorname{rank}(A') > r$.

COMPUTATIONAL COMPLEXITY CONFERENCE

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

.

< ロ > < 同 > < 回 > < 回 > < 回 > <

COMPUTATIONAL COMPLEXITY CONFERENCE

3

Main Idea

•
$$\mathcal{B} = \langle B_1, B_2, \dots, B_m \rangle \leq \mathbb{F}^{n \times n}$$
.
• $B = x_1 B_1 + x_2 B_2 + \dots + x_m B_m$ over the field
 $\mathbb{F}(x_1, x_2, \dots, x_m)$.

- We have some $A \in \mathcal{B}$ with some rank r.
 - Want to find $A' \in \mathcal{B}$ with $\operatorname{rank}(A') > r$.

• WLOG assume
$$A = \begin{bmatrix} I_r & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$
.
• Consider the matrix $A + B \in \mathbb{F}(x_1, x_2, \dots, x_m)^{n \times n}$

Main idea(Cont.)

•
$$A + B = \begin{bmatrix} I_r + B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
.

- Suppose B₂₂ = 0 then rank(A + B) = rank(B) ≤ 2r.
 rank(A) is already ¹/₂-approximation of rank(B).
- Otherwise $B_{22} \neq 0$, $c(x_1, x_2, \dots, x_m)$ be a non-zero entry of B_{22} .

COMPUTATIONAL COMPLEXITY CONFERENCE

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

COMPUTATIONAL COMPLEXITY CONFERENCE

э

イロト イポト イヨト イヨト

Main idea(Cont.)

•
$$A + B = \begin{bmatrix} I_r + B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
.

- Suppose B₂₂ = 0 then rank(A + B) = rank(B) ≤ 2r.
 rank(A) is already ¹/₂-approximation of rank(B).
- Otherwise $B_{22} \neq 0$, $c(x_1, x_2, \dots, x_m)$ be a non-zero entry of B_{22} .

COMPUTATIONAL COMPLEXITY CONFERENCE

э

イロト イポト イヨト イヨト

Main idea(Cont.)

•
$$A + B = \begin{bmatrix} I_r + B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
.

- Suppose B₂₂ = 0 then rank(A + B) = rank(B) ≤ 2r.
 rank(A) is already ¹/₂-approximation of rank(B).
- Otherwise $B_{22} \neq 0$, $c(x_1, x_2, ..., x_m)$ be a non-zero entry of B_{22} .

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

Main idea(Cont.)

• Consider the Minor M of A + B which has $c(x_1, x_2, ..., x_m)$ as the last entry.

•
$$M = \begin{bmatrix} 1 + \ell_{11} & \ell_{12} & \dots & a_1 \\ \ell_{21} & 1 + \ell_{22} & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & c(x_1, x_2, \dots, x_m) \end{bmatrix}_{(r+1) \times (r+1)}$$

• det $(M(x_1, x_2, \dots, x_m)) = c(x_1, x_2, \dots, x_m) + \text{terms of degree at least 2.}$

COMPUTATIONAL COMPLEXITY CONFERENCE

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main idea(Cont.)

- Consider the Minor M of A + B which has $c(x_1, x_2, ..., x_m)$ as the last entry.
- $M = \begin{bmatrix} 1 + \ell_{11} & \ell_{12} & \dots & a_1 \\ \ell_{21} & 1 + \ell_{22} & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & c(x_1, x_2, \dots, x_m) \end{bmatrix}_{(r+1) \times (r+1)}$ • $\det(M(x_1, x_2, \dots, x_m)) = c(x_1, x_2, \dots, x_m) + \text{terms of degree at least } 2.$

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

э

Final Step

- If we can find a setting of $x = \lambda_1, x_2 = \lambda_2, \ldots, x_m = \lambda_m$ such that $\det(M(\lambda_1, \lambda_2, \ldots, \lambda_m)) \neq 0$.
 - Then we get a rank r+1 matrix in \mathcal{B} .
 - det $(M(x_1, x_2, \ldots, x_m))$ has degree 1 monomials.

Fact

If a non-zero polynomial $f(x_1, x_2, ..., x_m)$ has a degree k monomial and deg $(f) \le n$, then one can find a non-zero assignment $x_1 = \lambda_1, x_2 = \lambda_2, ..., x_m = \lambda_m$ for f, by trying $O((mn)^k)$ choices.

- Gives a "rank increasing assignment of x_i's" by trying O(mn) choices.
- Gives a matrix of bigger rank in B

COMPUTATIONAL COMPLEXITY CONFERENCE

(日) (四) (日) (日)

Markus Bläser, Gorav Jindal and Anurag Pandey

Deterministic PTAS for Commutative Rank

Final Step

- If we can find a setting of $x = \lambda_1, x_2 = \lambda_2, \ldots, x_m = \lambda_m$ such that $\det(M(\lambda_1, \lambda_2, \ldots, \lambda_m)) \neq 0$.
 - Then we get a rank r+1 matrix in \mathcal{B} .
 - det $(M(x_1, x_2, \ldots, x_m))$ has degree 1 monomials.

Fact

If a non-zero polynomial $f(x_1, x_2, ..., x_m)$ has a degree k monomial and deg $(f) \le n$, then one can find a non-zero assignment $x_1 = \lambda_1, x_2 = \lambda_2, ..., x_m = \lambda_m$ for f, by trying $O((mn)^k)$ choices.

- Gives a "rank increasing assignment of x_i's" by trying O(mn) choices.
- ullet Gives a matrix of bigger rank in ${\cal B}$

Markus Bläser, Gorav Jindal and Anurag Pandey

Deterministic PTAS for Commutative Rank

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Final Step

- If we can find a setting of $x = \lambda_1, x_2 = \lambda_2, \ldots, x_m = \lambda_m$ such that $\det(M(\lambda_1, \lambda_2, \ldots, \lambda_m)) \neq 0$.
 - Then we get a rank r+1 matrix in \mathcal{B} .
 - det $(M(x_1, x_2, \ldots, x_m))$ has degree 1 monomials.

Fact

If a non-zero polynomial $f(x_1, x_2, ..., x_m)$ has a degree k monomial and deg $(f) \leq n$, then one can find a non-zero assignment $x_1 = \lambda_1, x_2 = \lambda_2, ..., x_m = \lambda_m$ for f, by trying $O((mn)^k)$ choices.

- Gives a "rank increasing assignment of x_i 's" by trying O(mn) choices.
- Gives a matrix of bigger rank in \mathcal{B} .

What if $B_{22} = 0$

- $B_{22} \neq 0$ was needed for rank increase.
- What if $B_{22} = 0 \implies \text{Only } \frac{1}{2}\text{-approximation}$.
- $B_{22} \neq 0$ made sure that det(*M*) has degree 1 monomials.
- What if we look for degree 2 monomials?
 - When does det(*M*) has degree two monomials?

What if $B_{22} = 0$

- $B_{22} \neq 0$ was needed for rank increase.
- What if $B_{22} = 0 \implies \text{Only } \frac{1}{2}$ -approximation.
- $B_{22} \neq 0$ made sure that det(*M*) has degree 1 monomials.
- What if we look for degree 2 monomials?
 - When does det(*M*) has degree two monomials?

COMPUTATIONAL COMPLEXITY CONFERENCE

What if $B_{22} = 0$

• $B_{22} = 0$, consider any $(r+1) \times (r+1)$ minor M of A+B with $I_r + B_{11}$ always being there.

•
$$M = \begin{bmatrix} 1 + \ell_{11} & \ell_{12} & \dots & a_1 \\ \ell_{21} & 1 + \ell_{22} & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & 0 \end{bmatrix}_{(r+1) \times (r+1)}$$

Lemma

If $B_{22} = 0$ then $\det(M(x_1, x_2, \dots, x_m)) = -\sum_{i=1}^r a_i b_i + \text{terms of degree at least 3.}$

COMPUTATIONAL COMPLEXITY CONFERENCE

3

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

What if $B_{22} = 0$

• $B_{22} = 0$, consider any $(r+1) \times (r+1)$ minor M of A+B with $I_r + B_{11}$ always being there.

•
$$M = \begin{bmatrix} 1 + \ell_{11} & \ell_{12} & \dots & a_1 \\ \ell_{21} & 1 + \ell_{22} & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & 0 \end{bmatrix}_{(r+1) \times (r+1)}$$

Lemma

 $If B_{22} = 0 then$ $det(M(x_1, x_2, ..., x_m)) = -\sum_{i=1}^{r} a_i b_i + terms of degree at least 3.$

$\frac{2}{3}$ -approximation

• If degree two terms for all choices of M are zero then

•
$$B_{21}B_{12} = 0$$

•
$$B_{22} = 0$$

_emma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{3}{2}r$.

Proof.

If $\operatorname{rank}(B_{12}) \leq \frac{r}{2}$ then trivial. Otherwise $\operatorname{rank}(B_{21}) \leq \frac{r}{2}$ by rank-nullity theorem. Either way, $\operatorname{rank}(B) \leq \frac{3}{2}r$.

• Thus if no degree 2 terms then we are done already

• Otherwise increase the rank by trying $O((mn)^2)$ of COMPUTATIONAL

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

• If degree two terms for all choices of M are zero then

•
$$B_{21}B_{12} = 0$$

• $B_{22} = 0$

Lemma

Above conditions imply that
$$rank(B) \leq \frac{3}{2}r$$
.

Proof.

If $rank(B_{12}) \leq \frac{r}{2}$ then trivial. Otherwise $rank rank(B_{21}) \leq \frac{r}{2}$ by rank-nullity theorem. Either way, $rank(B) \leq \frac{3}{2}r$.

Thus if no degree 2 terms then we are done already
 Otherwise increase the rank by trying O((mm)²) choose the rank by trying O((mm)

< ロ > (同 > (回 > (回 >))

э

• If degree two terms for all choices of M are zero then

•
$$B_{21}B_{12} = 0$$

• $B_{22} = 0$

Lemma

Above conditions imply that
$$rank(B) \leq \frac{3}{2}r$$
.

Proof.

If $rank(B_{12}) \leq \frac{r}{2}$ then trivial. Otherwise $rank rank(B_{21}) \leq \frac{r}{2}$ by rank-nullity theorem. Either way, $rank(B) \leq \frac{3}{2}r$.

- Thus if no degree 2 terms then we are done already
 - Otherwise increase the rank by trying $O((mn)^2)$ choices.

イロト イポト イヨト イヨト

COMPUTATIONAL COMPLEXIT

-

Degree 3 terms

• We saw that if degree one and degree two terms for all choices of *M* are zero then

•
$$B_{21}B_{12} = 0$$

•
$$B_{22} = 0$$

• What if degree three terms are also zero?

Lemma

If degree 1,2 and 3 terms are all zero in det(M) for all M then $B_{22} = 0$, $B_{21}B_{12} = 0$ and $B_{21}B_{11}B_{12} = 0$.

$\frac{3}{4}$ -approximation

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{4}{3}r$.

Thus if no degree 1,2,3 terms then we are done already.
 Otherwise increase the rank by trying O((mn)³) choices.

$\frac{3}{4}$ -approximation

Lemma

Above conditions imply that $\operatorname{rank}(B) \leq \frac{4}{3}r$.

- Thus if no degree 1,2,3 terms then we are done already.
 - Otherwise increase the rank by trying $O((mn)^3)$ choices.

Generalizing above ideas

- We have some $A \in \mathcal{B}$, with $\operatorname{rank}(A) = r$.
- Above discussion hints to the following conjecture.

Conjecture

For any $k \leq n$, either $\operatorname{rank}(\mathcal{B}) \leq r\left(1 + \frac{1}{k}\right)$ or we can increase the rank by trying $O((mn)^k)$ choices.

• We prove this conjecture by so called "Wong Sequences".

COMPUTATIONAL COMPLEXITY CONFERENCE

(日) (四) (日) (日)

COMPUTATIONAL COMPLEXIT < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

-

Generalizing above ideas

- We have some $A \in \mathcal{B}$, with $\operatorname{rank}(A) = r$.
- Above discussion hints to the following conjecture.

Conjecture

For any $k \leq n$, either $\operatorname{rank}(\mathcal{B}) \leq r(1+\frac{1}{k})$ or we can increase the rank by trying $O((mn)^k)$ choices.

• We prove this conjecture by so called "Wong Sequences".

Final algorithm

- Set k = O(¹/_e) and we get the desired approximation ratio.
 Running time is n^{O(¹/_e)}.
- \bullet We also show tight examples where this approach does not give better than $(1-\epsilon)$ approximation ratio.
 - So analysis above is tight.

COMPUTATIONAL COMPLEXIT < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

-

Final algorithm

- Set k = O(¹/_e) and we get the desired approximation ratio.
 Running time is n^{O(¹/_e)}.
- We also show tight examples where this approach does not give better than $(1-\epsilon)$ approximation ratio.
 - So analysis above is tight.

Introduction Main algorithm A simple $\frac{1}{2}$ -approximation algorithm Ideas for better approximation

Thanks for listening

