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Setup

F be any �eld, n ∈ Z>0.

Fn×n is the (vector) space of all n× n matrices with entries in
F.

For vector spaces V, W
Use notation V ≤ W to denote that V is a subspace of W.

De�nition (Matrix space)

A vector space B ≤ Fn×n is called a matrix space.
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Problem

Given a matrix space B ≤ Fn×n as input, compute its �rank�. B is
given as input by its set of generators, i.e, B = 〈B1, B2, . . . , Bm〉.

Two notions of rank.

Commutative rank.
Non-commutative rank.
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Commutative rank

De�nition (Commutative rank)

B ≤ Fn×n any matrix space, then
Commutaive rank of B = rank(B) = max{rank(B) | B ∈ B}.

B ≤ Fn×n is called full-rank if rank(B) = n.
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A di�erent Formulation

Matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, consider the
matrix

B = x1B1 + x2B2 + . . . + xmBm over the �eld F(x1, x2, . . . , xm)
of rational functions.

Fact

If |F| > n then rank(B) = rank(B).

Gives a randomized polynomial time algorithm using
Schwartz�Zippel lemma.

Even an RNC algorithm.
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Our contribution

A deterministic PTAS for computing the Commutative rank.

Theorem

For any Matrix space B ≤ Fn×n as input, a deterministic poly-time

algorithm which outputs a matrix A ∈ B such that

rank(A) ≥ (1− ε) rank(B).

Algorithm runs in time nO( 1
ε ).
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Non-commutative rank

De�nition (c-shrunk subspace)

V ≤ Fn is a c-shrunk subspace of B ≤ Fn×n , if
rank(BV) ≤ dim(V)− c.

De�nition (Non-commutative rank)

B ≤ Fn×n any matrix space, if
r = max{c | ∃ c-shrunk subspaceof B} then
Non-commutaive rank of B = ncr(B) = n− r.
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Problem

Lemma (Fortin and Reutenauer, 2004)

rank(B) ≤ ncr(B) ≤ 2 · rank(B)

Lemma (Derksen and Makam, 2016)

There exist B ≤ Fn×n such that
ncr(B)

rank(B) gets arbitrarily close to 2
as n→ ∞.
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Why study this problem?

Generalizes several computational problems from algebra and
combinatorics.

Bipartite matching
Linear Matroid intersection.
Maximum matching
Linear matroid parity problem

Polynomial identity testing(PIT) of Algebraic branching
programs(ABP)
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Special cases

NP-complete when the �eld F is of constant size.

Deterministic polynomial time algorithms when Bi's all are of
rank 1.

Subsumes bipartite maximum matching, linear matroid
intersection.
Even a quasi-NC algorithm by [Gurjar and Thierauf, 2016].
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Algorithms for Non-commutative rank

Gurvits, 2004 : Deterministic poly-time algorithms for
�compression spaces�

Matrix space B is a compression space if rank(B) = ncr(B).

Theorem (GGOW 2015, Ivanyos et al.,2015 )

There is a deterministic poly-time algorithm which computes the

ncr(B) for any matrix space B ≤ Fn×n.
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Approximation algorithms for Commutative rank

Using rank(B) ≤ ncr(B) ≤ 2 · rank(B), one gets a
deterministic poly-time algorithms for 1

2 -approximation of
Commutative rank.

These Non-commutative rank computation algorithms were
the only algorithms which compute any constant factor
approximation of the commutative rank.
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Approximation algorithms for Commutative rank

Leads to a natural question whether this approximation ratio
of 1

2 can be improved?

We devise a deterministic poly-time algorithm which improves
this approximation ratio to 1− ε for arbitrary constant
0 < ε < 1.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank



Introduction
Main algorithm

A simple 1
2 -approximation algorithm

Ideas for better approximation

Main Idea

B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n.

B = x1B1 + x2B2 + . . . + xmBm over the �eld
F(x1, x2, . . . , xm).

We have some A ∈ B with some rank r.
Want to �nd A′ ∈ B with rank(A′) > r.

WLOG assume A =


Ir 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 . . . 0 0

.
Consider the matrix A + B ∈ F(x1, x2, . . . , xm)n×n .
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Main idea(Cont.)

A + B =

[
Ir + B11 B12

B21 B22

]
.

Suppose B22 = 0 then rank(A + B) = rank(B) ≤ 2r.
rank(A) is already 1

2 -approximation of rank(B).

Otherwise B22 6= 0, c(x1, x2, . . . , xm) be a non-zero entry of
B22.
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Main idea(Cont.)

Consider the Minor M of A + B which has c(x1, x2, . . . , xm) as
the last entry.

M =
1 + `11 `12 . . . a1
`21 1 + `22 . . . a2
...

...
. . .

...
b1 b2 . . . c(x1, x2, . . . , xm)


(r+1)×(r+1)

det(M(x1, x2, . . . , xm)) =
c(x1, x2, . . . , xm) + terms of degree at least 2.
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Final Step

If we can �nd a setting of x = λ1,x2 = λ2,. . ., xm = λm such
that det(M(λ1, λ2, . . . , λm)) 6= 0.

Then we get a rank r + 1 matrix in B.
det(M(x1, x2, . . . , xm)) has degree 1 monomials.

Fact

If a non-zero polynomial f (x1, x2, . . . , xm) has a degree k monomial

and deg(f ) ≤ n, then one can �nd a non-zero assignment

x1 = λ1,x2 = λ2,. . ., xm = λm for f , by trying O((mn)k) choices.

Gives a �rank increasing assignment of xi's� by trying O(mn)
choices.

Gives a matrix of bigger rank in B.
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What if B22 = 0

B22 6= 0 was needed for rank increase.

What if B22 = 0 ?=⇒ Only 1
2 -approximation.

B22 6= 0 made sure that det(M) has degree 1 monomials.
What if we look for degree 2 monomials?

When does det(M) has degree two monomials?
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What if B22 = 0

B22 = 0 , consider any (r + 1)× (r + 1) minor M of A + B
with Ir + B11 always being there.

M =


1 + `11 `12 . . . a1
`21 1 + `22 . . . a2
...

...
. . .

...
b1 b2 . . . 0


(r+1)×(r+1)

Lemma

If B22 = 0 then

det(M(x1, x2, . . . , xm)) = −∑r
i=1 aibi + terms of degree at least 3.
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2
3-approximation

If degree two terms for all choices of M are zero then

B21B12 = 0
B22 = 0

Lemma

Above conditions imply that rank(B) ≤ 3
2 r.

Proof.

If rank(B12) ≤ r
2 then trivial. Otherwise rank rank(B21) ≤ r

2 by

rank-nullity theorem. Either way, rank(B) ≤ 3
2 r.

Thus if no degree 2 terms then we are done already

Otherwise increase the rank by trying O((mn)2) choices.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank



Introduction
Main algorithm

A simple 1
2 -approximation algorithm

Ideas for better approximation

2
3-approximation

If degree two terms for all choices of M are zero then

B21B12 = 0
B22 = 0

Lemma

Above conditions imply that rank(B) ≤ 3
2 r.

Proof.

If rank(B12) ≤ r
2 then trivial. Otherwise rank rank(B21) ≤ r

2 by

rank-nullity theorem. Either way, rank(B) ≤ 3
2 r.

Thus if no degree 2 terms then we are done already

Otherwise increase the rank by trying O((mn)2) choices.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank



Introduction
Main algorithm

A simple 1
2 -approximation algorithm

Ideas for better approximation

2
3-approximation

If degree two terms for all choices of M are zero then

B21B12 = 0
B22 = 0

Lemma

Above conditions imply that rank(B) ≤ 3
2 r.

Proof.

If rank(B12) ≤ r
2 then trivial. Otherwise rank rank(B21) ≤ r

2 by

rank-nullity theorem. Either way, rank(B) ≤ 3
2 r.

Thus if no degree 2 terms then we are done already

Otherwise increase the rank by trying O((mn)2) choices.

Markus Bläser, Gorav Jindal and Anurag Pandey Deterministic PTAS for Commutative Rank



Introduction
Main algorithm

A simple 1
2 -approximation algorithm

Ideas for better approximation

Degree 3 terms

We saw that if degree one and degree two terms for all choices
of M are zero then

B21B12 = 0
B22 = 0

What if degree three terms are also zero?

Lemma

If degree 1,2 and 3 terms are all zero in det(M) for all M then

B22 = 0, B21B12 = 0 and B21B11B12 = 0.
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3
4-approximation

Lemma

Above conditions imply that rank(B) ≤ 4
3 r.

Thus if no degree 1,2,3 terms then we are done already.

Otherwise increase the rank by trying O((mn)3) choices.
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Generalizing above ideas

We have some A ∈ B, with rank(A) = r.
Above discussion hints to the following conjecture.

Conjecture

For any k ≤ n, either rank(B) ≤ r
(
1 + 1

k

)
or we can increase the

rank by trying O((mn)k) choices.

We prove this conjecture by so called �Wong Sequences�.
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Final algorithm

Set k = O
( 1

ε

)
and we get the desired approximation ratio.

Running time is nO( 1
ε ).

We also show tight examples where this approach does not
give better than (1− ε) approximation ratio.

So analysis above is tight.
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Thanks

Thanks for listening
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