
Efficiently Computing Real Roots of Sparse Polynomials
Gorav Jindal

Max-Planck-Institut für Informatik

Campus E1 4

Saarbrücken 66123, Germany

gjindal@mpi-inf.mpg.de

Michael Sagraloff

Max-Planck-Institut für Informatik

Campus E1 4

Saarbrücken 66123, Germany

msagralo@mpi-inf.mpg.de

ABSTRACT
We propose an efficient algorithm to compute the real roots of a

sparse polynomial f ∈ R[x] having k non-zero real-valued coef-

ficients. It is assumed that arbitrarily good approximations of the

non-zero coefficients are given by means of a coefficient oracle.

For a given positive integer L, our algorithm returns disjoint disks

∆1, . . . ,∆s ⊂ C, with s < 2k , centered at the real axis and of radius

less than 2
−L

together with positive integers µ1, . . . , µs such that

each disk ∆i contains exactly µi roots of f counted with multiplic-

ity. In addition, it is ensured that each real root of f is contained in

one of the disks. If f has only simple real roots, our algorithm can

also be used to isolate all real roots.

The bit complexity of our algorithm is polynomial in k and logn,

and near-linear in L and τ , where 2−τ and 2
τ
constitute lower and

upper bounds on the absolute values of the non-zero coefficients of

f , and n is the degree of f . For root isolation, the bit complexity is

polynomial in k and logn, and near-linear in τ and logσ−1, where
σ denotes the separation of the real roots.

1 INTRODUCTION
In this paper, we study the problem of computing the real roots of

a sparse polynomial

f (x) =
∑k

i=1
fix

ei ∈ R[x], (1.1)

where ei are non-negative integers, with 0 ≤ e1 < e2 < . . . <

ek ≤ n, and 2
−τ ≤ | fi | ≤ 2

τ
for all i .We call such a polynomial f

an (n,k,τ)-nomial or simply a k−nomial if n and τ are either not

specified or clear from the context. We may assume that k ≥ 2

and e1 = 0 as 1−nomials do not have any real root different from

0 and as f · x−e1 has exactly the same roots as f except for a

possible root at 0. We further assume that, as input, we receive

the exponents ei as well as approximations
˜fi of the non-zero

coefficients fi . More specifically, we assume the existence of a

coefficient oracle that, for any positive integer κ, provides dyadic

approximations
˜fi =

mi
2
κ+1 , with mi ∈ Z and | fi − ˜fi | < 2

−κ
for

all i . We call such an approximation
˜f =

∑k
i=1

˜fix
ei

an (absolute)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’17, July 25-28, 2017, Kaiserslautern, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5064-8/17/07. . . $15.00
http://dx.doi.org/10.1145/3087604.3087652

κ−bit approximations of f . Notice that the numbers n and k are

directly part of the input, whereas this is not the case for τ . However,

we may easily compute (i.e. for a cost bounded by Õ (kτ)) a good
approximation τ̃ ∈ Z of τ with τ < τ̃ < τ +2 by asking the oracle for

an κ-bit approximations
˜f of f for κ = 1, 2, 4, . . . until | ˜fi | > 2

−κ+1

for all i . Then, τ̃ := maxi ⌈| log | ˜fi | |⌉ fulfills the above inequality.
Within recent years, the problem of isolating all (real) roots of a

(square-free) polynomial has attracted a lot of interest in the lit-

erature; e.g. consider [3, 11, 18] and the references therein. The

most efficient algorithms [3, 9, 12, 13, 18] for root isolation achieve

running times that are considered to be near-optimal for dense

polynomials (i.e. if k is of comparable size as n) f ∈ R[x]. For
polynomials with integer coefficients, the best known bound on

the bit complexity of this problem is of size Õ (n2τ). The additional

cost for refining isolating intervals to a size less than 2
−τ , and thus

for computing L-bit approximations of all real roots, is Õ (nτ); e.g.
see [8, 12, 15, 18]. Notice that, for k−nomials with integer coeffi-

cients, the above bounds are not polynomial in the size of the sparse

input representation of
˜f , which is bounded by O (k (logn + τ)) as

we need logn bits to store each exponent ei and τ + 1 bits to store

each fi . Hence, it is natural to ask whether there exists an algorithm
for either root isolation or approximation that runs in polynomial

time in the size of the sparse input representation. In [6], Cucker

et al. showed how to compute all integer roots of a sparse inte-

ger polynomial in polynomial time. Lenstra [10] further improves

upon this result giving a polynomial time algorithm to compute

all rational factors of f of a fixed constant degree. Furthermore,

for polynomials with only a very few non-zero coefficients, there

exist polynomial time algorithms to approximate (and also count)

the real roots of f . Rojas and Ye [16, 20] propose an algorithm for

3-nomials that uses onlyO (logn) arithmetic operations in the field

over Q generated by the coefficients of f . Bastani et al. [2] propose
a polynomial time algorithm to count the number of real roots for

most 4−nomials.

For isolating the roots of a sparse integer polynomial, we recently

proposed a method [17] that has polynomial arithmetic complex-

ity and whose bit complexity is Ω̃(nτ · k4). The latter bound is

also near-optimal for small k as there exists a family of Mignotte-

like 4−nomials, for which the output complexity is always lower

bounded by O (nτ). This result already rules out the existence of a

polynomial time algorithm for isolating the roots of a sparse poly-

nomial, however, it remains an open question whether counting

the real roots or computing L−bit approximations of the real roots

can be achieved in polynomial time.

In this paper, we give a positive answer for a slight relaxation of

the latter problem. That is, we give a polynomial time algorithm

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

229

https://doi.org/http://dx.doi.org/10.1145/3087604.3087652

to compute a partial clustering of the roots that contains all real

roots of f . For a more precise statement, we need the following

definitions, where ∆r (m) ⊂ C denotes the open disk in complex

space with centerm and radius r .

Definition 1 ((L, I)-covering). For a polynomial f as in (1.1), an

integer L ∈ N, and an interval I ⊂ R, we call a list ((∆r1 (m1), µ1),
(∆r2 (m2), µ2), . . . , (∆rt (mt), µt)) an (L, I)-covering for f if the

following conditions are fulfilled:

(1) The disks ∆ri (mi) are pairwise disjoint,mj are real values

withm1 < · · · < mt , and r j ≤ 2
−L

for all j.
(2) ∆r j (mj) contains exactly µ j roots of f for all j.
(3) For every real root ξ of f in I , there exists some disk ∆r j (mj)

that contains ξ .

We further introduce a weaker version of L-covering:

Definition 2 (Weak (L, I)-covering). A weak (L, I)-covering for f
is a list (I1, . . . , , It) of open disjoint and sorted real intervals that

fulfills the following conditions:

(1) The width of each interval Ij is at most 2
−L .

(2) For every real root ξ of f in I , there exists an interval Ij that

contains ξ .

If I = R, we omit I and just call a (weak) (L,R)-covering for f a

(weak) L-covering for f. Then, ourmain contribution is a polynomial-

time algorithm for computing an L−covering:

Theorem 3. For an (n,k,τ)-nomial, we can compute an L-covering

L of size |L| < 2k in time Õ (poly(k, logn) · (τ + L)).

Notice that our algorithm computes L−bit approximations of all

real roots but might also return (real-valued) L−bit approximations

of some non-real roots with a small imaginary part. Further notice

that unless µ j is odd, we also do not know whether mj actually

approximates a real root, and unless µ j = 1, we cannot conclude

that a disk ∆r j (mj) in an L-covering is isolating for a root of f .

Hence, in general, our algorithm does not yield the correct number

of distinct real roots. However, if f has only simple roots, we may

compute an L−covering for f for L = 2, 4, 8, . . . until µ j = 1 for all

j. Then, the disks ∆ri (mi) isolate all real roots.

Theorem 4. Let f be an (n,k,τ)-nomial with only simple real roots,

and let σ be the minimal distance between any two (complex) distinct

roots of f (i.e. the separation of f). Then, we can compute isolating

intervals for all real roots in Õ (poly(k, logn) (τ + logmax(1, 1/σ)))
bit operations.

We improve upon [17] in several ways. Namely, [17] only applies

to integer polynomials, whereas our novel approach applies to

polynomials with arbitrary real coefficients. In addition, the running

time of the algorithm in [17] does not adapt to the actual hardness

of the roots, whereas the complexity of our novel approach rather

depends on the actual separation than on the worst-case bound [19]

of size 2
−O (n (τ+logn))

for the separation of an integer polynomial.

In the worst case, our method isolates all real roots of a very sparse

integer polynomial (i.e. k = (log(nτ))O (1)
) in time Õ (nτ), and is

thus near optimal.; see [17]

Remark.Due to space limitations, we omitted proofs of some results,

which can be found in the full version [7] of the paper on arXiv.

Overview of the Algorithm. Before we go into detail, we give a

brief overview of our algorithm,wherewe omit technical details.We

first remark that the problem of computing an (L, [1,∞))-covering
can be reduced to the problem of computing an (L, [0, 1])-covering
(in fact, we are computing an (L, [0, 1 + 1/n])-covering but this for

technical reasons only) by means of the coordinate transformation

x 7→ 1

x followed by multiplication with xn . We may also reduce the

problem of computing an (L, (−∞, 0])-covering of f to the problem

of computing an (L, [0,∞))-covering by means of the coordinate

transformation x 7→ −x . Hence, we are eventually left with merging

(L, [0, 1])-coverings for the polynomials f , xn · f (1/x), f (−x), and
xn · f (−1/x) in a suitable manner. We give details for this step in

Section 7. Notice that the considered coordinate transformation

preserves the sparseness of the input polynomial, hence we may

concentrate on the problem of computing an (L, [0, 1])-covering
for f only. For this, we first compute a weak (L, [0, 1])-covering
of f , which is achieved by recursively computing weak (L, [0, 1])-
coverings of the so-called fractional derivatives of f .

Definition 5 (Fractional Derivatives). Let f be a polynomial as in

(1.1). Then, we define f [1] :=
f ′

xe2−1 as the (first) fractional derivative

of f . In other words, we divide the first derivative f ′ of f by the

highest possible power of x that divides f ′. The i−th fractional

derivative f [i] of f is then recursively defined as the first fractional

derivative of f [i−1]. Notice that, for i ≤ k − 1, f [i] is an (n,k −

i,τ + k · logn)−nomial with a non-zero constant term and f [i] ≡ 0

for i ≥ k .We further use the notation Df to denote the tuple of

all non-zero fractional derivatives f , f [1], f [2], f [2], . . . , f [k−1], i.e,

Df = (f , f [1], f [2], f [3], . . . , f [k−1]).

The general idea of recursively computing the real roots of f from

the real roots of its fractional derivatives has already been consid-

ered in previous work; e.g. [1, 4, 5, 10, 14, 16, 17]. The simple idea

is that, given a weak (L, [0, 1])-covering (I ′
1
, . . . , I ′t ′) for f [1], we

already know that in between two consecutive intervals Ij = (a,b)

and Ij+1 = (c,d), the polynomial f is monotone, and thus there can

be at most one real root in between b and c , which then must be

simple. In order to check for the existence of such a root, it suffices

to check whether f changes signs at the points b and c . In case of a

sign change, we may then refine the interval (b, c), which is known

to be isolating for a real root of f , to a width less than 2
−L . If we

proceed in this way for all intervals in between two consecutive

intervals as well as with the leftmost interval, whose endpoints
1

are 0 and the left endpoint of I ′
1
, and the rightmost interval, whose

endpoints are the right endpoint of I ′t ′ and 1, then we obtain a set

of intervals I ′′j of size at most 2
−L

that cover all real roots of f that

are contained in [0, 1] but in none of the intervals I ′j . Hence, the

union of the intervals I ′j and I
′′
j constitutes an (L, [0, 1])-covering

for f . This shows how to compute an (L, [0, 1])-covering for f
from recursively computing (L, [0, 1])-coverings for its fractional
derivatives.

1
For technical reasons, we will indeed consider slight perturbations of 0 and 1 in our

algorithm.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

230

We remark that, in this simplistic description, we have omitted

several key problems one faces when formalizing the algorithm:

Evaluating the sign of a polynomial f at given points b, c may re-

quire a very high precision, which should be avoided to ensure

a polynomial bit complexity. In addition, we need an efficient re-

finement method that uses only a polynomial number of iterations.

For the latter problem, we use a slightly modified variant of our

algorithm from [17, 18]. For the computation of the sign of f (and

its higher order fractional derivatives) at certain points, we consider

an approach that allows us to slightly perturb the evaluation points

such that the absolute value of each of the considered polynomials

does not become too small. One major contribution of this paper,

when compared to our previous work [17], is to show that this can

be done in way such that the precision always stays polynomial in

logn, k, τ , and L.
In the second step, we derive an (L, [0, 1])−covering from a weak

(L′, [0, 1])−covering, where L′ has been chosen sufficiently large. A

straight forward approach would be to use a method for computing

the number of roots in the one-circle region ∆(I) = ∆r (m) of each
interval I in the weak (L′, [0, 1])−covering. Here, ∆(I) is defined as

the disk centered at the midpointm =m(I) of I and passing through
the endpoints of the interval. In the literature, several methods have

been proposed to count the number of roots in a disk in complex

space. Unfortunately, these algorithm are not sparsity aware, which

rules out a straight-forward application of them. Recent work [3]

introduces the so-called Tl -test, a method for root counting based

on Pellet’s Theorem. The method only needs to compute approxi-

mations of the coefficients of the polynomial f (m + r · x), however,
we cannot afford to compute all coefficients. Fortunately, in our situ-

ation, only the first k2 coefficients are actually needed to determine

the outcome of the test. In order to guarantee success of the test,

it may further be necessary to merge some of the intervals in the

weak covering and to consider disks that are larger than the one-

circle regions of the merged intervals. This explains why we need

a weak (L′, [0, 1])−covering with a sufficiently large L′ > L. We

consider our method for counting the roots of a sparse polynomial

in a disk as the second main contribution of our paper.

2 ON THE GEOMETRY OF ROOTS
Descartes’ Rule of Signs states that the number var(F) of sign
changes in the coefficient sequence of a polynomial F ∈ R[x]
constitutes an upper bound on the number of positive real roots.

Hence, it follows immediately that a k−nomial f as in (1.1) has at

most k − 1 negative and at most k − 1 positive real roots. Apart

from this simple fact, k-nomials have indeed much more structure

on their roots, which we will briefly survey in this section.

Let I = (a,b) be an interval, FI (x) := (x + 1)n · F
(
ax+b
x+1

)
, and

vI := var(F , I) be the number of sign changes in the coefficient

sequence of the polynomial FI . Notice that there is a one-to-one
correspondence between the roots of F in I and the positive real

roots of FI via the Möbius transformation that maps a point x ∈

C \ {−1} to ax+b
x+1 ∈ C. Thus, vI constitutes an upper bound on

the number of roots of F in I . In fact, vI also constitutes a lower

bound on the number of roots in the so called Obreshkoff lens Ln

of the interval I . Ln is defined as the intersection Ln := Cn ∩Cn

π
n+2

Th
is
reg

ion
co
nta

ins
at
mos

t k − 1
roo

ts
of
f

x -axis

y
-
a
x
i
s

Figure 2.1: The cone Cn contains at most k − 1 roots of f .

of the two open disks Cn ,Cn ⊂ C that intersect the real axis in

the endpoints a and b of I , and whose centers see the line segment

(a,b) under the angle 2π
n+2 . For an illustration, see [18, Fig. 1]. It

further holds [17, 18]) that var(F , I) ≤ var(F) ≤ k − 1 for any

interval I ⊂ R+, hence we conclude that the Obreshkoff lens Ln
of any such interval contains at most k − 1 roots. For b 7→ ∞, the
Obreshkoff lens Ln of the interval I = (0,b) converges to the cone

Cn whose boundary are the two half-lines starting at the origin and

intersecting the real axis at an angle ± π
n+2 ; see Figure 2.1. Hence,

it follows that the interior ofCn contains at most k − 1 roots of any
given k−nomial of degree n.

Theorem 6. The coneCn contains at most k−1 roots of any k-sparse
polynomial of degree n.

3 POLYNOMIAL ARITHMETIC
Our algorithm only needs to perform basic operations on poly-

nomials. In particular, we need to evaluate the sign of a given

sparse polynomial at some points x . As we already mentioned in

the overview of our algorithm, the complexity of this operation

becomes too large if the value of the polynomial at a given point x
is almost zero as then one needs to perform computations with a

very high precision. Also, exact evaluation of a sparse polynomial

at a rational point (even of small bitsize) is expensive as the output

has bitsize linear in n. Instead, we consider approximate evaluation,

which allows us to evaluate a sparse polynomial f as in (1.1) at an

arbitrary point x ∈ (0, 1 + 1/n) to an absolute error less than 2
−L

in a time that is polynomial
2
in logn, k, τ , and L. More precisely,

we derive the following result:

Lemma 1. Let f ∈ R[x] be an (n,k,τ)-nomial, c be a positive real
number, and L a non-negative integer. Then, we can compute an L-bit

approximation λ of f (c) (i.e. |λ − f (c) | < 2
−L

) in a number of bit

operations bounded by

Õ ((k + logn) · (L + n logmax(1, |c |) + logn + τ + k)).

We already mentioned that evaluating the sign of a polynomial f
at a point x might be costly if f (x) has a small absolute value. In

order to avoid such undesired computations, we first perturb x in a

suitable manner. That is, instead of evaluating the sign of f at x ,we
evaluate its sign at a nearby point, where f becomes large enough.

This can be done in a way such that the actual behavior of the

algorithm does not change.Wewill call such points “admissible”.We

remark that we already used this concept in previous work [17, 18].

Here, we modify the approach to choose an admissible point, where

the sign of each fractional derivative of a sparse polynomial f can

be evaluated in polynomial time.

2
Notice that, for c ∈ (0, 1 + 1/nO (1)), we may omit the term n logmax(1, |c |) in the

bounds stated in Lemma 1.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

231

Definition 7 (Admissible point). Let д : R→ R be a function and

m[t ;δ] = {mi := m + (i − t) · δ ; i = 0, 1, . . . , 2t } be a multipoint.

Then, we call a pointm∗ ∈ m[t ;δ] to be (д,m[t ;δ])-admissible if

��д(m∗)�� ≥ 1

8
·maxx ∈m[t ;δ] ��д(x)��.

If t and δ (or evenm andд) are clear from the context, we simply call

a (д,m[t ;δ])-admissible point (д,m)-admissible (or just admissible).

Since the value of д at an admissible points is “relatively large”, we

expect that д has no root in a corresponding neighborhood.

Lemma 2. Let m∗ ∈ m[t ;δ] be an (f ,m[t ;δ])-admissible point

for an (n,k,τ)-nomial f , with m ∈ R+ and 2 ≤ k ≤ t ≤ k2. If
m
δ > 4k2n2, then the disk ∆δ ·k−4k (m

∗) contains no root of f .

Definition 8. Let G = (д1,д2, . . . ,дt) be a tuple of t functions
дi : R→ R. Then,MG (x) is defined as follows:

MG (x) := min(��д1 (x)�� , ��д2 (x)�� , , . . . , ��дt (x)��).

For a fixed real x , we call
˜G (x) = (д̃1 (x), д̃2 (x), . . . д̃t (x)) an L-

approximation of G (x) if ��д̃i (x) − дi (x)�� ≤ 2
−L

for all i .

We first show how to compute an admissible pointm∗ ∈m[t ;δ] for
MG (x) under the assumption that we can compute an

L-approximation of G (x) for any x ∈m[t ;δ] in time T (L).

Lemma 3. Let G = (д1,д2, . . . ,дt) be as in Definition 8,m[t ;δ] a

multipoint and λ := maxa∈m[t ;δ]
���MG (a)

���. Suppose that for a point
mi ∈ m[t ;δ] we can compute an L-approximation of G (mi) in time

T (L). Then we can compute an (MG ,m[t ;δ])-admissible pointm∗ ∈

m[t ;δ] as well as an integer ℓ∗ with 2ℓ
∗−1 ≤

���MG (m
∗)��� ≤ λ ≤ 2

ℓ∗+1.

in time O (t · log logmax(λ−1, 1) · (T (logmax(λ−1, 1))).

We now apply the above lemma to G := Df , the sequence of

fractional derivatives of f . Then, Lemma 1 yields a bound of the bit

complexity of computing L-approximations of Df (mi) for allmi ∈

m[t ;δ], which directly depends on λ := maxmi ∈m[t ;δ]
���MDf (mi)

���.

Corollary 9. Assume that f (x) is a (n,k,τ)-nomial,m[t ;δ] a mul-

tipoint and λ := maxmi ∈m[t ;δ]
���MDf (mi)

���. Further assume that

m[t ;δ] ⊂ (0,α) for some positive real α . Then, we can determine

an (MDf ,m[t ;δ])-admissible pointm∗ and an integer ℓ∗ with

2
ℓ∗−1 ≤

���MDf (m
∗)��� ≤ λ ≤ 2

ℓ∗+1

using Õ (t ·k ·(k+logn)·(τ+k logn+n logmax(1,α)+logmax(1, λ−1)))
many bit operations.

The following bound on λ implies that, for suitably chosen t ,m and

δ , we can computem∗ in polynomial time.

Lemma 4. Let f ∈ R[x] be a (n,k,τ)-nomial as in (1.1), and let a, r
be positive real numbers with r < a and such that (a − r ,a + r) does
not contain any real root of any fractional derivative of f (x). Then,

|MDf (a) | = 2
−O (k (k logn+τ+logmax(1, 1r)+n logmax(1,a+r))) .

Proof. We may assume that r is small enough to guarantee that

a
r > 2n. This implies that, for any two points x ,x ′ ∈ I1 := (a −

r ,a + r), we have that x/x ′ ∈ (1 − 1/n, 1 + 1/n). Now, let us write

f = c + x j · д with a constant c of absolute value at least 2−τ and д
an (n − j,k − 1,τ + logn)−nomial that is not divisible by x . Then,

it holds that f [1] = j · д + x · д′, and thus f ′ = x j−1 · f [1]. In
addition, since I1 := (a−r ,a+r) does not contain any root of f and

f [1], it follows that f is monotone on I and only takes positive or

negative values. This implies that | f (t) − f (t ′) | = | | f (t) | − | f (t ′) | |
for all t , t ′ ∈ I . In addition, for any t ∈ I2 := (a − r/2,a + r/2), we
can choose a point t ′ = t ± r/2 such that | f (t) | > | f (t ′) |. Now,
according to the mean value theorem, there exists a ξ in between

t and t ′ with f (t) − f (t ′) = (t − t ′) · f ′(ξ) = r
2
· ξ j−1 · f [1] (ξ).

Hence, we obtain | f (t) | > | f (t) | − | f (t ′) | = | | f (t) | − | f (t ′) | | =

| f (t) − f (t ′) | ≥ r
2
· ξ j−1 · f [1] (ξ) ≥ r

8
· t j−1 · f [1] (ξ), where the

latter inequality follows from (ξ/t) j−1 > (1 − 1/n)n > 1/2. Also,

| f (t) | ≥ |c |−t j · |д(t) | ≥ 2
−τ −t j−1 ·k ·2τ+logn ·max(1,a+r)n . With

ε := min(1, infx ∈I1 | f
[1] (x) |), the above inequalities thus imply that

| f (t) | > max(
rε

8

· t j−1, 2−τ − t j−1k2τ+logn ·max(1,a + r)n)

If t j−1 < 2
−τ−1 (k2τ+logn ·max(1,a + r)n)−1, the second argument

in the above term becomes larger than 2
−τ−1

. Otherwise, the first

term becomes larger than
r ε
8
· 2−τ−1 (k2τ+logn ·max(1,a + r)n)−1.

Thus, we have infx ∈I2 | f (x) | > r · ε · 2−2τ−1−2 logn−n logmax(1,a+r) .

We now recursively apply the above result to the fractional deriva-

tives f [k−i] and the intervals Ii := (a − r
2
i−1 ,a +

r
2
i−1), where

i = 1, 2, . . . ,k . Notice that each of the polynomials is an (n,k,τ +

k logn)−nomial and that infx ∈I1 | f
[k−1] (x) | > 2

−τ
as f [k−1] is a

constant of absolute value at least 2
−τ

. Hence, it follows that

inf

x ∈Ii
| f [k−i] (x) | > 2

−τ−i ·(2τ−1−2k logn−n logmax(1,a+r)) ·

i−1∏
j=1

r

2
j .

□

Combining the above lemma and Corollary 9 now yields

Theorem 10. Let f be a (n,k,τ)-nomial as in (1.1), and letm[t ;δ]

be a multipoint with t ≥ k2 andm[t ;δ] ⊂ (0,α) for some for some

real number α . Then, we can compute an (MDf ,m[t ;δ])-admissible

pointm∗ using Õ (t · k2 · (k + logn) · (k logn + τ + logmax(1, 1δ) +

n logmax(1,α))) bit operations.

Proof. Since each fractional derivative of f has at most k − 1 pos-

itive real roots and since t ≥ k2, there exists an a ∈ m[t ;δ]
such that (a − δ/2,a + δ/2) does not contain any real root of

any of fractional derivative. Hence, Lemma 4 implies that λ :=

maxx ∈m[t ;δ] |MDf (x) | ≥ |MDf (a) | is lower bounded by

2
−O (k (k logn+τ+log 1

δ +n logmax(1,a+δ)))
. Corollary 9 then yields the

claimed bound on the running time. □

4 REFINEMENT
A crucial subroutine of our overall algorithm is an efficient method

for refining an interval I0 = (a0,b0) ⊂ R+, with
max(| loga0 |, | logb0 |) = O (τ), that is known to be isolating for a

simple real root of a k-nomial f . It is assumed that the algorithm

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

232

receives the sign of f at the endpoints of I0 as additional input.

For the refinement, we consider the algorithm NewRefine from

Section 3 in [17] (see also Section 5 in [18]), however, we make a

single (minor) modification. As the argument from [17] directly

applies, we only state the main results and refer the reader to [17]

for details.

NewRefine recursively refines I0 to a size less than 2
−L

using

a trial and error approach that combines Newton iteration and

bisection. For this, only f and its first derivative f ′ need to be eval-
uated. More precisely, in each iteration, the algorithm computes

(f ,m[⌈k/2⌉;δ])−admissible points m∗ for a constant number of

pointsm ∈ I and a corresponding δ of size 2
−O (τ+logn+L)

. In addi-

tion, f and f ′ are evaluated at these admissible points to an absolute

precision that is bounded byO (logmax(1, | f (m∗) |−1)+logn+L+τ).
Each endpoint of the interval returned by NewRefine is then either

one of the admissible points computed in a previous iteration or

one of the endpoints of I0.
We now propose the following modification of NewRefine, which

we denote NewRefine
∗
: Whenever NewRefine asks for an

(f ,m[⌈k/2⌉;δ])−admissible pointm∗, we compute an

(MDf ,m[k2;δ ′])−admissible pointm∗, with δ ′ = δ · ⌈k/2⌉k2
, instead.

Then, the same argument
3
as in [17] yields:

Theorem 11. For refining I0 to a size less than 2
−L

, the algorithm

NewRefine
∗
needsO (k · (logn + log(τ + L))) iterations. In each iter-

ation, we need to compute a constant number of (MDf ,m[k2;δ ′])−

admissible pointsm∗, withm[k2;δ ′] ⊂ I0 and δ
′ = 2

−O (τ+logn+L)
.

In addition, the polynomials f and f ′ have to evaluated atm∗ to an ab-

solute precision bounded byO (logmax(1, | f (m∗) |−1)+ logn+L+τ).

Combining Theorems 11 and 10, we obtain a bound on the com-

plexity of refining I0 to a size less than 2
−L

:

Corollary 12. For refining I0 to a size less than 2
−L

, the algorithm

NewRefine
∗
needs

Õ (k5 · (k + logn) · logn · (k logn + τ + L + n logmax(1,b0)))

bit operations. For each endpoint p of the interval returned by NewRe-

fine, it holds that

MDf (p) = 2
−O (ℓ+k (k logn+τ+L+n logmax(1,b0))) .

with ℓ := logmin(1,MDf (a0),MDf (b0))
−1
.

5 COMPUTING A WEAK COVERING
We now describe how to compute a weak (L, [0, 1+ 1/n])-covering
for a given (n,k,τ)-nomial f in polynomial time. We first compute

an upper bound τ̃ ∈ Z for τ with τ ≤ τ̃ ≤ τ + 2, and define

δ := min(2−2τ̃−2, 1/n) · k−2. Then, in the first step, we compute

(MDf ,m[k2;δ])−admissible points a∗ and b∗ form := 2
−2τ−2

and

m := 1+2/n, respectively. Then, we follow the approach as outlined

on page 2 to compute a weak (L, [a∗,b∗])-covering for f , where we
use the algorithm NewRefine

∗
from the previous Section to refine

isolating intervals for the roots of the fractional derivatives of f

3
The argument in [17] only uses that, in each iteration, we choose an arbitrary point

m∗ ∈ [m − ⌈k/2⌉ · δ,m + ⌈k/2⌉ · δ].

to a size less than 2
−L

. The so obtained covering is indeed also a

weak (L, [0, 1 + 1/n])-covering for f , which follows from the fact

that b∗ ≥ 1 + 1/n and each positive root of f is lower bounded

by (1 + max
k
i=1 | fi |/| f1 |)

−1
due to Cauchy’s root bound [19]. For

details, consider the exact definition of Algorithm 1.

Algorithm 1 Compute a weak (L, [0, 1])-covering of f

Input :An (n,k,τ)-nomial f and an L ∈ N+
0
.

Output :A weak (L, [0, 1 + 1/n])-covering of f .

Compute τ̃ ∈ N with τ ≤ τ̃ ≤ τ + 2.

Define δ := 1

k2
·min(1n , 2

−2τ̃−2)

Compute (MDf ,m[k2;δ])−admissible points a∗ and b∗ for

m := 2
−2τ̃−2

andm := 1 + 2

n , respectively.
Compute the sign of f at x = a∗ and x = b∗.

for i = k − 1 to 0 do
if i = k − 1 then

Compute a trivial weak (L, [a∗,b∗])-coveringWk−1 for

f [k−1] (f [k−1] has only one monomial).

Wk−1 = {(a
∗,a∗), (b∗,b∗)}.

else
Wi+1 = weak (L, [a∗,b∗])-covering for f [i+1] computed in

the previous iteration of this loop.

Wi =Wi+1.
for each consecutive intervals (a,b) and (c,d) inWi+1 do

Compute signs of f [i] (b) and f [i] (c)

if f (i) (b) f (i) (c) < 0 then
Use NewRefine

∗
to refine the isolating interval

(b, c) to a new interval (b ′, c ′) of length at most

2
−L

.

Compute signs of f [i] (b ′) and f [i] (c ′).
Wi =Wi ∪ (b ′, c ′)

returnW0.

Correctness of the algorithm follows directly from our consider-

ations on page 2. Further notice that, for each i in the outermost

for-loop of the algorithm, we add at most k − i − 1 intervals toWi to

obtainWi+1 as f
[i]

has at most k − i − 1 positive real roots. Hence,

each listWi contains at most k2 many intervals. It remains to bound

the running time of Algorithm 1. The proof of the following Lemma

follows in a straight forward manner from Theorem 10, Corol-

lary 12, and the fact that we need to call the refinement algorithm

at most k times for each fractional derivative.

Lemma 5. Algorithm 1 computes a weak (L, [0, 1 + 1

n])-covering

for f consisting of at most k2 many intervals. Its bit complexity is

Õ (k7 (k + logn · (k logn + τ + L)·) logn).

In order to further process a weak (L, [0, 1 + 1/n])-covering for f ,
we need the intervals in the weak covering to be well separated. For

given L, λ ∈ N0, we say that a list L of intervals is (L, λ)-separated
if the distance dist(I , J) between I and its neighboring intervals is

at least min(2−L , λ ·w (I)). Notice that, starting from an arbitrary

list L of intervals, we can always deduce an (L, λ)-separated list

L′ from L in a way such that each interval in L is contained in

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

233

an interval from L′. Namely, this can be achieved by recursively

merging pairs of intervals I , J ∈ L that violate the above condition

until the actual list is (L, λ)-separated. It is easy to see that

w (L′) ≤ (2 + λ) |L | ·max(2−L ,w (L)),

where w (L) and w (L′) denote the maximal width of an inter-

val in L and L′, respectively. Hence, by first computing a weak

(L′, [0, 1 + 1/n])-covering L, with L′ = L + k2 · log(2 + λ) and

|L| = O (k2), and then recursively merging the intervals, we obtain

a weak (L, [0, 1+ 1/n])−covering for f that is also (L, λ)-separating

and whose intervals have width at most 2
−L

. From Lemma 5, we

thus conclude:

Corollary 13. For any λ,L ∈ N0, we can compute a (L, λ)- sep-

arating weak (L, [0, 1 + 1/n])−covering for f in Õ (k7 (k + logn) ·

(k logn + τ + L + k2 log(2 + λ)) · logn) bit operations.

6 TL-TEST
In the previous section, we have shown how to compute a weak

(L, [0, 1+ 1/n))-covering of a given (n,k,τ)-nomial f . Now, we aim
to convert this weak covering to a covering of f . For this, we need an
algorithm to count the number of roots of f (x) contained in a given

disk. Recent work [3] introduces a simple corresponding algorithm,

denotedTl -test, which is based on Pellet’s Theorem. More precisely,

for an arbitrary polynomial F ∈ C[x], a disk ∆ = ∆r (m) ⊂ C, and
a parameter K ≥ 1, we consider the inequality

Tl (∆,K , F) :
������

F (l) (m)r l

l !

������
− K ·

∑
i,l

������

F (i) (m)r i

i!

������
> 0. (6.1)

Hence, we check whether the absolute value of the l-th coefficient

al of F∆ (x) = f (m + rx) =
∑n
i=0 aix

i
dominates the sum of the

absolute values of all remaining coefficients weighted by the pa-

rameter K . We say that Tl (∆,K , F) succeeds if the above inequality
is fulfilled. Otherwise, we say that it fails. In case of success (for

any K ≥ 1), ∆ contains exactly l roots of F counted with multiplic-

ity, whereas we have no information in case of a failure. However,

in [3], we derive sufficient conditions on the success of the Tl -test:

Theorem 14 ([3], Corollary 1). Let F ∈ C[x] be a polynomial

of degree n, and ∆r (m) be a disk. If ∆r (m) as well as the enlarged
disk ∆

256n5r (m) contain l roots of F counted with multiplicity, then

Tl (∆16nr (m), 3
2
, F) succeeds.

Unfortunately, the above test has two major drawbacks when deal-

ing with sparse polynomials. First, we need to compute the coef-

ficients F∆ exactly, which we cannot afford as the bitsize of each

coefficient is at least linear in n. Second, an even more severe, there

are n coefficients to be computed. Hence, using the above approach

directly to count the number of roots of a sparse polynomial f
does not work. Instead, we propose two modifications to overcome

these issues. The first modification, namely to use approximate

(in a proper manner) instead of exact arithmetic, has already been

considered in previous work. However, the second modification

is more subtle. It exploits the fact that, for a suitably chosen disk

centered at some admissible point, only the first k2 coefficient are

relevant for the outcome of the above test.

We first go into details with respect to our first modification. Let

us define Eℓ := |al | and Er := K ·
∑
i,l |ai | the expressions on

the left and right hand side of the inequality in (6.1). We aim to

check whether Eℓ − Er > 0 or not. In general, if a predicate P

is of the latter form P = (Eℓ − Er > 0) with two (computable)

expressions Eℓ and Er , you can compute approximations Ẽℓ and

Ẽr of Eℓ and Er with |Ẽℓ − Eℓ | < 2
−L

and |Ẽr − Er | < 2
−L

for

L = 1, 2, 4, . . . For a certain L, you may then try to compare Eℓ and

Er taking into account their corresponding approximations and the

approximation error. Eventually (i.e. for a sufficiently large L), you
either succeed, in which case you can return the sign, or assert that

Eℓ and Er are good approximations of each other. In the latter case,

you just return a flag called Undecided. In short, this is the idea of

so-called soft-predicates. For details, we refer to [3].

Algorithm 2 Soft Predicate
˜P

Input :A predicate P defined by non-negative expressions Eℓ
and Er , with Eℓ , 0 or Er , 0; i.e. P succeeds if and only

if Eℓ > Er . A rational constant δ > 0.

Output : True, False, or Undecided. In case of True (False), P

succeeds (fails). In case of Undecided, we have

1

1+δ · Eℓ < Er ≤ (1 + δ) · Eℓ

Notice that, in cases where Eℓ considerably differs from Er , the

soft predicate
˜P allows us to compute the sign of P without the

need of exact arithmetic. In all other cases (i.e. if it returns Unde-

cided), we know at least that Eℓ and Er are good approximations

of each other. We remark that, in [3], the above soft predicate
˜P

was only described for δ = 1

2
, however, it easily generalizes to any

constant δ . In [3, Lem. 2], it has been shown that, for any constant

δ , Algorithm 2 needs an L0-bit approximation of Eℓ and Er with
L0 bounded by

L0 ≤ 2 · (max(1, logmax(Eℓ ,Er)
−1) + 4).

In [3], we considered a soft-variant of the Tl -test, where we com-

pared the expressions Eℓ := |al | and Er :=
∑
i,l |ai |. Now, we

apply the above soft-predicate to the expressions Eℓ := al and

Er :=
∑i≤k2

i,l |ai |, that is, we replace the entire sum

∑
i,l |ai | by

its truncation after the first k2 terms. However, we will make the

assumption that the truncated sum is upper bounded by
|a0 |
128

; see

Algorithm 3. This might look haphazardly at first sight, however,

we will later see that the latter condition is always fulfilled for a

k-nomial F and a suitable disk ∆r (m) centered at an admissible

point.

Algorithm 3 T̃l -test
Input :An (n,k,τ)-nomial f (x), a disk ∆ := ∆r (m) in the

complex space and an integer l with 0 ≤ l ≤ k . It is

required that

∑
i>k2 |ai | ≤

|a0 |
128

, where

f∆ (x) =
∑n
i=0 ai · x

i
.

Output : True or False. If the algorithm returns True then the

disk ∆r (m) contains exactly l roots.

Define Eℓ := |al | and Er := 65

64
·
∑i≤k2

i,l |ai |.

Define predicate P = (Eℓ − Er > 0).
return output of Algorithm 2 on predicate P with δ = 1

128
.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

234

Lemma 6. For a disk ∆ := ∆r (m) ⊂ C, the T̃l -test needs to com-

pute L-bit approximations of Eℓ and Er with L ≤ L(m, r , f) :=

2 · (5 + logn − logmaxi |ai |) . IfTl (∆,
3

2
, f) succeeds, then the T̃l -test

returns True. Running Algorithm 3 for all l = 0, . . . ,k uses a number

of bit operations upper bounded by Õ (k2 · (k + logn) (L(m, r , f) +τ +

n logmax(1,m) + k2 · (logn + logmax(1, r)))).

Proof. From the assumption, it follows that

max

i=0, ...,n
|ai | = max

i=0, ...,k2

|ai | ≤
1

2

·max(|Eℓ |, |Er |).

This yields the claimed bound on the absolute error to which Eℓ and
Er need to be computed.We now prove correctness. If the algorithm

returns True, then Eℓ > Er , and thus |al | >
65

64
·
∑i≤k2

i,l |ai |. If l = 0,

then

∑
i,0 |ai | <

64

65
· |a0 | +

1

128
· |a0 | < |a0 |. Otherwise, we have

|al | >
65

64
·
∑i≤k2

i,l |ai | ≥
∑i≤k2

i,l |ai | +
1

64
· |a0 | ≥

∑i≤n
i,l |ai |. Hence,

in both cases, Tl (∆, 1, f) succeeds, which implies that ∆ contains

exactly l roots.

Now, suppose that Tl (∆,
3

2
, f) succeeds. If the T̃l -test returns Un-

decided, then
128

129
· Eℓ < Er ≤

129

128
· Eℓ . On the other hand, we

have |al | >
3

2

∑≤n
i,l |ai | ≥

3

2

∑≤k2

i,l |ai |, and thus Eℓ >
3

2
Er , which

contradicts the fact that
128

129
· Eℓ < Er . If the T̃l -test returns False,

a similar argument yields a contradiction as well. This shows that

success of Tl implies that T̃l returns True. It remains to show the

claimed bounds on the bit complexity. It suffices to estimate the

cost for computing an L(m, r , f)-bit approximations of Eℓ and Er .

The i-th coefficient ai , with i ≤ k2, can be computed by evaluating

the (n,k,τ +k2 · (logn+ logmax(1, r)))-nomial дi = f (i) (x)r i/i! at
x =m. In order to compute L(m, r , f)-bit approximations of Eℓ and
Er , we need to compute an (L(m, r , f) + 2 logk)-bit approximation

of each дi (m), for i = 0, . . . ,k . According to Lemma 1, this can be

done using Õ (k2 · (k + logn) (L(m, r , f) +n logmax(1,m) + τ +k2 ·
(logn + logmax(1, r))) bit operations. □

Notice that, in order to actually use the T̃l -test for counting the

roots in a disk ∆, we need two conditions to be satisfied. First, we

need the condition

∑
i>k2 |ai | ≤

|a0 |
128

to be true. Second, we need

to satisfy the preconditions of the Tl -test.

Theorem 15. Let f be a (n,k,τ)-nomial as in (1.1), let ∆ := ∆r (m)

be a disk centered at somem ∈ R>0 with
m
r > n16, and let f∆ (x) =∑n

i=0 ai · x
i
. Further suppose that ∆ r

k4k+2
(m) does not contain any

roots of f . Then, it holds that
∑
i>k2 |ai | ≤

|a0 |
128

.

Proof. Let z1, z2, . . . , zn be the complex roots of F (x), then ai
a0 =

F (i) (m)
F (m) ·i ! · r

i = r i
i ! ·

∑
(j1, j2, ..., ji)

1∏i
ℓ=1 (m−zjℓ)

, where we sum over

all tuples (j1, j2, . . . , ji) with distinct entries js , 1 ≤ js ≤ n. For a
fixed tuple (j1, j2, . . . , ji), at most k of the i roots zj1 , zj2 , . . . , zji
can appear in the corresponding term of the above sum. At most

k of these roots are contained in the code Cn as defined in Figure

2.1, whereas the remaining i − k roots are located outside of Cn .

Since
m
r > n16, the distance from m to any of these roots is at

least n15r . Also, since ∆ r
k4k

(m) does not contain any roots of F (x),

distance of m from the roots in Cn is at least
r
k4k . Thus, we get∑

(j1, j2, ..., ji)
1∏i

ℓ=1 |m−zjk |
≤

(n
i

)
· k4k2

rk ·(n5r)i−k
. Hence, for i > k2,

we get

|ai |

|a0 |
≤

r i

i!
·

(
n

i

)
·

k4k
2+2k

rk · (n15r)i−k
=

1

i!
·

(
n

i

)
·
k4k

2+2k

n15(i−k)

≤
1

i! · i!
·
k4k

2+2k

n14i−15k
≤

1

i! · i!
·
k4k

2+2k

n6i

(By using the fact that

(n
i

)
≤ ni

i ! and 15k < 8k2 < 8i)

≤
1

5! · n · i!
·
k4k

2+2k

k6k
2
≤

1

120 · n · i!
·

(
1

k2

)k2−2k
<

1

128n

Hence, summing up over all i > k2 proves the claim. □

The following Corollary is now an immediate consequence of the

above theorem and Lemma 15.

Corollary 16. Let f (x) ∈ R[x] be as in (n,k,τ)-nomial as in (1.1).

Letm, r ∈ R+. Letm∗ be a (MDf ,m[k2; r
k2
]) -admissible point and

r∗ = 2r . Define ∆ = ∆r ∗ (m
∗) ⊇ ∆r (m) and f∆ (x) =

∑n
i=0 ai · x

i
.

Further assume that
m
r ≥ 2(1 + n16), then

∑
i>k2 |ai | ≤

|a0 |
128
.

In the next step, we show how to satisfy the precondition of the Tl -
test. Theorem 14 says that if ∆

256n5r (m) does not contain any of the
roots which are not contained in ∆r (m), thenTl (∆16nr , f) succeeds

for some l . Let us define M = 256n5r , and let ∆i := ∆M i r (m)
for i = 0, 1, . . . ,k + 1. Further assume that r has been chosen

sufficiently small enough such that each of disks is contained in the

coneCn . SinceCn contains at most k roots, there must exist a j with
0 ≤ j ≤ k such that ∆j+1 −∆j does not contain any root. Hence the

Tl -test will succeed on ∆
16nM j r (m). So instead of running the Tl -

test on some initial disk ∆r (m), we run it on all disks ∆
16nM i r (m)

for i = 0, 1, . . . ,k , and return the first disk on which the Tl -test
succeeds; see Algorithm 4.

Correctness of the algorithm follows immediately from the above

considerations. The condition on m and r guarantees that each

of the disks ∆i is contained in Cn . Lemma 7 gives a bound on its

running time.

Lemma 7. Algorithm 4 returns a disk ∆r ′ (m
′), with r ′ ≤ Rr and

m − r ≤ m′ ≤ m + r , together with the number of roots of f (x) in

∆r ′ (m
′). Its bit complexity is bounded by Õ (k5 · (k+logn) · (k2 logn+

n logmax(1, |m |) + τ + log 1

r)).

7 COMPUTING A COVERING
We now show to compute an (L, [0, 1+ 1/n])-covering from a weak

(L′, [0, 1 + 1

n])-covering, For this, we apply Algorithm 4 to the one-

circle regions of the intervals in the weak covering. The following

Lemma shows that the requirements in Algorithm 4 are fulfilled

if we choose L′ large enough. In addition, by ensuring that the

intervals in the weak covering are well separated from each other,

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

235

Algorithm 4 Wrapper T̃l -test

Input :A (n,k,τ)-nomial f (x), a disk ∆ := ∆r (m) in the

complex space. We assumem ≥ r + 2Rnr with

R = 2
8k+4n5k+16.

Output :A disk ∆r ′ (m
′) such that ∆r (m) ⊆ ∆r ′ (m

′) along
with number of roots of f (x) contained in ∆r ′ (m

′)

(1) Compute an (MDf ,m[k2; r
k2
])-admissible pointm∗.

(2) Letm′ =m∗ and r ′ = 2r .
(3) LetM = 256n5r ′.

for each 0 ≤ i ≤ k do
for each 0 ≤ l ≤ k do

Perform the T̃l -test, that is Algorithm 3, on ∆
16nM i r ′ (m

′).

if T̃l -test succeeded in the previous step then
return ∆

16nM i r ′ (m
′) and l .

Algorithm 5 Computing a (L, [0, 1 + 1

n])-covering

Input :An (n,k,τ)-nomial f (x) and a positive integer L.
Output :An (L, [0, 1 + 1/n])-covering for f .

(1) Let R := 2
8k+4n5k+16 and L′ = L + ⌈logR⌉ + 4τ + 5. Com-

pute a weak (L′, [0, 1+ 1

n])-covering L for f that is (L′, 8R)-
separated.

(2) L′ = ∅
for each interval I = (a,b) ∈ L do

(1) ∆ = ∆ b−a
2

(a+b
2

)=one circle region of I .
(2) (∆r ′ (m

′), µ)= output of Algo. 4 on f and ∆.
(3) L′ = L′ ∪ {(∆r ′ (m

′), µ)}

return L′.

we can ensure that the corresponding disks returned by Algorithm

4 are disjoint.

Lemma 8. Algorithm 5 computes an (L, [0, 1 + 1

n])-covering L
′
for

f using Õ (k7 · (k+logn) (k3 logn+τ +L)) bit operations. The distance

between any two disks of L′ is at least 32 ·2−L , and ∆∩R ⊂ (2−3τ , 2)
for any disk ∆ in L′.

It remains to show how to compute an (L, [0,∞))-covering for f

from an (L, [0, 1 + 1

n))-covering L1 for f and an (L, [0, 1 + 1

n))-

covering L2 for x
n f (1x). We first derive an (L, [n

n+1 ,∞))-covering

for f from L2 by inverting the disks ∆ in L2. The proof of the

following lemma is straight forward.

Lemma 9. Let L be an (L, [0, 1 + 1

n])-covering of x
n f (1x) as com-

puted by Algorithm 5, and L′ := {(∆−1, µ) : (∆, µ) ∈ L} be the list

obtained from L by inverting the disks in L (i.e. ∆r (m)−1 = ∆r ′ (m
′)

with r ′ = 2r
m2−r 2 andm′ = m

m2−r 2). Then, L
′
is an (L′, [n

n+1 ,∞))-

covering of f with L′ ≥ L − 6τ and the distance between two disks in

L′ is at least 8 · 2−L .

Finally, wemerge an (L, [0, 1+1/n))-coveringL1 and an (L, [
n

n+1 ,∞))-

covering L2 for f . Here, we assume that L > 3 + logn, and that

the coverings are computed using Algorithm 5 and by inverting

the (L, (0, 1 + 1/n))-covering for xn · f (1/x) to obtain L2. This

guarantees that the distance between any two disks in either L1

or L2 is at least 8 · 2
−L

. For the merging, we keep each disk from

L1 that has no intersection with a disk from L1, and vice versa.

For each pair of elements (∆1, µ1) ∈ L1 and (∆2, µ2) ∈ L2 with

∆1∩∆2 , ∅, we keep (∆1, µ1) (and omit (∆2, µ2)) if the center of ∆1

is not larger than 1. Otherwise, we keep (∆2, µ2) (and omit (∆1, µ1)).
Following this approach, we might loose some of the complex roots

that are contained in the union of ∆1 and ∆2, however, we will

not loose any real root. Thus, the so obtained list constitutes an

(L, (0,∞))-covering for f .
Notice that any two (L, (0,∞))- and (L, (−∞, 0))-coverings for f
can be trivially merged by taking their union. In addition, since

the final covering contains a list of disjoint disks contained in the

union of the cone Cn and its reflection on the imaginary axis, and

since the union of these two cones contains at most 2k − 1 roots of
f , the number of disks is also bounded by 2k − 1. Hence, our main

Theorem 3 follows.

REFERENCES
[1] Maria Emilia Alonso Garçia and André Galligo. A root isolation algorithm for

sparse univariate polynomials. In ISSAC, pages 35–42, 2012.

[2] Osbert Bastani, Christopher J. Hillar, Dimitar Popov, and J. Maurice Rojas. Ran-

domization, Sums of Squares, Near-Circuits, and Faster Real Root Counting.

Contemp. Mathematics, 556:145–166, 2011.

[3] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee-Keng Yap. A near-

optimal subdivision algorithm for complex root isolation based on the pellet test

and newton iteration. J. Symb. Comput., 2017. In press.

[4] George E. Collins and Rüdiger Loos. Polynomial real root isolation by differenti-

ation. In SYMSAC, pages 15–25, 1976.

[5] Michel Coste, Tomás Lajous-Loaeza, Henri Lombardi, and Marie-Francoise Roy.

Generalized Budan-Fourier theorem and virtual roots. J. Complexity, 21(4):479 –

486, 2005.

[6] F. Cucker, P. Koiran, and S. Smale. A polynomial time algorithm for diophantine

equations in one variable. J. Symb. Comput., 27(1):21 – 29, 1999.

[7] Gorav Jindal and Michael Sagraloff. Efficiently Computing Real Roots of Sparse

Polynomials . CoRR, arXiv:1704.06979, 2017.

[8] Michael Kerber andMichael Sagraloff. Root refinement for real polynomials using

quadratic interval refinement. Journal of Computational and Applied Mathematics,

280:377 – 395, 2015.

[9] Alexander Kobel, Fabrice Rouillier, and Michael Sagraloff. Computing real roots

of real polynomials ... and now for real! In ISSAC, pages 303–310, 2016.

[10] Hendrik W. Lenstra (Jr.). Finding small degree factors of lacunary polynomials.

Number Theory in Progress, 1:267–276, 1999.

[11] J.M. McNamee and Victor Y. Pan. Numerical Methods for Roots of Polynomials.

Number 2 in Studies in Computational Mathematics. Elsevier Science, 2013.

[12] K. Mehlhorn, M Sagraloff, and P. Wang. From Approximate Factorization to

Root Isolation with Application to Cylindrical Algebraic Decomposition. J. Symb.

Comput., 66(1):34 – 69, 2015.

[13] V. Pan. Univariate Polynomials: Nearly Optimal Algorithms for Numerical

Factorization and Root Finding. J. Symb. Comput., 33(5):701–733, 2002.

[14] Victor Y. Pan, Brian Murphy, Rhys Eric Rosholt, Guoliang Qian, and Yuqing Tang.

Real root-finding. In SNC, pages 161–169, 2007.

[15] Victor Y. Pan and Elias P. Tsigaridas. On the boolean complexity of real root

refinement. In ISSAC, pages 299–306, 2013.

[16] J. Maurice Rojas and Yinyu Ye. On solving univariate sparse polynomials in

logarithmic time. J. Complexity, 21(1):87–110, 2005.

[17] Michael Sagraloff. A near-optimal algorithm for computing real roots of sparse

polynomials. In ISSAC, pages 359–366, 2014.

[18] Michael Sagraloff and Kurt Mehlhorn. Computing real roots of real polynomials.

Journal of Symbolic Computation, 73:46 – 86, 2016.

[19] C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press,

2000.

[20] Yinyu Ye. Combining Binary Search and Newton’s Method to Compute Real

Roots for a Class of Real Functions. J. Complexity, 10(3):271 – 280, 1994.

Contributed Paper ISSAC’17, July 25-28, 2017, Kaiserslautern, Germany

236

	Abstract
	1 Introduction
	2 On the Geometry of Roots
	3 Polynomial arithmetic
	4 Refinement
	5 Computing a Weak Covering
	6 Tl-test
	7 Computing a Covering
	References

