On Approximate Polynomial Identity Testing and Real Root Finding

Gorav Jindal

Saarland Informatics Campus, Saarbrücken
November 11, 2019

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces
(2) Computing Real Roots of Sparse Polynomials
(3) Complexity of Symmetric Polynomials

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces 1.1 Introduction and Motivation
1.2 Previous Work
1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Based on

- Joint work with Prof. Dr. Markus Bläser and Anurag Pandey.
- Publications:
\triangleright Greedy Strikes Again: A Deterministic PTAS for Commutative Rank of Matrix Spaces Bläser, Markus, Jindal, Gorav, and Pandey, Anurag In 32nd Computational Complexity Conference (CCC 2017).
\triangleright A Deterministic PTAS for the Commutative Rank of Matrix Spaces Bläser, Markus, Jindal, Gorav, and Pandey, Anurag In Theory of Computing 2018.

Matrix Spaces

Definition (Matrix Space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called a matrix space:

$$
\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle .
$$

- Here $B_{1}, B_{2}, \ldots, B_{m}$ linearly generate \mathcal{B}.

Matrix Spaces

Definition (Matrix Space)

A vector space $\mathcal{B} \leq \mathbb{F}^{n \times n}$ is called a matrix space:

$$
\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle .
$$

- Here $B_{1}, B_{2}, \ldots, B_{m}$ linearly generate \mathcal{B}.

Definition (Commutative rank)

For a matrix space \mathcal{B}, maximum rank of any matrix in \mathcal{B} is the commutative rank of \mathcal{B}, use $\operatorname{crk}(\mathcal{B})$ to denote it.

Symbolic Matrices

Definition (Symbolic Matrix)

A matrix $B \in\left(\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{m}\right]\right)^{n \times n}$ whose entries are homogeneous linear forms is called a symbolic matrix.

Symbolic Matrices

Definition (Symbolic Matrix)

A matrix $B \in\left(\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{m}\right]\right)^{n \times n}$ whose entries are homogeneous linear forms is called a symbolic matrix.

- Use $\operatorname{rank}(B)$ to denote the rank of B over $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
- Matrix space $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$, associate a symbolic matrix B with \mathcal{B} by:

$$
B \xlongequal{\text { def }} \sum_{i=1}^{m} x_{i} B_{i}
$$

Rank Connection of Symbolic Matrices and Matrix Spaces

Theorem (Folklore)

$\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$ a matrix space and

$$
B\left(x_{1}, x_{2}, \ldots, x_{m}\right) \xlongequal{\text { def }} \sum_{i=1}^{m} x_{i} B_{i}
$$

the corresponding symbolic matrix, then

$$
\operatorname{rank}(B)=\operatorname{crk}(\mathcal{B}) .
$$

(Assuming $|\mathbb{F}|>n$).

Maximum Matching to Commutative rank

- Tutte matrix A_{G} of a simple undirected graph $G=(V, E)$ with $V=[n]$ is an $n \times n$ symbolic matrix defined as:

$$
\left(A_{G}\right)_{i, j}= \begin{cases}x_{i j} & \text { If }(i, j) \in E \text { and } i<j \\ -x_{j i} & \text { If }(i, j) \in E \text { and } i>j \\ 0 & \text { Otherwise }\end{cases}
$$

Maximum Matching to Commutative rank

- Tutte matrix A_{G} of a simple undirected graph $G=(V, E)$ with $V=[n]$ is an $n \times n$ symbolic matrix defined as:

$$
\left(A_{G}\right)_{i, j}= \begin{cases}x_{i j} & \text { If }(i, j) \in E \text { and } i<j \\ -x_{j i} & \text { If }(i, j) \in E \text { and } i>j \\ 0 & \text { Otherwise }\end{cases}
$$

Theorem (Lovász 1979)

If r is the size of maximum matching in G then $\operatorname{rank}\left(A_{G}\right)=2 r$.

Polynomial Identity Testing (PIT) Using Commutative rank

Problem

(FORMULA PIT) A formula F computing $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, is $f=0$?

Polynomial Identity Testing (PIT) Using Commutative rank

Problem

(FORMULA PIT) A formula F computing $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, is $f=0$?

Theorem (Valiant 1979)

If $f \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ is computed by a formula of size s then one can compute (in deterministic poly (m, s) time) an affine symbolic matrix F of size $(s+2) \times(s+2)$ such that $\operatorname{det}(F)=f$.

- Checking the non-zeroness of f reduces to checking if the symbolic matrix F has full rank.

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction and Motivation Previous Work
Our Contributions

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces 1.1 Introduction and Motivation

1.2 Previous Work

1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Computing the Commutative Rank

- To compute the commutative rank exactly, an easy randomized algorithm exists.
- Substitute random field scalars for x_{i} 's and compute the rank of the resulting scalar matrix.

Computing the Commutative Rank

- To compute the commutative rank exactly, an easy randomized algorithm exists.
- Substitute random field scalars for x_{i} 's and compute the rank of the resulting scalar matrix.
- Deterministically computing the commutative rank leads to deterministic PIT.

Computing the Commutative Rank

- To compute the commutative rank exactly, an easy randomized algorithm exists.
- Substitute random field scalars for x_{i} 's and compute the rank of the resulting scalar matrix.
- Deterministically computing the commutative rank leads to deterministic PIT.
- Approximating the commutative rank deterministically?

Approximating the Commutative Rank

- A related notion of the non-commutative rank $\operatorname{ncrk}(\mathcal{B})$ of a matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

Theorem (Fortin, Reutenauer 2004)

If \mathbb{F} is an infinite field then:

$$
\operatorname{crk}(\mathcal{B}) \leq \operatorname{ncrk}(\mathcal{B}) \leq 2 \cdot \operatorname{crk}(\mathcal{B})
$$

- Above inequalities are tight.

Approximating the Commutative Rank

Theorem (GGOW 2015, Ivanyos et al.,2015)

There is a deterministic polynomial time algorithm to compute the $\operatorname{ncrk}(\mathcal{B})$ for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

Approximating the Commutative Rank

Theorem (GGOW 2015, Ivanyos et al.,2015)

There is a deterministic polynomial time algorithm to compute the $\operatorname{ncrk}(\mathcal{B})$ for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

- Implies a deterministic polynomial time algorithm computing a $\frac{1}{2}$-approximation of the commutative rank.

Approximating the Commutative Rank

Theorem (GGOW 2015, Ivanyos et al.,2015)

There is a deterministic polynomial time algorithm to compute the ncrk (\mathcal{B}) for any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$.

- Implies a deterministic polynomial time algorithm computing a $\frac{1}{2}$-approximation of the commutative rank.
- Improve the approximation ratio?

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction and Motivation
Previous Work
Our Contributions

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces
1.1 Introduction and Motivation
1.2 Previous Work

1.3 Our Contributions

(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results Previous Work

Main Contribution

- A deterministic PTAS for computing the Commutative rank.

Main Contribution

- A deterministic PTAS for computing the Commutative rank.

Theorem

For any Matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$, a deterministic polynomial time algorithm which outputs a matrix $A \in \mathcal{B}$ with:

$$
\operatorname{rank}(A) \geq(1-\epsilon) \operatorname{crk}(\mathcal{B})
$$

Algorithm runs in time $n^{O\left(\frac{1}{\epsilon}\right)}$.

Main Idea

- Define the notion of Wong Index $w(A, \mathcal{B})$ for any $A \in \mathcal{B}$.
- If $w(A, \mathcal{B})$ is "high" then $\operatorname{rank}(A)$ is already a good approximation of $\operatorname{crk}(\mathcal{B})$.
\triangleright In fact, we showed this connection even for the non-commutative rank.

Main Idea

- Define the notion of Wong Index $w(A, \mathcal{B})$ for any $A \in \mathcal{B}$.
- If $w(A, \mathcal{B})$ is "high" then $\operatorname{rank}(A)$ is already a good approximation of $\operatorname{crk}(\mathcal{B})$.
- In fact, we showed this connection even for the non-commutative rank.
- If $w(A, \mathcal{B})$ is "low" then in deterministic $n^{O\left(\frac{1}{\varepsilon}\right)}$ time, find a matrix $A^{\prime} \in \mathcal{B}$ such that $\operatorname{rank}\left(A^{\prime}\right)>\operatorname{rank}(A)$.

A min-max characterization of ranks

Theorem

For all matrix spaces $\mathcal{A}=\left\langle A_{1}, A_{2}, \ldots, A_{m}\right\rangle \leq \mathbb{F}^{n \times n}$, we have:

$$
\operatorname{ncrk}(\mathcal{A})=\min _{B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} \text { basis of } \mathbb{F}^{n} C_{1}, C_{2}, \ldots, C_{n} \in \mathcal{A}}^{\max } \operatorname{rank}\left(\left[C_{i} b_{i}\right]\right)
$$

A min-max characterization of ranks

Theorem

For all matrix spaces $\mathcal{A}=\left\langle A_{1}, A_{2}, \ldots, A_{m}\right\rangle \leq \mathbb{F}^{n \times n}$, we have:

$$
\begin{aligned}
\operatorname{ncrk}(\mathcal{A}) & =\min _{B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}}{\text { basis of } \mathbb{F}^{n} C_{1}, C_{2}, \ldots, C_{n} \in \mathcal{A}}_{\max } \operatorname{rank}\left(\left[C_{i} b_{i}\right]\right) . \\
\operatorname{crk}(\mathcal{A}) & =\max _{C_{1}, C_{2}, \ldots, C_{n} \in \mathcal{A}}^{\operatorname{man}} \min _{B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}}{\operatorname{masisis~of~} \mathbb{F}^{n}}^{\operatorname{rank}\left(\left[C_{i} b_{i}\right]\right) .}
\end{aligned}
$$

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces 1.1 Introduction and Motivation
1.2 Previous Work
1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Based on

- Joint work with Prof. Dr. Michael Sagraloff.
- Publications:
- Efficiently Computing Real Roots of Sparse Polynomials Jindal, Gorav, and Sagraloff, Michael In Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation 2017.

Roots of Polynomials

- We have a degree n (real) polynomial:

$$
f(x)=\sum_{i=0}^{n} f_{i} x^{i}
$$

- Want to compute its (real) roots.
- In practice, the polynomial f is often "sparse".

Sparse Polynomials

- A polynomial is k-sparse if it has only k non-zero terms.

Sparse Polynomials

- A polynomial is k-sparse if it has only k non-zero terms.

Definition (n, k, τ)-nomial)

A real polynomial $f(x) \in \mathbb{R}[x]$ is an (n, k, τ)-nomial if:

$$
f(x)=\sum_{i=1}^{k} f_{i} x^{e_{i}} .
$$

Here $0 \leq e_{1}<e_{2}<\cdots<e_{k} \leq n$ and $2^{-\tau} \leq\left|f_{i}\right| \leq 2^{\tau}$.

Sparse Polynomials Real Roots

- If $f(x)=\sum_{i=1}^{k} f_{i} x^{e_{i}}$, then:
$\operatorname{var}(f) \xlongequal{\text { def }}$ Number of signs changes in the sequence $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$.
$N_{+}(f) \xlongequal{\text { def }}$ Number of positive real roots of f.

Sparse Polynomials Real Roots

- If $f(x)=\sum_{i=1}^{k} f_{i} x^{e_{i}}$, then:
$\operatorname{var}(f) \xlongequal{\text { def }}$ Number of signs changes in the sequence $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$.
$N_{+}(f) \xlongequal{\text { def }}$ Number of positive real roots of f.

Theorem (Descartes's rule of signs)

For all $f(x) \in \mathbb{R}[x], \operatorname{var}(f)-N_{+}(f)$ is a non-negative even integer.

Computing Real Roots of Sparse Polynomials

- Descartes's rule of signs implies that any (n, k, τ)-nomial has at most $2 k-1$ real roots.
- For integer (n, k, τ)-nomials, the input size is $O(k(\tau+\log n))$.

Computing Real Roots of Sparse Polynomials

- Descartes's rule of signs implies that any (n, k, τ)-nomial has at most $2 k-1$ real roots.
- For integer (n, k, τ)-nomials, the input size is $O(k(\tau+\log n))$.
- We want to "compute" all the real roots of (n, k, τ)-nomials in time poly $(k, \tau, \log n)$ (\# bit operations).

Computing Real Roots of Sparse Polynomials

- Descartes's rule of signs implies that any (n, k, τ)-nomial has at most $2 k-1$ real roots.
- For integer (n, k, τ)-nomials, the input size is $O(k(\tau+\log n))$.
- We want to "compute" all the real roots of (n, k, τ)-nomials in time poly $(k, \tau, \log n)$ (\# bit operations).
- "Compute" means to find disjoint and (small) real intervals such that each interval contains exactly one real root (isolating the real roots).

Mignotte Polynomials

- Mignotte polynomial $f(x)=x^{n}-\left(2^{2 \tau} x^{2}-1\right)^{2}$ is a ($n, 4,4 \tau$)-nomial.

Mignotte Polynomials

- Mignotte polynomial $f(x)=x^{n}-\left(2^{2 \tau} x^{2}-1\right)^{2}$ is a ($n, 4,4 \tau$)-nomial.
- It can be shown that f has two real roots in $(a-r, a+r)$ for $a=2^{-\tau}$ and $r=\left(2^{1-\tau}\right)^{\frac{n}{2}}$.
\triangleright Two very close real roots and hence hard to isolate them for any efficient algorithm.

Mignotte Polynomials

- Mignotte polynomial $f(x)=x^{n}-\left(2^{2 \tau} x^{2}-1\right)^{2}$ is a ($n, 4,4 \tau$)-nomial.
- It can be shown that f has two real roots in $(a-r, a+r)$ for $a=2^{-\tau}$ and $r=\left(2^{1-\tau}\right)^{\frac{n}{2}}$.
\triangleright Two very close real roots and hence hard to isolate them for any efficient algorithm.

Theorem

Any algorithm which isolates the real roots of $f(x)=x^{n}-\left(2^{2 \tau} x^{2}-1\right)^{2}$ requires $\Omega(n \tau)$ bit operations.

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces
1.1 Introduction and Motivation
1.2 Previous Work
1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Computing Real Roots of Polynomials

- For $k=n$ (dense case), poly (n, τ) time algorithms exist.
- Pan (2001), Sagraloff, Mehlhorn (2015), Eigenwillig (2006) and many others.

Computing Real Roots of Polynomials

- For $k=n$ (dense case), poly (n, τ) time algorithms exist.
\triangleright Pan (2001), Sagraloff, Mehlhorn (2015), Eigenwillig (2006) and many others.
- Integer (n, k, τ)-nomials.
\triangleright Poly time algorithms for isolating integer and rational roots (Cucker et.al, Lenstra, 99).
\triangleright Algorithm to isolate real roots using poly $(k \cdot(\log n+\tau))$ arithmetic operations. Bit operations still $\tilde{O}(n \tau)$ (Sagraloff (2014)).

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution
Overview of the Algorithm

Outline

1. Rank of Symbolic Matrices and Matrix Spaces
1.1 Introduction and Motivation
1.2 Previous Work
1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Introduction
Previous Work
Our Contribution

Covering

Definition ((L, I)-covering)

$f \in \mathbb{R}[x], L \in \mathbb{N}, I \subseteq \mathbb{R}$.

> All these disks "cover" all the real roots of f in l

Information about the number of roots of f in each disk

Each disk has radius at most 2^{-L}

Main Result

Theorem

For any (n, k, τ)-nomial, we can compute an L-covering \mathcal{L} of size at most $2 k$ in time $\tilde{O}(\operatorname{poly}(k, \log n) \cdot(\tau+L))$.

Main Result

Theorem

For any (n, k, τ)-nomial, we can compute an L-covering \mathcal{L} of size at most $2 k$ in time $\tilde{O}(\operatorname{poly}(k, \log n) \cdot(\tau+L))$.

Corollary

If f is an (n, k, τ)-nomial with only simple real roots, and σ is the minimal distance between any two (complex) distinct roots of f, then we can "compute" all the real roots of f in $\tilde{O}\left(\operatorname{poly}(k, \log n)\left(\tau+\overline{\log }\left(\frac{1}{\sigma}\right)\right)\right)$ bit operations.

Trinomial Root Separation

Theorem (Also proved independently by Koiran)

$f(x)=a_{1} x^{e_{1}}+a_{2} x^{e_{2}}+a_{3}$ an integer trinomial with: $\log \max \left(e_{1}, e_{2},\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right) \leq \tau$. If z_{1} and z_{2} are two distinct roots of $f(x)$ then $\left|z_{1}-z_{2}\right| \geq 2^{-c \tau^{3}}$ for some $c<2^{68}$.

Trinomial Root Separation

Theorem (Also proved independently by Koiran)

$f(x)=a_{1} x^{e_{1}}+a_{2} x^{e_{2}}+a_{3}$ an integer trinomial with:
$\log \max \left(e_{1}, e_{2},\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right) \leq \tau$. If z_{1} and z_{2} are two distinct roots of $f(x)$ then $\left|z_{1}-z_{2}\right| \geq 2^{-c \tau^{3}}$ for some $c<2^{68}$.

Corollary

We can isolate all the real roots of trinomials in
$\tilde{O}\left(\operatorname{poly}(k, \log n) \cdot \tau^{3}\right)$ bit operations.

Rank of Symbolic Matrices and Matrix Spaces Computing Real Roots of Sparse Polynomials Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution
Overview of the Algorithm

Outline

(1) Rank of Symbolic Matrices and Matrix Spaces 1.1 Introduction and Motivation
1.2 Previous Work
1.3 Our Contributions

(2) Computing Real Roots of Sparse Polynomials

2.1 Introduction
2.2 Previous Work
2.3 Our Contribution
2.4 Overview of the Algorithm
(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Weak Covering

Definition

A weak (L, I)-covering for f is a list $\left(I_{1}, I_{2}, \ldots, I_{t}\right)$ of disjoint and sorted real intervals:

All these intervals "cover" all the real roots of f in $/$

Each interval has
length at most 2^{-L}

T_{ℓ}-Test

Polynomial $F \in \mathbb{C}[x]$, a disk $\Delta=\Delta_{r}(m) \subset \mathbb{C}$, and $K \geq 1$, define T_{ℓ}-Test:

$$
T_{\ell}(\Delta, K, F):\left|\frac{F^{(\ell)}(m) r^{\ell}}{\ell!}\right|-K \cdot \sum_{i \neq \ell}\left|\frac{F^{(i)}(m) r^{i}}{i!}\right|>0 .
$$

If T_{ℓ}-Test succeeds for any $K \geq 1$, then Δ contains exactly ℓ roots of F counted with multiplicity.

$T_{\ell^{\prime}}$-Test

Polynomial $F \in \mathbb{C}[x]$, a disk $\Delta=\Delta_{r}(m) \subset \mathbb{C}$, and $K \geq 1$, define T_{ℓ}-Test:

$$
T_{\ell}(\Delta, K, F):\left|\frac{F^{(\ell)}(m) r^{\ell}}{\ell!}\right|-K \cdot \sum_{i \neq \ell}\left|\frac{F^{(i)}(m) r^{i}}{i!}\right|>0 .
$$

If T_{ℓ}-Test succeeds for any $K \geq 1$, then Δ contains exactly ℓ roots of F counted with multiplicity.

Theorem (Becker, Sagraloff, Sharma, Yap 2018)

If both Δ and Δ^{\prime} contain ℓ roots with $\Delta \subseteq \Delta^{\prime}$ and Δ^{\prime} being sufficiently large, then $T_{\ell^{-}}$-Test succeeds on some disk D with $\Delta \subseteq D \subseteq \Delta^{\prime}$.

Our Contribution

Main Algorithm

1: Compute a weak $\left(L^{\prime},[0,1]\right)$-covering \mathcal{L} for f that is "well-separated".
2: for each interval $I \in \mathcal{L}$ do
3: $\quad \Delta \leftarrow$ Disk whose diameter is I

Main Algorithm

1: Compute a weak $\left(L^{\prime},[0,1]\right)$-covering \mathcal{L} for f that is "well-separated".
2: for each interval $I \in \mathcal{L}$ do
3: $\quad \Delta \leftarrow$ Disk whose diameter is I
4: Using $T_{\ell^{-}}$Test, count number of roots $\mu_{\Delta^{\prime}}$ in a super disk Δ^{\prime} of Δ.
5: \quad Output $\left(\Delta^{\prime}, \mu_{\Delta^{\prime}}\right)$.
6: end for

Computing a Weak Covering

- Suppose we already have a covering W^{\prime} for f^{\prime}.

1: for each consecutive intervals (a, b) and (c, d) in W^{\prime} do
2: \quad Compute signs of $f(b)$ and $f(c)$.
3: if $f(b) f(c)<0$ then

Computing a Weak Covering

- Suppose we already have a covering W^{\prime} for f^{\prime}.

1: for each consecutive intervals (a, b) and (c, d) in W^{\prime} do
2: \quad Compute signs of $f(b)$ and $f(c)$.
3: if $f(b) f(c)<0$ then
4: Refine the isolating interval (b, c) to a new interval (b^{\prime}, c^{\prime}) of desired length.
5: \quad Add $\left(b^{\prime}, c^{\prime}\right)$
6: end if
7: end for
8: Also add intervals of W^{\prime}.

Challenges

- Computing the sign of f at end points.

Challenges

- Computing the sign of f at end points.
- Refining an interval to a small length.
- T_{ℓ}-Test
\triangleright How to make sure it succeeds?
- Adapting it to the sparse case.

Based on

- Joint work with Prof. Dr. Markus Bläser.
- Publications:
\triangleright On the Complexity of Symmetric Polynomials Bläser, Markus, and Jindal, Gorav In 10th Innovations in Theoretical Computer Science Conference (ITCS) 2019.

Outline

```
11 Rank of Symbolic Matrices and Matrix Spaces
    1.1 Introduction and Motivation
    1.2 Previous Work
    1.3 Our Contributions
    (2) Computing Real Roots of Sparse Polynomials
    2.1 Introduction
    2.2 Previous Work
    2.3 Our Contribution
    2.4 Overview of the Algorithm
```

 (3) Complexity of Symmetric Polynomials
 3.1 Introduction and Motivation
 3.2 Main Results

Symmetric Polynomial Complexity

- Any symmetric Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is "easy" to compute.

Symmetric Polynomial Complexity

- Any symmetric Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is "easy" to compute.
- Lipton and Regan (Gödel's Lost Letter and $P=N P, 2009$) ask:
\triangleright Are symmetric polynomials (families) also "easy" to compute?

Polynomials and Arithmetic Circuits

- Every arithmetic circuit computes a polynomial and vice versa.

- Above circuit computes the polynomial $F \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ where $F=10 x_{3}\left(x_{1}+x_{2}\right)+x_{1}+x_{2}+x_{4}$.
- Size and depth have same definitions as in the Boolean case.

Arithmetic Complexity

Definition

The arithmetic complexity $L(f)$ of a polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is defined as the minimum size of any arithmetic circuit computing F.

- Thus $L(F) \leq 10$, where $F=10 x_{3}\left(x_{1}+x_{2}\right)+x_{1}+x_{2}+x_{4}$.

Fundamental Theorem

Theorem (Fundamental Theorem of Symmetric Polynomials)

If $g \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a symmetric polynomial, then there is a unique $f \in \mathbb{C}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ such that $g=f\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Here e_{i} 's elementary symmetric polynomials.

Fundamental Theorem

Theorem (Fundamental Theorem of Symmetric Polynomials)

If $g \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a symmetric polynomial, then there is a unique $f \in \mathbb{C}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ such that $g=f\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Here e_{i} 's elementary symmetric polynomials.

- Write symmetric polynomials always with $f_{\text {Sym }}$. Hence the bijection $f\left(e_{1}, e_{2}, \ldots, e_{n}\right)=f_{\text {Sym }}$:

$$
f \Longleftrightarrow f_{\text {Sym }} .
$$

Fundamental Theorem

Theorem (Fundamental Theorem of Symmetric Polynomials)

If $g \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a symmetric polynomial, then there is a unique $f \in \mathbb{C}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ such that $g=f\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Here e_{i} 's elementary symmetric polynomials.

- Write symmetric polynomials always with $f_{\text {Sym }}$. Hence the bijection $f\left(e_{1}, e_{2}, \ldots, e_{n}\right)=f_{\text {Sym }}$:

$$
f \Longleftrightarrow f_{\text {Sym }} .
$$

Idea

Study the connection between $L(f)$ and $L\left(f_{\text {Sym }}\right)$.

Relation between $L(f)$ and $L\left(f_{\text {Sym }}\right)$

Lemma

For all $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right], L\left(f_{\text {sym }}\right) \leq L(f)+O\left(n^{2}\right)$.

Proof.

Replace x_{i} by e_{i}, e_{i} 's can be computed a circuit of size $O\left(n^{2}\right)$.

Relation between $L(f)$ and $L\left(f_{\text {Sym }}\right)$

Lemma

For all $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right], L\left(f_{\text {Sym }}\right) \leq L(f)+O\left(n^{2}\right)$.

Proof.

Replace x_{i} by e_{i}, e_{i} 's can be computed a circuit of size $O\left(n^{2}\right)$.

- Can we also bound $L(f)$ polynomially in terms of $L\left(f_{\text {Sym }}\right)$?
\triangleright Lipton and Regan (Gödel's Lost Letter and $\mathrm{P}=\mathrm{NP}, 2009$) ask this question.

Outline

```
1. Rank of Symbolic Matrices and Matrix Spaces
    1.1 Introduction and Motivation
    1.2 Previous Work
    1.3 Our Contributions
(2) Computing Real Roots of Sparse Polynomials
    2.1 Introduction
    2.2 Previous Work
    2.3 Our Contribution
    2.4 Overview of the Algorithm
```

(3) Complexity of Symmetric Polynomials
3.1 Introduction and Motivation
3.2 Main Results

Main Theorem

Theorem

For any polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of degree d, $L(f) \leq \tilde{O}\left(d^{2} L\left(f_{\text {Sym }}\right)+d^{2} n^{2}\right)$.

- Previous best bound: $L(f) \leq 4^{n}(n!)^{2}\left(L\left(f_{\text {Sym }}\right)+2\right)$.

Main Theorem

Theorem

For any polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of degree d, $L(f) \leq \tilde{O}\left(d^{2} L\left(f_{\text {Sym }}\right)+d^{2} n^{2}\right)$.

- Previous best bound: $L(f) \leq 4^{n}(n!)^{2}\left(L\left(f_{\text {Sym }}\right)+2\right)$.

Corollary

Assuming VP \neq VNP, symmetric polynomial family $\left(q_{n}\right)_{n \in \mathbb{N}}$ defined by $q_{n} \xlongequal{\text { def }}\left(\text { per }_{n}\right)_{\text {Sym }}$ has super polynomial arithmetic complexity.

Checking Symmetries

Theorem

Checking if a given Boolean function is symmetric is as hard as CSAT.

Checking Symmetries

Theorem

Checking if a given Boolean function is symmetric is as hard as CSAT.

Theorem

Checking if a given polynomial is symmetric is as hard as PIT.

Thanks

Thank you for your attention!

Additional Material

- Non-commutative rank definition
- Alternative Proof of PTAS

Additional Material

- Rouché's Theorem
- Pellet's Theorem

Additional Material

- Symmetric Boolean functions
- Algebraic Complexity Theory
- Symmetric and elementary symmetric polynomials
- Idea for proof of $L(f) \leq \tilde{O}\left(d^{2} L\left(f_{\text {Sym }}\right)+d^{2} n^{2}\right)$

Non-commutative rank

- (c-shrunk subspace) $V \leq \mathbb{F}^{n}$ is a c-shrunk subspace of $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $\operatorname{dim}(\mathcal{B} V) \leq \operatorname{dim}(V)-c$.

Definition (Non-commutative rank)

For any matrix space $\mathcal{B} \leq \mathbb{F}^{n \times n}$, if $r=\max \{c \mid \exists c$-shrunk subspaceof $\mathcal{B}\}$ then Non-commutaive rank of $\mathcal{B}=\operatorname{ncrk}(\mathcal{B})=n-r$. Go Back

Outline

(4) Appendix

4.1 Alternative Proof of PTAS

4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials

Main Idea

- $\mathcal{B}=\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle \leq \mathbb{F}^{n \times n}$.
$\triangleright B=x_{1} B_{1}+x_{2} B_{2}+\ldots+x_{m} B_{m}$ over the field $\mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
- We have some $A \in \mathcal{B}$ with some rank r.
- Want to find $A^{\prime} \in \mathcal{B}$ with $\operatorname{rank}\left(A^{\prime}\right)>r$.
- WLOG assume $A=\left[\begin{array}{cccc}I_{r} & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ldots & 0 & 0\end{array}\right]$.
- Consider the matrix $A+B \in \mathbb{F}\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{n \times n}$. Go Back

Main idea (Continued)

$-A+B=\left[\begin{array}{cc}I_{r}+B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$.

- Suppose $B_{22}=0$ then $\operatorname{rank}(A+B)=\operatorname{rank}(B) \leq 2 r$.
$\triangleright \operatorname{rank}(A)$ is already $\frac{1}{2}$-approximation of $\operatorname{rank}(B)$.
- Otherwise $B_{22} \neq 0, c\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be a non-zero entry of B_{22}. Go Back

Main idea (Continued)

- Consider the Minor M of $A+B$ which has $c\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ as the last entry.
$\triangleright M=\left[\begin{array}{cccc}1+\ell_{11} & \ell_{12} & \cdots & a_{1} \\ \ell_{21} & 1+\ell_{22} & \cdots & a_{2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1} & b_{2} & \cdots & c\left(x_{1}, x_{2}, \ldots, x_{m}\right)\end{array}\right]_{(r+1) \times(r+1)}$
- $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)=$
$c\left(x_{1}, x_{2}, \ldots, x_{m}\right)+$ terms of degree at least 2.
\triangleright Thus easy PIT for $\operatorname{det}\left(M\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$ and hence rank increase. Go Back

Outline

(4) Appendix
4.1 Alternative Proof of PTAS
4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials

Rouché's Theorem

Theorem (Rouché's Theorem)

Let f and g be holomorphic inside some region Δ with boundary $\partial \Delta$. If $|f(z)|>|f(z)-g(z)|$ on $\partial \Delta$, then f and g have the same number of zeros inside Δ. Go Back

Pellet's Theorem

Theorem (Pellet's Theorem)

Given the polynomial

$$
f(z)=f_{0}+f_{1} x+\cdots+f_{p} x^{p}+\cdots+f_{n} x^{n} \quad \text { with } f_{p} \neq 0
$$

If the polynomial $F_{p}(x)$ defined by

$$
\begin{aligned}
F_{p}(x) \xlongequal{\text { def }} & \left|f_{0}\right|+\left|f_{1}\right| x+\cdots+\left|f_{p-1}\right| x^{p} \\
& \quad-\left|f_{p}\right| x^{p}+\left|f_{p+1}\right| x^{p}+\cdots+\left|f_{n}\right| x^{n}
\end{aligned}
$$

has two positive zeros r and $R, r<R$, then $f(x)$ has exactly p zeros in or on the circle $|x|<r$ and no zeros in the ring $r<|x|<R$. Go Back

Outline

(4) Appendix

4.1 Alternative Proof of PTAS
4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials

Symmetric Boolean Functions

Definition

A Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is said to be symmetric if it is invariant under any permutation of its inputs.

- Can a symmetric Boolean function be hard to compute?

Fact

A symmetric Boolean function only depends on the number of 1's in the input and thus can be computed by constant depth threshold circuits (complexity class TC"). Therefore "easy" to compute. Go Back

Hard Polynomial families

Goal

Find polynomial families $\left\{f_{1}, f_{2}, \ldots, f_{n}, \ldots,\right\}$ such that $L\left(f_{n}\right)$ is a super polynomial function of n.

- The permanent family defined by $\operatorname{per}_{n} \xlongequal{\text { def }} \sum_{\pi \in \mathfrak{S}_{n}} \prod_{i=1}^{n} x_{i, \pi(i)}$ is believed to be "hard".
- Known as VP vs VNP conjecture. Go Back

Outline

(4) Appendix
4.1 Alternative Proof of PTAS
4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials

Symmetric Polynomials

Definition

A polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is said to be symmetric if it is invariant under any permutation of its inputs.

Example

$x_{1}^{2}+x_{2}^{2}+x_{1} x_{2} \in \mathbb{C}\left[x_{1}, x_{2}\right]$ is symmetric whereas $x_{1}^{2}+x_{2}$ is not.

Question

Lipton and Regan (Gödel's Lost Letter and $P=N P$, 2009) ask whether we can find hard (families of) symmetric polynomials?

Go Back

Elementary Symmetric Polynomials

Definition

The $i^{\text {th }}$ elementary symmetric polynomial e_{i} in n variables x_{1}, x_{2}, \ldots, x_{n} is defined as:

$$
e_{i} \xlongequal{\text { def }} \sum_{1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq n} x_{j_{1}} \cdot x_{j_{2}} \cdots x_{j_{i}}
$$

- e_{i} 's are obviously symmetric.
- Sum and product of symmetric polynomials is also symmetric.
- Thus the polynomials in the algebra generated by e_{i} 's are also symmetric. Lipton and Regan (Gödel's Lost Letter and $\mathrm{P}=\mathrm{NP}$, 2009) ask whether we can find hard (families of) symmetric polynomials? Go Back

Main idea

Example

Suppose $f_{5 y m}=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}=e_{1}^{2}-e_{2}$. Given an arithmetic circuit for $f_{\text {Sym }}$, we want to get a circuit for $f=e_{1}^{2}-e_{2}$.

Idea

x_{1}, x_{2} are the roots of polynomial:
$B(y) \xlongequal{\text { def }} y^{2}-\left(x_{1}+x_{2}\right) y+x_{1} x_{2}=y^{2}-e_{1} y+e_{2}$. Thus:

$$
\begin{align*}
& x_{1}= \frac{e_{1}+\sqrt{e_{1}^{2}-4 e_{2}}}{2} \tag{1}\\
& x_{2}=\frac{e_{1}-\sqrt{e_{1}^{2}-4 e_{2}}}{2} \tag{2}
\end{align*}
$$

Main idea (Continued)

- If we substitute:

$$
\begin{align*}
& x_{1}=\frac{e_{1}+\sqrt{e_{1}^{2}-4 e_{2}}}{2} . \tag{3}\\
& x_{2}=\frac{e_{1}-\sqrt{e_{1}^{2}-4 e_{2}}}{2} .
\end{align*}
$$

in the circuit for $f_{\text {Sym }}$, we obtain a circuit for f. How to compute the above radical expressions?

- These are not even polynomials. Go Back

Main idea (Continued)

- Use the substitution $e_{2} \leftarrow e_{2}-1$ and then substitute x_{1} and x_{2} in $f_{\text {Sym }}\left(x_{1}, x_{2}\right)$ to obtain $f\left(e_{1}, e_{2}-1\right)$.
\triangleright But even after this $e_{2} \leftarrow e_{2}-1$, radical expressions for x_{1}, x_{2} are not polynomials.
- But they are power series (use Taylor expansion).
\triangleright We can not compute power series using arithmetic circuits.

Idea

Only need to compute degree two truncations of these power series, because f is of degree two. Go Back

