
A Deterministic PTAS for the

Algebraic Rank of Bounded Degree Polynomials

Vishwas Bhargava1, Markus Bläser2, Gorav Jindal ∗3, and Anurag Pandey4

1Rutgers University, vishwas1384@gmail.com
2Department of Computer Science, Saarland University, mblaeser@cs.uni-saarland.de

3Department of Computer Science, Aalto University, gorav.jindal@gmail.com
4Max-Planck-Institut für Informatik, apandey@mpi-inf.mpg.de

Abstract

We present a deterministic polynomial time approxima-
tion scheme (PTAS) for computing the algebraic rank of
a set of bounded degree polynomials. The notion of al-
gebraic rank naturally generalizes the notion of rank in
linear algebra, i.e., instead of considering only the linear
dependencies, we also consider higher degree algebraic
dependencies among the input polynomials.

More specifically, we give an algorithm that takes
as input a set f := {f1, . . . , fn} ⊂ F[x1, . . . , xm] of
polynomials with degrees bounded by d, and a rational

number ε > 0 and runs in time O((nmdε)O(d
2

ε) ·M(n)),
where M(n) is the time required to compute the rank of
an n×n matrix (with field entries), and finally outputs
a number r, such that r is at least (1 − ε) times the
algebraic rank of f.

Our key contribution is a new technique which al-
lows us to achieve the higher degree generalization of the
results by Bläser, Jindal, Pandey (CCC’17) who gave a
deterministic PTAS for computing the rank of a matrix
with homogeneous linear entries. It is known that a de-
terministic algorithm for exactly computing the rank in
the linear case is already equivalent to the celebrated
Polynomial Identity Testing (PIT) problem which it-
self would imply circuit complexity lower bounds (Ka-
banets, Impagliazzo, STOC’03).

Such a higher degree generalization is already
known to a much stronger extent in the non-
commutative world, where the more general case in
which the entries of the matrix are given by poly-

∗Supported by European Research Council (ERC) under the

European Unions Horizon 2020 research and innovation program
(grant agreement No 759557) and by Academy of Finland, under
grant number 310415. This work was done while the author was

a graduate student at Saarland University and the Max-Planck-
Institut für Informatik.

sized formulas reduces to the case where the entries
are given by linear polynomials using Higman’s trick,
and in the latter case, one can also compute the ex-
act rank in polynomial time (Garg, Gurvits, Oliviera,
Wigderson, FOCS’16, Ivanyos, Qiao, Subrahmanyam,
ITCS’17). Higman’s trick only preserves the co-rank,
hence it cannot be used to reduce the problem of rank
approximation to the case when the matrix entries are
linear polynomials. Thus our work can also be seen as
a step towards bridging the knowledge gap between the
non-commutative world and the commutative world.

1 Introduction

This article is a result of an exploration of three related
fundamental themes in algebra from a computational
perspective - polynomial identities, algebraic dependence
of polynomials and rank of symbolic matrices. These
are already known to be crucial in several aspects of the
theory of computation. In this introduction, we give a
brief overview of these three themes, the corresponding
naturally arising computational problems, the interrela-
tions among them and their applications to theoretical
computer science.

1.1 Polynomial identity testing. Polynomial
identities are useful and ubiquitous in mathematics and
computer science. Simple examples include the two
square identity : (a2 + b2)(x2 + y2) = (ax− by)2 + (bx+
ay)2, which can be used to show that the distance is in-
variant under a rotation of axes. Similarly the identity∑

1≤i<j≤4(xi+xj)
4 +(xi−xj)2 = 6(x21 +x22 +x23 +x24)2

was used by Liouville to show that every positive in-
teger is a sum of at most 53 fourth powers of inte-
gers. More recently, even an identity as simple as
2xy = (x + y)2 − x2 − y2 was crucial in demonstrating
the power of an approximative model of computation in

Copyright c© 2019
Copyright for this paper is retained by authors.

algebraic complexity theory [BIZ18, Kum18]. Having
an awareness of the pervasiveness of polynomial iden-
tities in mathematics, perhaps one would not be sur-
prised to discover the extent of applications of the com-
putational problem of testing if a given compact repre-
sentation of a polynomial (arithmetic circuit) is indeed
computing the identically zero polynomial. The cele-
brated Polynomial Identity Testing (PIT) question asks
that given an arithmetic circuit C computing a polyno-
mial f ∈ F[x1, . . . , xm], test if f is the zero polynomial.
The PIT problem captures several problems in algebra
and combinatorics. For example, its special case cap-
tures the perfect matching problem via the Tutte Ma-
trix [Tut47, Lov79]. The breakthrough primality testing
algorithm by Agrawal, Kayal and Saxena [AKS04] also
reduced the primality testing problem to a special case
of the PIT problem. PIT was also crucial in Shamir’s
proof of IP = PSPACE [Sha92]. Kabanets and Impagli-
azzo showed that a deterministic polynomial time algo-
rithm would imply circuit complexity lower bounds, i.e.,
either NEXP 6⊂ P/Poly or the permanent does not have
polynomial sized arithmetic circuits [KI04].

1.2 Algebraic dependence of polynomials. Al-
gebraic dependence is a fundamental concept in algebra
that captures polynomial relationships among polyno-
mials. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called
algebraically dependent over a field F if there exists a
non-zero polynomial A(y1, . . . , ym) ∈ F[y1, . . . , ym] such
that A(f1, . . . , fm) = 0 and such an A is called an anni-
hilating polynomial of f1, . . . , fm. If no such nonzero
polynomial A exists, then the given polynomials are
called algebraically independent over F.

For example, f1 = (x + y)2 and f2 = (x + y)3 are
algebraically dependent over any field, as y31 − y22 is an
annihilating polynomial. Polynomials x+y and xp+yp

are dependent over Fp, but independent over Q. The
monomials x1, x2, . . . , xn are an example of algebraically
independent polynomials over any field.

Algebraic dependence can be viewed as a general-
ization of linear dependence as the former captures alge-
braic relationships of any degree, whereas the latter cap-
tures linear relationships. Algebraic dependence shares
a few combinatorial properties (known as matroid prop-
erties, see [Oxl06]) with linear dependence. For exam-
ple, if a set of polynomials is algebraically independent
then any subset of them is algebraically independent.

The algebraic rank, also known as transcendence
degree, of a set of polynomials is defined as the maximal
number of algebraically independent polynomials and
it is well defined thanks to the matroid properties.
The concepts of rank and basis in linear algebra have
analogs here as algebraic rank and transcendence basis,

respectively.
Algebraic rank is a generalization of several natu-

ral problems in algebra and combinatorics, for example,
computing the size of the maximum matching in gen-
eral graphs is also a special case of the problem. More
generally, it is a generalization of the celebrated Polyno-
mial Identity Testing (PIT) problem, which itself gen-
eralizes several problems including the Primality Test-
ing problem. The notion of algebraic rank has been
used to make progress on PIT by helping in the hit-
ting set construction for VP [GSS18] and by being cru-
cial in solving several special cases of the PIT problem
[ASSS12, KS16], and very recently has also been used in
the famous Integer Factorization problem [ASS16]. It
has also been used to construct explicit extractors, con-
densers and dispersers for polynomial sources [DGW09],
crucial in the area of pseudorandom generators. It was
also important in proving the best known general for-
mula lower bounds for determinant [Kal85], and more
recently for proving strong lower bounds for restricted
class of arithmetic circuits [ASSS12, KS16, PSS18].

1.3 Rank of symbolic matrices. Symbolic ma-
trices, i.e., matrices with polynomial entries are another
ubiquitous objects in mathematics. Edmonds [Edm67]
was the first one who explicitly stated the problem of
computing rank of the symbolic matrix when the entries
are linear forms. Some applications of symbolic rank
computation in computer science include the algebraic
algorithm for maximum matching problem for bipartite
and general graphs [Lov79, MVV87, FGT16]. Even the
linear matroid parity problem and the linear matroid in-
tersection problem are special cases of the commutative
rank problem of symbolic matrices with linear forms as
entries (see [SV07, GS86, Orl08, Har09, GT17]). Owing
to the works of Valiant and Mahajan-Vinay, we know
that the rank computation of symbolic matrices (the de-
cision version) with linear entries is equivalent to Poly-
nomial Identity Testing (PIT) for Algebraic Branching
Programs (ABP) [Val79, MV97] which became a cen-
tral problem in complexity theory after the results of
Kabanets and Impagliazzo showing that a deterministic
algorithm for PIT would imply circuit complexity lower
bounds. When the entries are allowed to be higher de-
gree polynomials, too, the symbolic matrix rank compu-
tation also captures the computation of the rank of the
Jacobian matrix, which in turn captures the algebraic
rank problem over fields of zero characteristic via the
classical Jacobian criterion. It also captures the rank
of the Hessian matrix which like the Jacobian matrix
is pervasive in mathematics and physics. For example,
using the Katz’s dimension formula, the rank of the Hes-
sian matrix corresponds to the dimension of the dual va-

Copyright c© 2019
Copyright for this paper is retained by authors.

rieties of hypersurfaces, which is useful in studying the
determinantal complexity in the Geometric Complexity
Theory (see e.g. [HJ12, LMR10]).

1.4 A tale of three computational problems.
In this section, we give an account of the three main
computational problems relevant to the paper, each in-
spired by one of themes discussed in the above subsec-
tions. In order to discuss them more precisely, we have
to specify the representation of the input polynomials.
An arithmetic circuit is a directed acyclic graph con-
sisting of addition (+) and multiplication (×) gates as
nodes, takes variables x1, . . . , xn and field constants as
input (leaves), and outputs a polynomial f(x1, . . . , xn).
This is a succinct representation of multivariate poly-
nomials, as polynomials of high degree (or having many
monomials) can be represented by small circuits.

Problem 1.1. (PIT) Given an arithmetic circuit C
computing a polynomial f ∈ F[x1, . . . , xm], test if f is
identically zero.

Problem 1.2. (AlgRank) Given arithmetic cir-
cuits C1, . . . , Cn computing polynomials f1, . . . , fn ∈
F[x1, . . . , xm], compute algRank({f1, . . . , fn}).

Problem 1.3. (RANK) Given an n × n matrix
Q(x1, x2, . . . , xm) = (qij)n×n whose entries are given
by arithmetic circuits Cij computing polynomials
qij ∈ F[x1, . . . , xm], compute the rank of Q over
F(x1, . . . , xm).

1.4.1 Connections among the three problems.
It is clear that PIT reduces to the decision version of
RANK. In fact, it is known that the case of RANK,
where the entries are just linear forms, is strong enough
to capture PIT for algebraic branching programs (ABP)
[Val79, MV97]. It is also easy to see that PIT reduces
to the decision version of AlgRank: we can just give
our input instance to the AlgRank problem and ask
whether the algebraic rank is 0 or 1. It might happen
that the circuit was computing a non-zero constant
polynomial, in this case the algebraic rank will not be
able to certify the non-zeroness, because the algebraic
rank is still 0 in this case. However, this is an easy
case anyway, because we can test these cases beforehand
simply by evaluating the circuit on the point (0, . . . , 0)
and checking if the circuit evaluates to 0. It might be the
case that the value at (0, . . . , 0) is too large to compute,
since in the most general setting, the formal degree of
the circuit can be exponential. In this case, we can
alternatively check whether x1 · f has algebraic rank 0
or 1, where f is the polynomial computed by the circuit.

Over fields of characteristic zero, the problem

AlgRank reduces to the problem RANK via the clas-
sical Jacobian criterion:

Definition 1.1. (Jacobian) The Jacobian of polyno-
mials f = {f1, · · · , fn} ⊂ F[x1, · · · , xm] is the matrix
Jx(f) = (∂xjfi)m×n, where ∂xjfi := ∂fi/∂xj.

We state the classical Jacobian criterion [Jac41,
PSS18].

Lemma 1.1. (Jacobian criterion) Let f ⊂ F[x] be
a finite set of polynomials of degree at most d, and
algRankF f ≤ r. If char(F) = 0, or char(F) > dr, then
algRankF f = rankF(x)Jx(f).

Thus, in order to solve AlgRank for a set of poly-
nomials f, it suffices to solve RANK for the matrix
where the entries are the first order partial derivatives
of the elements in f. Now, we know that for a given
arithmetic circuit C of size s computing a polynomial
f , there exists an arithmetic circuit C ′ of size O(s) com-
puting all the first order partial derivatives of f ([BS83],
see also [SY10, Section 2.3]). Thus having a determin-
istic poly-time algorithm for computing the rank of a
matrix with entries given by arithmetic circuits, we can
solve the AlgRank problem in deterministic polyno-
mial time when the input is given as the arithmetic cir-
cuits of the set of polynomials whose algebraic rank we
want to compute.

Similarly, if the input to our AlgRank problem is
a set of polynomials with bounded degrees (say, with
an upper bound of d), the Jacobian matrix will have
entries which are polynomials with degrees bounded by
d−1. So, in order to solve the bounded degree version of
the AlgRank problem, it suffices to solve the bounded
degree version of the RANK problem.

Thus, over fields of characteristic 0, it suffices to
solve RANK in order to solve PIT and AlgRank.
In order to give a PTAS for the AlgRank problem
for bounded degree polynomials, we give a PTAS for
the RANK problem where entries of the matrix are
bounded degree polynomials. We remind the reader
that the decision version of the RANK problem in the
bounded degree case still gives an unbounded degree
PIT instance (simply recall that it is already true when
the entries were linear forms). In fact, for the RANK
and the AlgRank problem, we need such restrictions,
else we will have to solve the general PIT problem
beforehand.

1.4.2 The current status of the three prob-
lems. All of the three problems can be solved in ran-
domized polynomial time thanks to the Schwarz-Zippel
lemma [Sch80, Zip79, DL78]. For RANK, we just need

Copyright c© 2019
Copyright for this paper is retained by authors.

to evaluate our polynomials at a random point to ob-
tain a matrix of field elements, and the lemma guar-
antees that with high probability the rank of the ob-
tained matrix over the base field F would be the same
as the rank of the original matrix (over the function field
F(x1, . . . , xm)). And as we already pointed out in Sec-
tion 1.4.1, RANK is the most general of the three prob-
lems, all the three problems can be solved in randomized
polynomial time. However, a deterministic algorithm
has remained elusive for all of the three problems. For
the simplest problem among the three, i.e., the PIT
problem, we know deterministic polynomial time algo-
rithms only in special cases. For example, when the in-
put is given in the sparse representation, a deterministic
polynomial time algorithm is known [KS01]. Similarly,
if the input is a diagonal depth 3 circuit, we know a de-
terministic polynomial time algorithm [Sax08]. There
has been a plethora of works derandomizing special
cases in polynomial or quasipolynomial time. We re-
fer the reader to the excellent surveys on the problem
by Saxena [Sax09, Sax14] and Shpilka and Yehuday-
off [SY10] for a detailed account of the progress and
techniques involved in derandomizing the PIT prob-
lem. Derandomizing the RANK problem in its sim-
plest case, i.e., when the entries are just linear forms has
already proven to be very challenging. It is equivalent to
solving PIT problem for Algebraic Branching Programs
(ABPs). Only for very restricted classes of ABPs (the
so called ROABP model and its variants), we know how
to derandomize PIT ([RS05a, FS13, FSS14, GKS16]).
Recently, [BJP18] gave a derandomization for approxi-
mately computing the rank, i.e., they gave a determin-
istic PTAS for the RANK problem, when the entries
are linear forms.

1.4.3 RANK in the non-commutative world.
We point out that in the non-commutative world, sev-
eral computational problems are better understood as
compared to the commutative world. For example,
PIT for non-commutative formulas is known to be in
polynomial time [RS05b]. Moreover, exponential lower
bounds are known against non-commutative formulas
and algebraic branching programs [Nis91]. The same is
true for the RANK problem in the non-commutative
world. Here, Garg, Gurvits, Oliviera, and Wigder-
son [GGOW16] and Ivanyos, Qiao, and Subrahmanyam
[IQS17], gave a deterministic polynomial time algorithm
for the RANK problem when the entries of the ma-
trices are linear forms. In fact, they also solved the
RANK problem when the entries are given by formu-
las, because in the non-commutative world, the case in
which the entries are given by formulas reduces to the
case in which the entries are given by linear forms us-

ing Higman’s trick ([Hig40], see [GGOW15, Appendix
A.1]). One would be tempted to use the same trick
for the commutative rank and then use the determin-
istic PTAS for linear forms case given by [BJP18] to
have a deterministic PTAS for the case in which the
entries are given by formulas. Unfortunately, this trick
does only preserves the co-rank. Hence, it is not use-
ful for computing an approximation of the rank in the
general RANK problem, since it enlarges the size of
the matrix. Another interesting fact is that in the case
when the entries are linear forms, we know that the
non-commutative rank (see [GGOW15] for a definition)
is at most twice the commutative rank [FR04]. Thus,
an algorithm for the non-commutative rank gives a 1/2-
approximation for the commutative rank when the en-
tries are linear forms. Here, one would be tempted to
claim that even when the entries are given by formu-
las, we get a 1/2-approximation for the commutative
rank using the known exact algorithms for the non-
commutative rank. This also does not work unfortu-
nately. The following very simple example denies any
such possibilities when entries compute higher degree
polynomials.

Let f = xy − yx. Consider, the following 1 × 1
matrix Q,

Q =
[
f
]
.

Notice that the non-commutative rank of Q is 1,
but the commutative rank is 0. This gap can be made
arbitrarily large by simply taking a diagonal matrix with
all the diagonal entries being xy− yx. Thus, in general,
we cannot approximate the commutative rank with non-
commutative rank.

Thus, there is a huge knowledge gap that we are
observing between the commutative world and the
non-commutative world with respect to the RANK
problem. On the one hand, we have polynomial time
algorithms for exact rank computation in the non-
commutative world even when the entries are given by
formulas, whereas in the commutative case, all we have
is a deterministic PTAS, that only works in the case
when the entries of the matrix are linear forms. No
deterministic PTAS was known even when the entries
of the matrix are given by quadratic forms. In this work,
we solve precisely a more general version of this, i.e., we
give a deterministic PTAS in the case when the entries
are given by polynomials whose degrees are bounded
by an arbitrary constant, hence taking another step
towards bridging this knowledge gap between the two
worlds.

Copyright c© 2019
Copyright for this paper is retained by authors.

2 Our Results

In this paper, we give the first deterministic polynomial
time approximation scheme (PTAS) for the RANK
problem under the restriction that the entries of the
matrix are bounded degree polynomials. We give a new
technique which allows us to achieve generalizations to
higher degrees of the results of [BJP18], who gave a
PTAS for the RANK problem when the entries were
linear forms.

We need to formalize the setup of the problem and
fix some notations to formally state our main result.

Consider a matrix Q(x1, x2, . . . , xm) = (qij)n×n
of size n × n, the entries qij of which are polynomials
of degrees bounded by some constant d in the variables
x = (x1, x2, . . . , xm). We want to compute the rank
of Q over the rational function field F(x1, x2, . . . , xm).
In fact, it suffices to consider the case when the entries
are homogeneous forms of degree d (see Appendix A).

To this end, we define the following problem.

Problem 2.1. Given a matrix Q(x1, x2, . . . , xm) =
(qij)n×n of size n × n, the entries qij of which are
homogeneous forms of constant degree d, compute the
rank of Q over F(x1, x2, . . . , xm).

Since the degrees of the polynomials in the entries are
bounded by a constant d, we can assume that they are
given explicitly as the list of coefficients.

As stated above in Section 1.4.2, this problem
has a very simple randomized algorithm. But we
want deterministic algorithms to compute the rank of
Q. We know that finding deterministic algorithms for
Problem 2.1 is hard. Thus in this paper, we consider
whether one can approximate rank(Q) deterministically.
Following is the main contribution of this paper.

Theorem 2.1. (PTAS for RANK) Given Q as in
Problem 2.1 over a field F with |F| > nd and a constant
0 < ε < 1, there exists a deterministic algorithm which
computes an assignment (λ1, λ2, . . . , λm) ∈ Fm such
that

rank(Q(λ1, λ2, . . . , λm))

≥ (1− ε) rank(Q(x1, x2, . . . , xm)).

This algorithm runs in time O

(
(nmd)

O
(
d2

ε

)
·M(n)

)
,

where M(n) is the time required to compute the rank of
an n× n matrix over F.

Clearly, the above running time is polynomial when d
is a constant.

Now we see that it suffices to solve Problem 2.1 for
ε being a constant, as this implies the general case via

tensoring. That is, for an n×n matrix Q of Problem 2.1,
we can tensor Q with itself to get an n2×n2 size matrix,
where rank(Q)2 = rank(Q ⊗ Q). Also, if Q has degree
d entries, then Q⊗Q has degree 2d entries. Thus, if we
tensor k times we get a matrix of size nk×nk with entries
of degree dk and rank (rank(Q))k. If we get a (1 − ε)
approximation to this rank, then taking the kth root of
this value is a (1 − ε)

1
k -approximation to the original

rank. As this is approximately (1 − ε
k), it follows that

we can get a pretty good approximation this way. By
this method, we get a trade-off between the degree and
the approximation parameter. That is, if an algorithm
finds a 1− ε approximation of the rank when the entries
are degree dk polynomials, then this algorithm can be
used to find a (1− ε

k) approximation of the rank when
the entries are degree d polynomials. This reduction
also shows that at least a linear dependence on d in the
exponent is essentially required for this problem, even
for ε = O(1), as otherwise via tensoring we can solve
PIT non-trivially fast. We remark that our algorithm
directly tackles the problem of 1−ε rank approximation
without using this tensoring idea.

Since we have already established in the previous
section that AlgRank reduces to RANK using the
Jacobian criterion, it is obvious that the deterministic
PTAS for AlgRank under the restriction that the
input polynomials are of bounded degree is an easy
consequence of the above stated result.

Theorem 2.2. (PTAS for AlgRank) Given a set
f := {f1, . . . , fn} ⊂ F[x1, . . . , xm] of polynomials of
degrees bounded by a constant d with char(F) = 0,
and a rational number ε > 0, there is a determin-
istic algorithm that outputs a number r, such that
r ≥ (1 − ε) · algRank(f). The algorithms runs in time

O

(
(nmd)

O
(
d2

ε

)
·M(n)

)
, where M(n) is the time re-

quired to compute the rank of an n× n matrix over F.

Again, the above algorithm is a polynomial time algo-
rithm when d is a constant.

2.1 Comparison with the techniques of
[BJP18]. The PTAS for the linear case in [BJP18]
greedily increased the rank starting with the zero ma-
trix, and the proof of correctness of the algorithm rested
on the guarantee that when we are unable to increase
the rank greedily, we are already done, i.e. the cur-
rent matrix already has the desired approximation of
the rank. The main component of the proof of this
guarantee was a refined analysis of the so-called Wong
sequence which are defined for matrix spaces and a ma-
trix with entries as linear forms can be interpreted as
a matrix space. [BJP18] introduced a novel notion of

Copyright c© 2019
Copyright for this paper is retained by authors.

Wong index. It was shown in [BJP18] that if the Wong
index of a matrix is “high” then this matrix is a good
approximation of the commutative rank. If the Wong
index of a matrix is “low” then it was shown in [BJP18]
that one can find a matrix of higher rank efficiently.

The limitation of the techniques in [BJP18] is that
the Wong sequences are defined and studied only in the
case of matrix spaces and a correspondence between
the matrix spaces and matrix with higher degree (non-
linear) polynomials does not exist. So, for the higher
degree case, it is not clear how to define a notion of a
Wong sequence and hence the techniques of [BJP18] do
not generalize. Thus, one needs to find a new technique
to deal with the higher degree case. This is precisely
what we do in this paper. We find a new way to
analyze the low degree components of the minors of the
matrix obtained in the greedy step (see Section 4 for
the main proof ideas), which allows us to use the same
algorithm strategy as in [BJP18] for higher degree forms
as well. It can be shown that the Wong index of [BJP18]
corresponds to the degree of the least degree monomial
of a suitable minor.

2.2 Organization of paper. In the next sec-
tion, we define some notations and recall some linear-
algebraic tools that will be useful for us. In Section 4,
we discuss our main idea and give an overview of the
proof strategy. Section 5 contains the technical details
of the proof. We present our commutative rank algo-
rithm in Section 6. We conclude with some discussion
and open questions in Section 7. Appendix A contains
the reduction of the arbitrary case to the homogeneous
case.

3 Preliminaries

In the following, we present some of the definitions and
tools which are used frequently in this paper. When we
speak of a matrix polynomial, we mean a matrix with
polynomials as entries.

1. For an r×r matrix A ∈ Fr×r, we use A
ij
∧ to denote

the sub-matrix of A obtained by removing the ith

column and the jth row.

2. Ir is used to denote the r × r identity matrix.

3. For a polynomial f , homk(f) denotes the homoge-
neous degree k part of f .

4. We also use the same notation homk(M) to denote
the homogeneous degree k part of a matrix poly-
nomial M . Note that homk(M) is also a matrix
polynomial.

5. For a polynomial f , ord(f) is used to denote the
degree of the least degree monomial in f . We use
the same notation ord(M) for matrix polynomials
M also. Notice that ord(f) and ord(M) are just
natural numbers.

Definition 3.1. (Characteristic Polynomial)
For an r × r matrix A, its characteristic polynomial
pA(t) is defined as:

pA(t)
def

==== det(tI −A) = p0t
r + p1t

r−1 + · · ·+ pr.

Note that in Definition 3.1, p0 = 1 is always true.

Fact 3.1. Over all fields, for any r × r matrix A,
det(A) = (−1)rpA(0) = (−1)rpr.

Definition 3.2. (Adjoint) For an r×r matrix A, the
adjoint adj(A) is also an r×r matrix whose (i, j)th entry
is (−1)i+j det(A

ij
∧).

Theorem 3.1. For a square r × r matrix L, define

qL(t)
def

==== pL(t)−pL(0)
t . Over all fields, we have the

following equality for adj(L):

(3.1) adj(L) = (−1)r+1qL(L).

Proof. Here we only prove this claim for F = C but it
is true for all fields. We use the following facts:

1. If L is non-singular, then adj(L) = det(L)L−1.

2. The Cayley-Hamilton theorem, which states that
for any L, pL(L) = 0.

3. The set GLr of non-singular matrices is dense
(under the Euclidean topology) in the set Fr×r of
all the matrices.

We first prove the claim when L is non-singular. Let
pL(t) = p0t

r + p1t
r−1 + · · · + pr. By using the Cayley-

Hamilton theorem, we have the following equality:

(3.2) p0L
r + p1L

r−1 + · · ·+ pr = 0.

Since L is non-singular, we multiply by L−1 on both
the sides of Equation (3.2). Thus

p0L
r−1 + p1L

r−2 + . . . pr−1 = −prL−1

= (−1)r+1 det(L)L−1

= (−1)r+1 adj(L).(3.3)

Note that qL(L) = p0L
r−1+p1L

r−2+ · · ·+pr−1. There-
fore Equation (3.3) implies adj(L) = (−1)r+1qL(L).

Now notice that Equation (3.1) is an equation where
entries of the matrices on both sides are polynomials
in the entries of L. Now the claim follows using the
denseness of GLr in Fr×r. �

Copyright c© 2019
Copyright for this paper is retained by authors.

Theorem 3.2. For a square r×r matrix L with pL(t) =
p0t

r+p1t
r−1 + · · ·+pr, the following equality holds over

any field:

adj(I + L) =

r−1∑
i=0

(−1)ipi ·

r−i−1∑
j=0

(−L)j

 .

Proof. First we compute the characteristic polynomial
pI+L of I + L. We have:

pI+L(t) = det(tI − (I + L))

= det((t− 1)I − L))

= pL(t− 1).

Thus we have,

qI+L(t)
def

====
pI+L(t)− pI+L(0)

t

=
pL(t− 1)− pL(−1)

t

=

r∑
i=0

pr−i · ((t− 1)i − (−1)i)

t

=

r∑
i=1

pr−i ·

i−1∑
j=0

(−1)j(t− 1)i−j−1

 .

Therefore,

adj(I + L) = (−1)r+1qI+L(I + L)

= (−1)r+1
r∑
i=1

pr−i ·

i−1∑
j=0

(−1)j(L)i−j−1

= p0(I − L+ · · ·+ (−L)r−1)

− p1(I − L+ . . . (−L)r−2)

+ · · ·+ (−1)r−1pr−1(I)

=

r−1∑
i=0

(−1)ipi ·

r−i−1∑
j=0

(−L)j

 . �

Next come some easy facts from linear algebra.

Fact 3.2. Let F be any field. If A is an n×n matrix of
rank r over F, then there exist two n × n non-singular
matrices P,R ∈ Fn×n such that:

(3.4)

Ir 0

0 0

()
r rows

n− r rows

r columns

n− r columns

PAR =

Fact 3.3. Let F be any field and let M be a matrix of

the following form over F:

(3.5)

L B
A C

()
r rows

n− r rows

r columns

n− r columns

M =

Also, let rank(
[
A C

]
) = a and

rank

([
B
C

])
= b. Then rank(M) ≤ r + min(a, b).

Lemma 3.1. If |F| > nd, then we can construct a
hitting set Hm,d,` of size O((m(d+1))`) for the set Fm,d,`
of polynomials defined by:

Fm,d,`
def

==== {f ∈ F[x1, . . . , xm] | deg(f) ≤ d, ord(f) ≤ `}.

Proof. Let f ∈ Fm,d,`. Since ord(f) ≤ `, there exists a
non-zero monomial xi1 · xi2 · . . . xi` of f . The variables
xij need not be distinct here. We first do a brute force
search for these ` variables by making all the other m−`
variables zero. This can be done using

(
m
`

)
= O(m`)

assignments. Now we are left with a polynomial f ′ of
degree d in at most ` variables. By using Schwartz-
Zippel lemma [Zip79, Sch80], we can find a non-zero
assignment of f ′ using (d + 1)` assignments. Thus
there exists a hitting set of size O(m` · (d + 1)`) =
O((m(d+ 1))`). �

4 Main proof ideas

Here we explain the main idea used in devising the de-
sired algorithm claimed in Theorem 2.1. Since Theo-
rem 2.1 is essentially a generalization of [BJP18], a di-
rect approach seems to be converting a matrix of degree
d forms to a matrix of linear forms (using the equiva-
lence of ABPs and determinants, see [MV97]). How-
ever, such a direct approach (although it preserves non-
zeroness) gives no information about the rank of the
matrix.

So, instead of directly reducing an instance of
Problem 2.1 to an instance of linear forms case as in
[BJP18], we follow the high level approach of [BJP18] of
greedily increasing the rank of Q starting with the zero
matrix. Suppose we have found λ1, λ2, . . . , λm such
that rank(Q(λ1, λ2, . . . , λm)) = r. We want to find an
assignment of the form (x1 +λ1, x2 +λ2,, xm +λm)
such that rank(Q(x1 + λ1, x2 + λ2,, xm + λm)) > r.
This step of finding a matrix of bigger rank is called a
rank increasing step. Under this transformation (xi →
xi + λi), we have the following equality:

(4.6) Q(x1 + λ1, x2 + λ2,, xm + λm)

= Q(λ1, λ2, . . . , λm) +Qd(x1, x2, . . . , xm).

Copyright c© 2019
Copyright for this paper is retained by authors.

Here Qd(x1, x2, . . . , xm) is some matrix whose entries
are polynomials of degree at most d. By using Fact 3.2,
we know that there exists non-singular matrices P,R ∈
Fn×n such that:

P ·Q(λ1, λ2, . . . , λm) ·R =

[
Ir 0
0 0

]
.

Now consider the following equation:

P ·Q(x1 + λ1, x2 + λ2,, xm + λm) ·R(4.7)

= P ·Q(λ1, λ2, . . . , λm) ·R
+ P ·Qd(x1, x2, . . . , xm) ·R.

Since P,R are non-singular, we know that

rank(Q(x1 + λ1, x2 + λ2,, xm + λm))

= rank(P ·Q(x1+λ1, x2+λ2,, xm+λm) ·R).

Thus it is enough to find an assignment to the variables
x1, . . . , xm such that

rank(P ·Q(x1 + λ1, x2 + λ2,, xm + λm) ·R) > r.

The following Lemma 4.1 is easy to verify.

Lemma 4.1. For any (λ1, λ2, . . . , λm) ∈ Fm,

rank(Q(x1, x2, . . . , xm))

= rank(Q(x1 + λ1, x2 + λ2,, xm + λm))

= rank(P ·Q(x1 + λ1, x2 + λ2,, xm + λm) ·R).

Proof. We assume that |F| > dn. Now suppose that
s = max{rank(Q(λ1, . . . , λm)) | (λ1, . . . , λm) ∈ Fm}
and r = rank(Q(x1, x2, . . . , xm)). We want to
show that s = r. We know that there exists a non-zero
r× r minor Mr of Q(x1, x2, . . . , xm). Notice that Mr is
a polynomial of degree at most rd ≤ nd. Thus by the
Schwartz-Zippel lemma [Zip79, Sch80], there exists (λ1,
λ2, . . . , λm) ∈ Fm such that Mr(λ1, λ2, . . . , λm) 6= 0.
Therefore s ≥ r. The other direction is trivial.

This also implies that

rank(Q(x1, x2, . . . , xm))

= rank(Q(x1 + λ1, x2 + λ2,, xm + λm))

= r.

This is because there is a bijection from Fm to Fm given
by xi 7→ xi +λi. This last equality is trivial because we
only multiply by non-singular matrices P and R. �

By using Lemma 4.1, we can omit P,R in the
discussion of our rank increasing step. Thus we can
assume that:

Q(λ1, λ2, . . . , λm) =

[
Ir 0
0 0

]
.

We want to ensure that at least one of the following two
scenarios happens.

1. We can “easily” find an assignment of the
form (x1 + λ1, x2 + λ2,, xm + λm) such that
rank(Q(x1 + λ1, x2 + λ2,, xm + λm)) > r. This
is our rank increasing step. “Easily” here means in
time O((nmd)O(dε)) deterministically.

2. r ≥ (1 − ε) · rank(Q(x1, x2, . . . , xm)), i.e., we are
already done.

We decompose Q(x1 + λ1, x2 + λ2,, xm + λm) as:
(4.8)

Q(x1 + λ1, x2 + λ2,, xm + λm) =

[
Ir + L B
A C

]
.

We write L = L1 + · · · + Ld, where Li is a matrix
whose entries are homogeneous polynomials of degree
i. Similarly we decompose A,B,C into Ai, Bi, Ci. In
other words, we have Ls = homs(L), As = homs(A),
Bs = homs(B), and Cs = homs(C).

We now describe when the first of the two scenar-
ios described above happens. When is the condition
“rank(Q(x1 + λ1, x2 + λ2, . . . , xm + λm)) > r” true? It
happens when there exists a non-zero (r + 1) × (r + 1)
minor of Q(x1 + λ1, x2 + λ2,, xm + λm). Consider a
sub-matrix Mk,` of Q(x1 +λ1, x2 +λ2,, xm+λm) of
size (r+ 1)× (r+ 1) obtained by taking Ir +L, the kth

row of A, the `th column of B, and also the (k, `)thentry
of C. Thus Mk,` looks like below:

(4.9) Mk,` =

1 + l11 l12 . . . l1r b1
l12 l22 . . . l2r b2
...

...
. . .

...
...

lr1 lr2 . . . 1 + lrr br
a1 a2 . . . ar c

 .

Here lij is the (i, j)th entry of L. To ensure
rank(Q(x1 +λ1, x2 +λ2, . . . , xm+λm)) > r, we want to
find an assignment to the xi’s such that ∃k, ` ∈ [n − r]
satisfying det(Mk,`) 6= 0.

How to find an assignment to the xi’s such that
det(Mk,`) 6= 0? Note that det(Mk,`) is a poly-
nomial of degree at most (r + 1)d in the variables
x = (x1, x2, . . . , xm). Suppose det(Mk,`) has a non-zero
monomial of some constant degree s then we can eas-
ily (see Lemma 3.1) find an assignment to the xi’s such
that det(Mk,`) 6= 0. To check if det(Mk,`) has a non-
zero monomial of degree s, we just need to analyze
homs(det(Mk,`)). This is our overall strategy. There-
fore the scenarios described above can be reformulated
as below.

1. For an appropriately chosen s (depending upon d
and ε), ∃k, ` ∈ [n − r] such that det(Mk,`) has a
non-zero monomial of degree at most s. In this
case, we can “easily” find an assignment to the

Copyright c© 2019
Copyright for this paper is retained by authors.

xi’s such that det(Mk,`) 6= 0. This ensures that
Q(x1 + λ1, x2 + λ2, . . . , xm + λm) > r. This is our
rank increasing step.

2. ∀k, ` ∈ [n− r], det(Mk,`) has no non-zero monomi-
als of degree at most s. In this case, we show that
r ≥ (1− ε) · rank(Q(x1, x2, . . . , xm)).

To analyze homs(det(Mk,`)), it is useful to find a com-
pact expression for det(Mk,`). We now give such a
compact expression for det(Mk,`). In whatever fol-
lows, we use the symbol a to denote the row vector[
a1 a2 . . . ar

]
, symbol b to denote the column

vector
[
b1 b2 . . . br

]t
and

pL(t)
def

==== p0t
r + p1t

r−1 + · · ·+ pr.

Lemma 4.2. Let Mk,` be as in Equation (4.9). Then
we have the following equality:

det(Mk,`) = −a· (adj(Ir + L)) · b + c · (det(Ir + L)).

Proof. By Laplace expansion, we know that the follow-
ing equality holds for det(Mk,`):∑
1≤i≤r

(−1)i+rai ·

 ∑
1≤j≤r

(−1)j+r−1 · bj · det((Ir + L)
ij
∧)

+ c · (det(Ir + L))

= −
∑

1≤i,j≤r

aibj(−1)i+j det((Ir + L)
ij
∧)

+ c · (det(Ir + L))

= −
∑

1≤i,j≤r

aibj(adj(Ir + L))ij + c · (det(Ir + L))

= −a · adj(Ir + L) · b + c · (det(Ir + L))

= det(Mk,`). �

Lemma 4.3. Let Mk,` be as in Equation (4.9). Then
the following equality holds for det(Mk,`):

(4.10)

det(Mk,`) = −a·

r−1∑
i=0

(−1)ipi ·

r−i−1∑
j=0

(−L)j

 · b
+ c · (p0 − p1 + · · ·+ (−1)rpr).

Proof. By using Fact 3.1 we know that for any matrix
A of size r × r, det(A) = (−1)rpA(0). Now observe
that pIr+L(t) = pL(t − 1). Thus det(Ir + L) =
(−1)rpL(−1) = (p0−p1 + · · ·+(−1)rpr). Now the claim
follows by using Lemma 4.2 and Theorem 3.2. �

Corollary 4.1. If M is the (n − r) × (n − r) ma-
trix polynomial having the polynomial det(Mu,v) as its

(u, v)th-entry for all 1 ≤ u, v ≤ n−r, then the following
equality holds for M :

(4.11) M = −A ·

r−1∑
i=0

(−1)ipi ·

r−i−1∑
j=0

(−L)j

 ·B
+ (p0 − p1 + · · ·+ (−1)rpr) · C.

Proof. It immediately follows from Lemma 4.3. �

By using Corollary 4.1, it is easy to observe the
following Lemma 4.4.

Lemma 4.4. There are k, ` ∈ [n − r] such that
homs(det(Mk,`)) 6= 0 if and only if homs(M) 6= 0.

5 The proof: analyzing the degree

In this section, we formally describe the idea described
sketched in Section 4. Here we want to analyze the
homogeneous degree s component homs(M) of M in
Corollary 4.1. Recall that pL(t) = p0t

r+p1t
r−1+· · ·+pr.

In Corollary 4.1, the coefficient of pi is the sum of powers
of (−L) up to r− i−1. Thus, if we only want to analyze
the degree s component homs(M) of M for some s < r

2 ,
then we only need to consider pi and (−L)i for i < r

2 . To
this end, we use the following notations in this section:

T
def

====

d r2 e∑
j=0

(−L)j ,

f
def

==== −p1 + · · ·+ (−1)d
r
2 epd r2 e.

Theorem 5.1. Suppose s ∈ N is such that the condi-
tion 1 ≤ s ≤b r2c − 1 holds. Then we have that:

homs(M) = −homs((ATB − C) · (p0 + f))

= −homs((ATB − C) · (1 + f)).

Proof. We use the fact that for 0 ≤ k ≤ r, we have
ord(pk) ≥ k and ord(Lk) ≥ k. Thus to obtain the
homogeneous degree s part in Corollary 4.1, it is enough
to consider the pi and Li with i ≤ s. Using 1 ≤
s ≤b r2c − 1, we obtain that r − 1 − s ≥ r − b r2c = d r2e.
Therefore the claimed equality follows. �

By using Theorem 5.1, we see that hom1(M) = C1 and
hom2(M) = C2 + C1 hom1(f) − A1B1. Extending this
argument, we observe the following equality.

(5.12) − homs(M) = homs(ATB − C)

+

s−1∑
i=1

homi(f) · homs−i(ATB − C).

With the aid of Equation (5.12), it is easy to prove the
following Theorem 5.2.

Copyright c© 2019
Copyright for this paper is retained by authors.

Theorem 5.2. Suppose s ∈ N is such that the condi-
tion 1 ≤ s ≤b r2c − 1 holds. If hom`(M) = 0 for all
` ∈ [s], then hom`(ATB − C) = 0 for all ` ∈ [s].

Proof. We prove it by induction on `. For the base case
` = 1, we have hom1(M) = −hom1(ATB − C). For
the induction step, consider for ` + 1 ≤ s. By using
Equation (5.12), we have that

(5.13) − hom`+1(M) = hom`+1(ATB − C)

+
∑̀
i=1

homi(f) · hom`+1−i(ATB − C).

By induction hypothesis, we have homk(ATB−C) = 0
for all k ∈ [`]. Therefore we obtain that:∑̀

i=1

homi(f) · hom`+1−i(ATB − C) = 0.

Thus −hom`+1(M) = hom`+1(ATB − C) = 0. �

Let us now further reformulate the two scenarios we
described above.

1. If hom`(M) 6= 0 for some ` ∈ [s] then we can imple-
ment our rank increasing step due to Lemma 4.4.

2. If hom`(M) = 0 for all ` ∈ [s] then Theorem 5.2
gives us a set of conditions on matrices A,B,C, T .
We will show that these conditions on A,B,C, T
can be used to bound rank(Q(x1, x2, . . . , xm)).

The rest of this section analyzes the condition “∀` ∈
[s] : hom`(ATB − C) = 0” and gives an upper bound
on rank(Q(x1, x2, . . . , xm)) in terms of r. In
whatever follows, we use A to denote the (n − r) ×
rd matrix

[
A1 A2 . . . Ad

]
and B to denote the

rd× (n−r) matrix
[
Bt1 Bt2 . . . Btd

]t
. To simplify

the notation, define Rs to be the rd × rd block matrix
(composed of d2 blocks of size r×r) whose (i, j)th block
is homs−(i+j)(T). (We here use the convention that
hom`(T) = 0 if ` < 0.)

5.1 Analyzing the degree s ≤ d.

Lemma 5.1. For all s ≥ 1, homs(ATB) = A ·Rs · B.

Proof. We have

homs(ATB) =

d∑
i=1

d∑
j=1

Ai homs−(i+j)(T)Bj

= A ·Rs · B. �

Corollary 5.1. Suppose r ∈ N is such that the con-
dition 1 ≤ d ≤b r2c − 1 holds. If homs(M) = 0 for all
s ∈ [d] then Cs = A ·Rs · B for all s ∈ [d].

Proof. It immediately follows from Theorem 5.2 and
Lemma 5.1. �

We use the notations

M1
def

====
[
A C

]
(n−r)×n and

M2
def

====

[
B
C

]
n×(n−r)

in whatever follows.

Lemma 5.2. Suppose r ∈ N is such that the condition
1 ≤ d ≤b r2c − 1 holds. If homs(M) = 0 for all s ∈ [d]
then the following inequalities are true:

rank(M1) ≤ rank(A), rank(M2) ≤ rank(B).

Proof. By using Corollary 5.1, we have the following
equality:

(5.14) C =

d∑
i=1

Ci = A · (
d∑
i=1

Ri) · B

Let N1 be the rd×n matrix whose first r columns form
the matrix (

[
Ir Ir . . . Ir

]t
)r×rd and whose last

n − r columns are the matrix (
∑d
i=1Ri) · B. Now the

following Equation (5.15) follows from Equation (5.14):

(5.15) M1 =
[
A C

]
(n−r)×n = A ·N1.

Thus rank(M1) ≤ rank(A). Let N2 be the n ×
rd matrix whose first r rows form the matrix[
Ir Ir . . . Ir

]
r×rd and last n − r rows are the

matrix A · (
∑d
i=1Ri). The following equality Equa-

tion (5.16) follows from Equation (5.14):

(5.16) M2 =

[
B
C

]
n×(n−r)

= N2 · B.

Thus rank(M2) ≤ rank(B). �

5.2 Analyzing the higher degrees.

Lemma 5.3. If s ∈ N is such that the condition
1 ≤ s ≤ d r2e is true, then we have homs(T) =

−
∑d−1
i=1 Li homs−i(T).

Proof. Since 1 ≤ s, we can safely ignore the term I
in the summation in the definition of T , since it has
degree 0. Since s ≤ d r2e, we can also add the term

(−L)d
r
2 e+1, since it will not contribute to homs(T)

either. Therefore, we have

homs(T) = homs

(
−L(I − L+ . . .

· · ·+ (−L)d
r
2 e−1 + (−L)d

r
2 e)

+ (−L)d
r
2 e+1

)
= homs(−LT).

Now the claim follows. �

Copyright c© 2019
Copyright for this paper is retained by authors.

Lemma 5.4. If s ∈ N is such that the condition d+ 2 ≤
s ≤ d r2e+ 2 holds, then we have Rs = ERs−1, where

E
def

====

−L1 −L2 . . . −Ld
Ir 0 . . . 0

0 . . .
. . .

...
0 0 Ir 0

rd×rd

.

Proof. It immediately follows from Lemma 5.3. �

Theorem 5.3. Suppose s ∈ N is such that the condi-
tion d + 1 ≤ s ≤ b r2c − 1 holds. If homi(M) = 0 for
all i ∈ [s] then A · Rd+1 · B = A · ERd+1 · B = . . . =
A · Es−d−1 ·Rd+1 · B = 0.

Proof. By using Theorem 5.2, we know that
hom`(ATB−C) = 0 for all ` ∈ [s]. Since deg(C) ≤ d, we
get that ∀i ∈ {d+1, . . . , s}, homi(ATB) = 0 = A·Ri ·B.
Now the theorem follows by using the recursive formu-
lation of Ri proved in Lemma 5.4. �

Notice that the r× r matrix Ld is non-singular because
there is an assignment λ1, λ2, . . . , λm to the variables
of Ld which makes Ld(λ1, λ2, . . . , λm) = Ir. (Since Q
is homogeneous of degree d, Ld equals the upper-right
r × r-submatrix of Q.) Therefore Ld as a matrix with
polynomial entries is also non-singular. This implies
that E is also non-singular because Ld is.

Lemma 5.5. (Lemma 5.3 in [BJP18]) Let B ∈ Fn×n
and

(5.17)

B11 B12

B21 B22

()
r rows

n− r rows

r columns

n− r columns

B =

Consider the following sequence of matrices
B22, B21B12, B21B11B12, . . . , B21B

j
11B12 . . . If the

first k ≥ 1 elements in this sequence are equal
to the zero matrix and B11 is non-singular, then
rank(B12) ≤ r

k or rank(B21) ≤ r
k .

Theorem 5.4. If the conditions in Theorem 5.3 are
true, then rank(M1) ≤ dr

s−d+1 or rank(M2) ≤ dr
s−d+1 .

Proof. By using Theorem 5.3, we know that

A ·Rd+1 · B = A · ERd+1 · B = . . .

· · · = A · Es−d−1 ·Rd+1 · B = 0.

Consider the (n + r(d − 1)) × (n + r(d − 1)) matrix S
whose whose first rd rows and first rd columns form the
matrix E. The last n − r rows form the matrix A and

the last n− r columns form the matrix Rd+1B and the
remaining entries are zero. Thus we have:

S =

[
E Rd+1B
A 0

]
.

Now we apply Lemma 5.5 with B11 = E and B12 =
Rd+1B and B21 = A. This implies that rank(A) ≤
dr

s−d+1 or rank(Rd+1B) ≤ dr
s−d+1 . Note that Rd+1 looks

like below:

Rd+1 =

∗ ∗ . . . ∗ Ir

∗
... ∗ Ir 0

... ∗ Ir 0
...

∗ Ir 0 . . . 0
Ir 0 . . . 0 0

 .

In particular, Rd+1 is non-singular. Thus
rank(Rd+1B) = rank(B). Now the claim follows
from Lemma 5.2. �

Corollary 5.2. If the conditions in Theorem 5.3 are
true then we have:

rank(Q(x1, x2, . . . , xm)) ≤ r +
dr

s− d+ 1

≤ r
(

1 +
d

s− d+ 1

)
.

Proof. Recall that

Q(x1 + λ1, x2 + λ2,, xm + λm) =

[
Ir + L B
A C

]
.

By using Fact 3.3 and Theorem 5.4, we obtain
that rank(Q(x1 + λ1, x2 + λ2,, xm + λm)) ≤
r
(

1 + d
s−d+1

)
. Now the claim follows by using

Lemma 4.1. �

6 Final algorithm

Let us recall our strategy once again. We have shown
above that at least one of the following conditions holds:

1. If d+ 1 ≤ s ≤ b r2c − 1 and hom`(M) 6= 0 for some
` ∈ [s], then our rank increasing step succeeds.

2. Otherwise, we have rank(Q(x1, x2, . . . , xm)) ≤
r
(

1 + d
s−d+1

)
by Corollary 5.2.

Thus if we choose s large enough then our rank increas-
ing step succeeds, otherwise r is already a good approx-
imation of rank(Q(x1, x2, . . . , xm)) by Corollary 5.2.
This leads to the following Algorithm 1, which is a natu-
ral greedy algorithm and it tries to increase the current
rank as long as it can.

Theorem 6.1. (Theorem 2.1 restated)

Algorithm 1 runs in time O((mnd)
d
ε + (mdε)

2d2+2d
ε) ·

Copyright c© 2019
Copyright for this paper is retained by authors.

Algorithm 1 Greedy algorithm for (1− ε)-approximating commutative rank

Input: A n× n matrix Q(x1, x2, . . . , xm) = (qij)n×n whose entries qij are homogeneous polynomials of degree d
in the variables x = (x1, x2, . . . , xm). An approximation parameter 0 < ε < 1.

Output: λ1, λ2, . . . , λm ∈ F such that rank(Q(λ1, λ2, . . . , λm)) ≥ (1− ε) rank(Q(x1, x2, . . . , xm)).
1: ` ← ddε − 1e
2: λ ← (λ1, λ2, . . . , λm) such that rank(Q(λ1, λ2, . . . , λm)) ≥ 2`+ 2
. This is just to satisfy the condition d+ 1 ≤ s ≤ b r2c − 1 assumed in Corollary 5.2.

3: while Rank is increasing do
4: Check if there exist (µ1, µ2, . . . , µm) ∈ Hm,nd,` such that

rankQ(µ1 + λ1, µ2 + λ2,, µm + λm) > rank(Q(λ1, λ2, . . . , λm)).
5: if rank(Q(µ1 + λ1, µ2 + λ2,, µm + λm)) > rank(Q(λ1, λ2, . . . , λm)) then
6: λ ← λ+ µ
7: end if
8: end while
9: return λ

n ·M(n)) and returns λ1, λ2, . . . , λm ∈ F such that
rank(Q(λ1, λ2, . . . , λm)) ≥ (1 − ε) rank(Q(x1, x2, . . . ,
xm)). Here M(n) is the time required to compute the
rank of an n× n matrix over F.

Proof. Let (λ1, λ2, . . . , λm) be the assignment returned
by Algorithm 1 and r = rank(Q(λ1, λ2, . . . , λm)).
We have `=ddε − 1e. We know that homi(M) = 0 for
i ∈ [`], otherwise line 4 would succeed in increasing
the rank of Q(λ1, λ2, . . . , λm). Here M is the
matrix defined in Corollary 4.1. By using Corollary 5.2,

we obtain that rank(Q) ≤ r
(

1 + d
`−d+1

)
. Thus r ≥(

1− d
`+1

)
rank(Q). By using `=ddε − 1e, we know that

`+ 1 ≥ d
ε . Therefore r ≥ (1− ε) rank(Q).

The desired running time can also be proved easily.
By using Lemma 3.1 on Hm,d(2`+2),d(2`+2), the running

time of line 2 is O((md`)2d`+2d ·M(n)). The outer while
loop runs at most n times, thus the total running time is
at most n times the running time of one iteration. The
running time of one iteration is at most O((m`(nd +
1)`M(n)). Thus the claimed bound on total running
time follows. �

7 Discussion and Open Problems

One can study the variants of Theorem 2.1 when the
entries are polynomial sized formulas/circuits, however,
the following lemma implies that it is at least as hard
as PIT for formulas/circuits respectively.

Lemma 7.1. (PIT is a prerequisite) For any ε >
0, given an oracle access to approximation of the com-
mutative rank of matrix Q, whose entries are from a
circuit class C in time t. We can do PIT for circuit
class C in time t.

Proof. Suppose we want to test if f ∈ C is identically

zero polynomial. Consider the following matrix Q.

Q =
[
f
]

If f 6= 0, then the rank of Q is 1 and any ε-
approximation (ε > 0) will output a positive number.
Thus, just by checking if the output is positive or zero
we can infer if f is identically zero or not. �

Since derandomizing PIT for general circuits is
believed to be a hard problem and will imply circuit
lower bounds, a natural restriction to this question of
computing commutative rank when entries of matrix
come from classes where PIT is already known. In
particular, when the entries of the matrix are sparse
polynomials or sum of powers of linear forms. We
leave this as an open question. Stated differently,
can we approximate algebraic rank of a set of sparse
polynomials?

Our current techniques do not give anything on
this, primarily because our technique of increasing
the rank by finding a non-zero assignment of different
homogeneous components breaks down. Concretely, if
Q is a matrix with sparse entries then homs(M) might
not be sparse. See Section 5 and Theorem 5.1 for more
details.

Also, over finite fields, one could study the approx-
imation of algebraic rank. The best known complexity
of this is AM ∩ co-AM by Guo et al. [GSS18]. Can we
do anything better than AM∩ co-AM for approximating
the algebraic rank over finite fields?

References

[AKS04] Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena. PRIMES is in P. Annals
of Mathematics, pages 781–793, 2004.

[ASS16] Manindra Agrawal, Nitin Saxena, and

Copyright c© 2019
Copyright for this paper is retained by authors.

Shubham Sahai Srivastava. Integer Fac-
toring Using Small Algebraic Dependen-
cies. In 41st International Symposium
on Mathematical Foundations of Computer
Science (MFCS 2016), volume 58 of Leib-
niz International Proceedings in Informat-
ics (LIPIcs), pages 6:1–6:14, 2016.

[ASSS12] M. Agrawal, C. Saha, R. Saptharishi, and
N. Saxena. Jacobian hits circuits: Hitting-
sets, lower bounds for depth-D occur-k
formulas & depth-3 transcendence degree-
k circuits. In Proceedings of the 44th
ACM Symposium on Theory of Computing
(STOC), pages 599–614, 2012.

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and
Jeroen Zuiddam. On algebraic branch-
ing programs of small width. J. ACM,
65(5):32:1–32:29, 2018.

[BJP18] Markus Bläser, Gorav Jindal, and Anurag
Pandey. A deterministic PTAS for the
commutative rank of matrix spaces. Theory
of Computing, 14(3):1–21, 2018.

[BS83] W. Bauer and V. Strassen. The complexity
of partial derivatives. Theoretical Computer
Science, 22(3):317–330, 1983.

[DGW09] Zeev Dvir, Ariel Gabizon, and Avi Wigder-
son. Extractors and rank extractors for
polynomial sources. Computational Com-
plexity, 18(1):1–58, 2009.

[DL78] Richard A DeMillo and Richard J Lipton.
A probabilistic remark on algebraic pro-
gram testing. Information Processing Let-
ters, 7(4):193–195, 1978.

[Edm67] Jack R. Edmonds. Systems of distinct
representatives and linear algebra. J. Res.
Nat. Bur. Standards Sect. B, 71:241–245,
1967.

[FGT16] Stephen A. Fenner, Rohit Gurjar, and
Thomas Thierauf. Bipartite perfect match-
ing is in quasi-NC. In Proceedings of the
48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, pages
754–763, 2016.

[FR04] Marc Fortin and Christophe Reutenauer.
Commutative/noncommutative rank of lin-
ear matrices and subspaces of matrices of
low rank. Séminaire Lotharingien de Com-
binatoire, 52:B52f, 2004.

[FS13] Michael A. Forbes and Amir Shpilka.
Quasipolynomial-time identity testing of
non-commutative and read-once oblivious
algebraic branching programs. In Proceed-
ings of the 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Sci-
ence, FOCS ’13, pages 243–252, Washing-
ton, DC, USA, 2013. IEEE Computer So-
ciety.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi,
and Amir Shpilka. Hitting sets for mul-
tilinear read-once algebraic branching pro-
grams, in any order. In Proceedings of
the Forty-sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, pages
867–875, New York, NY, USA, 2014. ACM.

[GGOW15] Ankit Garg, Leonid Gurvits, Rafael
Oliveira, and Avi Wigderson. Operator
scaling; theory and applications. CoRR,
abs/1511.03730, 2015.

[GGOW16] A. Garg, L. Gurvits, R. Oliveira, and
A. Wigderson. A deterministic polynomial
time algorithm for non-commutative ratio-
nal identity testing. In 57th IEEE Annual
Symposium on Foundations of Computer
Science (FOCS), pages 109–117, Oct 2016.

[GKS16] Rohit Gurjar, Arpita Korwar, and Nitin
Saxena. Identity testing for constant-
width, and commutative, read-once obliv-
ious abps. In Proceedings of the 31st
Conference on Computational Complexity,
CCC’16, volume 50 of LIPIcs, pages 29:1–
29:16, 2016.

[GS86] Harold N. Gabow and Matthias F. M.
Stallmann. An augmenting path algorithm
for linear matroid parity. Combinatorica,
6(2):123–150, 1986.

[GSS18] Zeyu Guo, Nitin Saxena, and Amit Sinhab-
abu. Algebraic dependencies and PSPACE
algorithms in approximative complexity.
In Proceedings of the 33rd Computational
Complexity Conference, CCC ’18, volume
102 of LIPIcs, pages 10:1–10:21, 2018.

[GT17] Rohit Gurjar and Thomas Thierauf. Lin-
ear matroid intersection is in quasi-NC.
In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Com-
puting, STOC 2017, pages 821–830, 2017.

Copyright c© 2019
Copyright for this paper is retained by authors.

[Har09] Nicholas JA Harvey. Algebraic algo-
rithms for matching and matroid problems.
SIAM Journal on Computing, 39(2):679–
702, 2009.

[Hig40] Graham Higman. The units of group-rings.
Proceedings of the London Mathematical
Society, 2(1):231–248, 1940.

[HJ12] Uffe Heide-Jørgensen. On the determi-
nantal complexity of the 2-hook-immanant.
PhD Dissertation, Department of Mathe-
matics, Aarhus University, 2012.

[IQS17] Gábor Ivanyos, Youming Qiao, and
K Venkata Subrahmanyam. Constructive
non-commutative rank computation is in
deterministic polynomial time. Computa-
tional Complexity, 26:1–33, 2017.

[Jac41] C. G. J. Jacobi. De determinantibus
functionalibus. J. Reine Angew. Math.,
22(4):319–359, 1841.

[Kal85] K. A. Kalorkoti. A Lower Bound for the
Formula Size of Rational Functions. SIAM
J. Comp., 14(3):678–687, 1985. (Confer-
ence version in ICALP 1982).

[KI04] Valentine Kabanets and Russell Impagli-
azzo. Derandomizing polynomial identity
tests means proving circuit lower bounds.
Computational Complexity, 13(1-2):1–46,
2004.

[KS01] Adam R. Klivans and Daniel Spielman.
Randomness efficient identity testing of
multivariate polynomials. In Proceedings of
the Thirty-third Annual ACM Symposium
on Theory of Computing, STOC ’01, pages
216–223, New York, NY, USA, 2001. ACM.

[KS16] Mrinal Kumar and Shubhangi Saraf. Arith-
metic circuits with locally low algebraic
rank. In 31st Conference on Computa-
tional Complexity, CCC 2016, volume 50
of LIPIcs, pages 34:1–34:27, 2016.

[Kum18] Mrinal Kumar. On top fan-in vs formal de-
gree for depth-3 arithmetic circuits. CoRR,
abs/1804.03303, 2018.

[LMR10] Joseph M Landsberg, Laurent Manivel,
and Nicolas Ressayre. Hypersurfaces with
degenerate duals and the geometric com-
plexity theory program. arXiv preprint
arXiv:1004.4802, 2010.

[Lov79] László Lovász. On determinants, match-
ings, and random algorithms. In Proc.
2nd Internat. Conf. Fundamentals of Com-
putation Theory (FCT’79), pages 565–574,
1979.

[MV97] Meena Mahajan and V. Vinay. A com-
binatorial algorithm for the determinant.
In Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms,
SODA ’97, pages 730–738, Philadelphia,
PA, USA, 1997. Society for Industrial and
Applied Mathematics.

[MVV87] Ketan Mulmuley, Umesh V Vazirani, and
Vijay V Vazirani. Matching is as easy
as matrix inversion. In Proceedings of
the nineteenth annual ACM symposium on
Theory of computing, pages 345–354. ACM,
1987.

[Nis91] Noam Nisan. Lower bounds for non-
commutative computation (extended ab-
stract). In Cris Koutsougeras and Jef-
frey Scott Vitter, editors, Proceedings of
the 23rd Annual ACM Symposium on The-
ory of Computing, May 5-8, 1991, New
Orleans, Louisiana, USA, pages 410–418.
ACM, 1991.

[Orl08] James B. Orlin. A fast, simpler algo-
rithm for the matroid parity problem. In
Proc. 13th Internat. Conf. on Integer Pro-
gramming and Combinatorial Optimization
(IPCO’08), volume 5035 of Lecture Notes
in Comp. Sci., pages 240–258. Springer,
2008.

[Oxl06] James G Oxley. Matroid theory, volume 3.
Oxford university press, 2006.

[PSS18] Anurag Pandey, Nitin Saxena, and Amit
Sinhababu. Algebraic independence over
positive characteristic: New criterion
and applications to locally low-algebraic-
rank circuits. Computational Complexity,
27:617–670, 2018.

[RS05a] Ran Raz and Amir Shpilka. Determin-
istic polynomial identity testing in non-
commutative models. computational com-
plexity, 14(1):1–19, Apr 2005.

[RS05b] Ran Raz and Amir Shpilka. Determin-
istic polynomial identity testing in non-
commutative models. Computational Com-
plexity, 14(1):1–19, 2005.

Copyright c© 2019
Copyright for this paper is retained by authors.

[Sax08] Nitin Saxena. Diagonal circuit identity
testing and lower bounds. In International
Colloquium on Automata, Languages, and
Programming, pages 60–71. Springer, 2008.

[Sax09] N. Saxena. Progress on Polynomial Identity
Testing. BEATCS, (90):49–79, 2009.

[Sax14] Nitin Saxena. Progress on polynomial iden-
tity testing-ii. In Perspectives in Computa-
tional Complexity, pages 131–146. Springer,
2014.

[Sch80] Jacob T. Schwartz. Fast probabilistic algo-
rithms for verification of polynomial iden-
tities. J. ACM, 27(4):701–717, 1980.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM,
39(4):869–877, 1992.

[SV07] F. Bruce Shepherd and Adrian Vetta. The
demand-matching problem. Math. Oper.
Res., 32(3):563–578, 2007.

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic
Circuits: A survey of recent results and
open questions. Foundations and Trends in
Theoretical Computer Science, 5(3-4):207–
388, 2010.

[Tut47] William T Tutte. The factorization of lin-
ear graphs. Journal of the London Mathe-
matical Society, 1(2):107–111, 1947.

[Val79] L. G. Valiant. Completeness classes in alge-
bra. In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing,
STOC ’79, pages 249–261, New York, NY,
USA, 1979. ACM.

[Zip79] Richard Zippel. Probabilistic algorithms
for sparse polynomials. In Proc. Symbolic
and Algebraic Comput. (EUROSAM’79),
volume 72 of Lecture Notes in Comp. Sci.,
pages 216–226. Springer, 1979.

A A PTAS for general degree d polynomials

We have demonstrated a PTAS above for the rank
of an n × n matrix Q(x1, x2, . . . , xm) whose entries
are homogeneous degree d polynomials in the variables
x1, x2, . . . , xm. But entries being homogeneous polyno-
mials is not a restriction. Here we show that even if the
entries of Q are general degree d polynomials, we can
still use our algorithm to approximate the rank of Q.
For a polynomial f ∈ F[x1, x2, . . . , xm] of degree at most

d, the homogenization fH of f is a homogeneous poly-
nomial of degree d in F[x1, x2, . . . , xm, y]. More specif-

ically, fH is defined as fH
def

====
∑d
i=0 homi(f) · yd−i.

We can extend this definition to matrix polynomials in
the obvious way. More precisely, the homogenization
QH(x1, x2, . . . , xm, y) of a given matrix polynomial

Q(x1, x2, . . . , xm) is defined as (QH)ij
def

==== (Qij)
H .

Thus to homogenize a matrix, we just homogenize all
its entries.

Lemma A.1. If Q(x1, x2, . . . , xm) is matrix with its
entries being polynomials of degree at most d in the
variables x1, x2, . . . , xm and |F| > dn+1 then rank(Q) =
rank(QH).

Proof. It is clear that rank(Q) ≤ rank(QH) because
QH(x1, x2, . . . , xm, 1) = Q(x1, x2, . . . , xm). Now sup-
pose that rank(QH) = r. Thus there exists a non-
zero r × r minor Mr of QH . Notice that Mr is
a homogeneous polynomial of degree at most rd ≤
nd in the variables x1, x2, . . . , xm, y. Thus by using
the Schwartz-Zippel lemma [Zip79, Sch80], there ex-
ist scalars (λ1, λ2, . . . , λm, µ) ∈ Fm+1 with the property
that Mr(λ1, λ2, . . . , λm, µ) 6= 0. Here µ can be assumed
to be non-zero as |F| > dn + 1. Since Mr is homoge-
neous, µ 6= 0 and Mr(λ1, λ2, . . . , λm, µ) 6= 0, we get that

Mr

(
λ1

µ ,
λ2

µ , . . . ,
λm
µ , 1

)
6= 0. Thus Mr would be a non-

zero minor in Q as well. Hence rank(Q) ≥ rank(QH).
Therefore rank(Q) = rank(QH). �

Copyright c© 2019
Copyright for this paper is retained by authors.

	Introduction
	Polynomial identity testing.
	Algebraic dependence of polynomials.
	Rank of symbolic matrices.
	A tale of three computational problems.
	Connections among the three problems.
	The current status of the three problems.
	RANK in the non-commutative world.

	Our Results
	Comparison with the techniques of bjp16toc.
	Organization of paper.

	Preliminaries
	Main proof ideas
	 The proof: analyzing the degree
	Analyzing the degree sd.
	Analyzing the higher degrees.

	Final algorithm
	Discussion and Open Problems
	A PTAS for general degree d polynomials

