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Zeros of Sparse Polynomials

Univariate polynomials over R

f = a0 + a1x + · · ·+ adx
d , ai ∈ R, degree d .

Sparsity, k := the number of non-zero coefficients of f .

We say that a polynomial f is sparse, when k � d .

A lot of polynomials that naturally occur in theory and practice are sparse.

Real zeros (roots) of polynomials: interesting from the point of view of both theory
and application in science, engineering and mathematics.

Goal: Understanding the number of real zeros of sparse polynomials and generalizations.
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Does less terms imply fewer zeros?

Descartes’1637 rules of signs: Bounds the number of non-zero real roots

I Looks at number of sign changes in the coeff. seq. (ad , ad−1, . . . , a0) := S(f (x)).

I Number of positive real roots of f , Z>0(f (x)) is upper bounded by S(f (x))

I Z>0(f (x)) ≤ S(f (x)) ≤ k − 1

I Z<0(f (x)) ≤ S(f (−x)) ≤ k − 1.

Total number of non-zero real zeros (with multiplicities), Z(f ) is bounded by 2k − 2.

Generalizations?

Kushnirenko’70s: topological complexity vs algebraic complexity.

I Coined the term ”fewnomials”for sparse polynomials.

I Initiated the study of system of sparse multivariate polynomial equations.

I Notable works by Khovanskii, Bihan and Sottile.
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Real Tau Conjecture

Real Tau Conjecture [Koiran’11]

Consider Sums of Products of Sparse polynomials

f =
m∑
i=1

t∏
j=1

fij ,

where sparsity of fij ≤ k. Then Z(f ) is bounded by poly(mkt).

another conjecture where algebraic complexity dictates topological complexity.

Implies superpoly lower bound on circuit complexity of permanent polynomial.

The algebraic analog of the P 6= NP.
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Understanding the real tau conjecture

Briquel-Bürgisser: Real Tau conjecture is true on average
.
f =

∑m
i=1

∏t
j=1 fij , sparsity of fij ≤ k. When the coefficients of fij are all independent

gaussian variables, then the expected number of real zeros is bounded by O(mk2t).

What about the worst case?

Descartes’ bound gives O(mk t).

We don’t completely understand the simplest non-trivial case, i.e. the case of fg + 1.

I Descartes’ bound gives O(k2).

I It’s not known whether it’s tight. Is it O(k)?
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Problem tackled in this work

We aim to improve the understanding of number of real roots of sparse polynomials.

Towards this end, we study the number of zeros of a random sparse polynomial.

We solve the problem completely when the coefficients are independent standard
normal random variables.

S = {e1, . . . , ek} ⊆ N. We consider the polynomial fS =
∑k

i=1 aix
ei , where ai ’s are

independent standard normals.

fS : a k-sparse random polynomial supported on S ⊆ N, |S | = k.

zRS : expected number of real roots of fS .

Sufficient to consider zS := z
(0,1)
S : expected number of real roots of fS in (0, 1).

Find zS : the expected number of real zeros of fS in (0, 1)
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Relevant Works

Kac’43: The dense case

If S = {0, 1, 2, . . . , d} then

zR
∗

S =
2

π
log(d) + C1 +

2

dπ
+ O

(
1

d2

)
,C1 ≈ 0.6257358072 . . . .

Edelman-Kostlan’95: A geometric derivation

For S = {e1, . . . , e`} ⊆ N, define vS(t) := (te1 , te2 , . . . , te`). For I ⊆ R, we have:

z IS =
1

π

∫
I

√
(‖vS(t)‖2 · ‖v ′S(t)‖

2
)2 − (vS(t) · v ′S(t))2

(‖vS(t)‖2)2
dt.

Bürgisser, Ergür and Tonelli-Cueto’18: Sparse case

Let S ⊆ N be any set as above with |S | = k then we have

zS ≤
1

π

√
k log(k).
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Summary of results

Main result: Upper bound

Let S ⊆ N be any set as above with | S |= k, then we have zS ≤ 2
π

√
k − 1.

Main result: asymptotically matching lower bound

There exists a sequence of sets Sk ⊆ N, Sk = {0, 1, 221

, 222

, . . . , 22k−1

} with |Sk | = k + 2,

such that for k ≥ 3, zSk ≥
π−
√

3
16π

√
k + 1

7
.

Recovering the bound in the dense case

If S = {0, 1, 2, . . . , n} then zS ≤ 3
4

log2(n).

Roots concentrated around 1

For a fixed ε > 0 and any S ⊆ N with |S | = k, we have

z
(0,1−ε)
S ≤ 1

2π

(
log

(
2

ε

)
+

4√
ε
− 4

)
.
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Proof Technique

Main technical contribution: a reformulation of the integral by Edelman-Kostlan

Edelman-Kostlan

z IS =
1

π

∫
I

√
(‖vS(t)‖2 · ‖v ′S(t)‖

2
)2 − (vS(t) · v ′S(t))2

(‖vS(t)‖2)2
dt.

Key insight: Above integral can be rewritten as a function of (‖vS(t)‖2)2.

For a set S = {e1, e2, . . . , ek} ⊆ N, we define

gS(t) := (‖vS(t)‖2)2 =
k∑

i=1

t2ei

Then we have the following equalities: vS(t) = (te1 , te2 , . . . , tek )

vS(t) · v ′S(t) =
k∑

i=1

ei t
2ei−1 =

g ′S(t)

2

(
∥∥v ′S(t)

∥∥
2
)2 =

1

4
g ′′S (t) +

1

4t
g ′S(t)
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For all sets S ⊆ N let us define

I (gS(t)) :=
g ′′S (t)

gS(t)
−
(
g ′S(t)

gS(t)

)2

+
g ′S(t)

tgS(t)
.

Then we have the following reformulation:

Reformulaion of Edelman-Kostlan

For all sets S ⊆ N , we have the following equality for z IS

z IS =
1

2π

∫
I

√
I (gS(t))dt,

Strength: Allows us to bound zS1]S2 in terms of zS1 and zS2 .

We can build the set S starting from a singleton while controlling the growth of zS
throughout.

Proposition: For singleton sets S , we have I (gS) = 0 =⇒ zS = 0.
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I (gS1]S2 ) = I (gS1 + gS2 )

=
g ′′S1

+ g ′′S2

gS1 + gS2

−
(
g ′S1

+ g ′S2

gS1 + gS2

)2

+
1

t

(
g ′S1

+ g ′S2

gS1 + gS2

)
=

gS1

gS1 + gS2

·I (gS1 ) +
gS2

gS1 + gS2

·I (gS2 ) +
1

gS1gS2

(
gS1gS2

′ − gS2gS1
′

gS1 + gS2

)2

Incrementally increasing the sparsity

Let S ⊆ N be a set with 0 ∈ S and |S | = k. If a ∈ N is such that a > max(S) then

zS∪{a} ≤ zS +
1

π
arctan

(
1√
k

)

√
I (gS∪{a}(t)) =

√√√√gS ·I (gS)

gS + g{a}
+

g{a} ·I (g{a})

gS + g{a}
+

1

gSg{a}

(
g ′{a}gS − g ′Sg{a}

gS + g{a}

)2

≤
√

I (gS(t)) + 0 +

√√√√ 1

gSg{a}

(
g ′{a}gS − g ′Sg{a}

gS + g{a}

)2
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Proof Sketch

Since g ′{a}gS − g ′Sg{a} > 0 in (0, 1), we have

zS∪{a} = zS +
1

2π

1∫
0

1
√
gSg{a}

(
g ′{a}gS − g ′Sg{a}

gS + g{a}

)
dt

Now we use the substitution u =
√

g{a}
gs

to obtain

1∫
0

1
√
gSg{a}

(
g ′{a}gS − g ′Sg{a}

gS + g{a}

)
dt = 2

β∫
α

(
1

1 + u2

)
du

where α =
√

g{a}(0)

gs (0)
= 0 and β=

√
g{a}(1)

gs (1)
= 1√

k
. Hence, we have

zS∪{a} ≤ zS +
1

π
arctan

(
1√
k

)
.
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Finishing the proof..

Proposition: For all sets S of size two, zS = 1
4
.

Thus, starting with a set of size 2, we may always add the highest element
iteratively and obtain that

zS ≤
1

4
+

1

π

k−1∑
i=2

arctan

(
1√
i

)

We use the following well-known inequality

arctan(x) < x for all x > 0.

This implies that

zS −
1

4
≤ 1

π

k−1∑
i=2

1√
i
≤ 1

π

∫ k−1

1

√
1

x
dx

=
2

π
(
√
k − 1− 1).
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Summary of results

Upper bound

Let S ⊆ N be any set as above with | S |= k, then we have zS ≤ 2
π

√
k − 1.

Asymptotically matching lower bound

There exists a sequence of sets Sk ⊆ N, Sk = {0, 1, 221

, 222

, . . . , 22k−1

} with |Sk | = k + 2,

such that for k ≥ 3, zSk ≥
π−
√

3
16π

√
k + 1

7
.

Recovering the bound in the dense case

If S = {0, 1, 2, . . . , n} then zS ≤ 3
4

log2(n).

Roots concentrated around 1

For a fixed ε > 0 and any S ⊆ N with |S | = k, we have z
(0,1−ε)
S ≤ 1

2π

(
log
(

2
ε

)
+ 4√

ε
− 4
)

Thanks for your attention :)
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