
Arithmetic Circuit Complexity of Division and
Truncation

Pranjal Dutta* Gorav Jindal† Anurag Pandey‡ Amit Sinhababu§

Abstract

Given polynomials f , g, h ∈ F[x1, . . . , xn] such that f = g/h, where both g and h
are computable by arithmetic circuits of size s, we show that f can be computed by
a circuit of size poly(s, deg(h)). This solves a special case of division elimination for
high-degree circuits (Kaltofen’87 & WACT’16). The result is an exponential improvement
over Strassen’s classic result (Strassen’73) when deg(h) is poly(s) and deg(f) is exp(s),
since the latter gives an upper bound of poly(s, deg(f)).

Further, we show that any univariate polynomial family (fd)d, defined by the initial
segment of the power series expansion of rational function gd(x)/hd(x) up to degree d
(i.e. fd = gd/hd mod xd+1), where circuit size of g is sd and degree of gd is at most d, can
be computed by a circuit of size poly(sd, deg(hd), log d). We also show a hardness result
when the degrees of the rational functions are high (i.e. Ω(d)), assuming hardness of the
integer factorization problem.

Finally, we extend this conditional hardness to simple algebraic functions as well,
and show that for every prime p, there is an integral algebraic power series with its
minimal polynomial satisfying a degree p polynomial equation, such that its initial
segment is hard to compute unless integer factoring is easy, or a multiple of n! is easy to
compute. Both, integer factoring and computation of multiple of n!, are believed to be
notoriously hard. In contrast, we show examples of transcendental power series whose
initial segments are easy to compute.

1 Introduction

An arithmetic circuit over an underlying field F is a natural model that represents a polyno-
mial compactly (for definition see Appendix A). Arithmetic circuit complexity is the study
of complexity (in terms of circuit size) of computing polynomial families. In this paper, we
study two important questions in arithmetic circuit complexity. The first question is about
the power of division in arithmetic circuits. The second question is about arithmetic circuit
complexity of univariate polynomial families, defined by initial segments of various power
series.

*Chennai Mathematical Institute (& CSE, IIT Kanpur), India. Email: pranjal@cmi.ac.in
†Graduiertenkolleg "Facets of Complexity/Facetten der Komplexität" (GRK 2434) (& Institut für Mathematik,

Technische Universität Berlin), Germany. Email: gorav.jindal@gmail.com
‡Saarland University, Saarland Informatics Campus, Saarbrücken, Germany. Email:

anurag.pandey3113@gmail.com
§Aalen University, Germany. Email: amitkumarsinhababu@gmail.com

1

Complexity of division. In a classic result [Str73], Strassen showed that a polynomial
f (x1, . . . , xn) of degree d, computed by an arithmetic circuit of size s using division, can also
be computed by a division-free arithmetic circuit (i.e. only using addition and multiplication
gates) of size poly(s, d).

Note that, arithmetic circuits can compute polynomials that have exponential degree
wrt its size. For example, g(x) := x2s − 1, has O(s)-size circuit. Now, if we divide it by
h(x) := x− 1, we get the polynomial f (x) := 1 + x + · · ·+ x2s−1. Strassen [Str73] gives an
exp(s)-size upper bound on the complexity of f (x), whereas it is easy to see that f (x) can be
computed by just a poly(s)-size circuit (see Remark 3.1). This leads to the following natural
question.

Problem 1.1 ([Kal87, Problem 5]). If a polynomial can be computed by an arithmetic circuit (with
division) of size s, can it be computed by a division-free arithmetic circuit of size poly(s)?

This question is still open [Wac] and it is unclear whether we should expect a positive
answer. One can push the division gate at the top and show that if f has a s-size circuit
(with division gates) then there exist polynomials g and h such that f = g/h, where both g
and h have poly(s)-size circuits. However, deg(f), deg(g) and deg(h) can be exp(s), and it is
not clear how to eliminate this division gate at the top without incurring exponential blowup.
In fact, the division elimination method, due to Strassen [Str73], leads to an exponential
blowup in size (see Section 1.3).

Even a special case of eliminating division is open, when f = g/x2s
, and deg(g) and

deg(f) are exp(s), but g has a s-size circuit. Solving this case would resolve a couple of
interesting questions in algebraic complexity. We briefly discuss some of these implications
in Section 4.

Complexity of truncated power series. The second part of the paper studies the complexity
of families of univariate polynomials, defined by the initial segments (equivalently, truncation)
of a power series. Power series are ubiquitous in all branches of mathematics. From the
perspective of computer science, they are quite crucial because of their pervasiveness
in enumeration and combinatorics. Efficient methods to compute truncations of power
series allows us to compute number sequences emerging in enumerative combinatorics
like Fibonacci numbers, Catalan numbers, and Bell numbers; thanks to the generating
functions (see [Pak18] for a survey). It also facilitates approximations of several irrational and
transcendental numbers of interest, for example: e, π,

√
2, and ζ(3). The relation between

truncations of power series and the theory of formal languages and context-free grammars,
and the theory of codes is also well studied (see, for instance, [LS78; BR88]). In complexity
theory, computing truncations of power series has been crucial in results on polynomial
factorization [DSS18], division elimination in circuits [Str73], complexity of symmetric
polynomials [BJ19], and complexity of algebraic functions [KT78].
Easy and hard univariate families. A univariate polynomial family (fd)d, where fd has degree
d, is called easy to compute, if there is a poly(log d)-size circuit computing fd, otherwise we
call it a hard family. Some examples of easy families are, fd := xd, fd := ∑i∈[d] ir xi, where
r ∈ N (see [GS80]). A candidate hard family is the Pochhammer-Wilkinson polynomial
fd := ∏i∈[d] (x + i), for if it turns out to be easy, it would imply that integer factorization is
also easy [Lip94; Bür09].

One of the ultimate goals in algebraic complexity is to characterize "easy" and "hard"
polynomial families (by showing explicit bounds). Can we give interesting examples of easy

2

univariate polynomial families that can be defined via truncation of power series? Let us
again look at the polynomial family fd := 1 + x + · · ·+ xd; this has a O(log d)-size circuit
(Remark 3.1). Interestingly, it is also the initial segment of the power series expansion of
1/(1− x). In contrast, [Lip78] showed that there exists a power series with 0− 1 coefficients
such that their initial segments are hard. In fact, some of the famous candidate hard
univariate polynomial families are those corresponding to initial segments of transcendental
power series, for instance, fd := ∑d

i=0 xi/i!, and fd := ∑i∈[d](−1)ixi/i, the truncations of
ex and log(1 + x) respectively. Their hardness is known to imply that permanent requires
superpolynomial size constant-free circuits, which implies the constant-free version of
Valiant’s hypothesis (the algebraic analog of P 6= NP hypothesis) [Bür09].

This motivates our second problem.

Problem 1.2. Characterize (differentiate "easy" and "hard") polynomial families (fd(x)), defined by
the initial segment (upto degree d) of a power series ∑i≥0 ai xi .

Since the truncation of 1/(1− x) is easy to compute, as a natural first step towards
the above Problem 1.2, we explore the complexity of initial segments of general rational
functions g(x)/h(x). Note that, rational function truncation is interesting, as any power
series truncation up to some degree matches with a unique rational function (of given
numerator and denominator degree) given by Padé approximation and this arises in many
symbolic computational problems.

Subsequently, we study the complexity of initial segments of algebraic power series
(eg.
√

1 + x), and its connections to the central problems in algebraic complexity theory. Also,
the examples of truncations of ex and log(1 + x) make us wonder whether all transcendental
power series are likely to be hard. Towards this, we study truncations of transcendental
power series as well.

Remark 1.1. Very recently, [DST21] introduced the notion of SOS-hardness (in the sum-of-
squares (SOS) representation). A family (fd)d is SOS-easy if it can be written as fd =

∑i∈[s] ci g2
i , for ci ∈ F such that ∑i |gi|0 = O(d1/2), where |gi|0 denotes the sparsity or

the number of monomials in gi. Otherwise, fd is a SOS-hard family. The minimal SOS-
representation captures its SOS-complexity. For formal definitions, refer to Section 8. [DST21]
showed that the SOS-hard families are innately connected to proving VP 6= VNP (for
definitions, see Appendix A). Throughout the paper, we will talk about easy/hard families
wrt. both the measures (circuit complexity and SOS-complexity1).

1.1 Our contributions

In this work, we make progress towards both Problems Problem 1.1 and Problem 1.2.
Towards the division problem, we show the following Theorem 1.1. For more details, see
Section 3 (Theorem 3.2 and Theorem 3.3).

Theorem 1.1 (Division by low-degree polynomial). Suppose, f , g, h are polynomials in
F[x1, . . . , xn] such that f = g/h. Then, f can be computed by an arithmetic circuit of size

1Although there are polynomial families like fd := ∑d
i=0 xi, which are easy wrt. both the measures (see

Lemma B.3), in general, connection between these notions is unclear. Eg. fd := (x + 1)d is a candidate SOS-hard
family, but has O(log d)-size circuit. Conversely, a random d1/2-sparse polynomial is trivially SOS-easy but
requires ω(log d)-size circuit.

3

poly(s1, s2, dh), where s1 (respectively, s2) is the circuit complexity of g (respectively h), and dh is the
degree of h.

Remark 1.2. 1. This result also holds when one replaces the circuit-size by approximative
circuit-size; see Section 3.3 for details.

2. When s1, s2 ≤ s, deg(h) = poly(s), and deg(f) = exp(s), our result is exponentially
better than Strassen’s division elimination [Str73] as the latter gives exp(s) upper
bound.

Cofactor of a low-degree factor. If a multivariate polynomial f = gh, has size s, with gcd(g, h) =
1, and deg(g) = poly(s), then [Kal87] showed that g has a poly(s)-size circuit. Invoking
Theorem 1.1, we can now conclude that the cofactor h has a poly(s)-size circuit as well
(Kaltofen claimed only a poly(s)-size circuit with division, for computing h; see the last
paragraph in [Kal87, Section 4]). If g, h are not co-prime, then we need Factor Conjecture
(see Section 4) to claim low complexity of h.

A related problem to division elimination is the truncation problem. Towards that, we
initiate a systematic study by considering truncation of rational, algebraic and transcendental
functions. For computing the initial segment of rational functions, we first generalize the
observation that the initial segment of 1/(1− x) is easy to compute, via the inverse identity:
1/(1− x) = ∑i≥0 xi. It turns out that as long as the degree of the denominator is small, the
degree-d truncation has low complexity (Theorem 1.2). We denote the ring of formal power
series as F[[x]].

Theorem 1.2 (Truncation of low-degree rational function). Suppose, g and h are two univariate
polynomials in F[x] such that deg(g) ≤ d, deg(h) = dh, and g can be computed a circuit of size
s. Let, g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d can be computed by a circuit of size
poly(s, dh, log d).

Remark 1.3. 1. When g and h are both constant-degree polynomials, then the truncation,
in fact, has a small SOS-complexity. For details, see Theorem 8.1.

2. We complement the above Theorem 1.2 upper bound by a conditional hardness result.
In particular, we exhibit rational functions of high degree (e.g. Ω(d)) whose degree-d
truncations are hard to compute conditioned on the hardness of integer factorization
or computation of n!. See Theorem 5.2 for more details.

Continuing the study of the complexity of truncated power series, we move on to
algebraic power series. Here we work with constant-free circuits (i.e. constants like 2n has
to be built up from 1, requiring O(log n) many gates; for formal definition, see Section 5.2).
It is not hard to show that the n-th coefficient of the integral power series expansion of√

1 + 4x (which has minpoly y2 = 1 + 4x, of degree 2) is hard to compute (implying the
truncation must be hard to compute, by a constant-free circuit as well) unless integer
factoring is easy [CC86]; this follows from the well-known reductions: integer-factoring
≤P computing n! ≤P computing (2n

n)
2; for a self-contained proof we refer to Theorem F.1.

Can we show such a result for simple3 algebraic functions when the minpoly has degree
> 2? For instance, for 3

√
1 + 9x? Here, 9 is just to make the power series integral. It is

2here computation of an integer means, by a straight-line program or a constant-free circuit, see Definition 2.1
3here simple means that the degree of the minpoly of the algebraic functions and the degree of the coefficients

of minpoly are both bounded by a constant

4

not at all clear, how the n-th coefficient of 3
√

1 + 9x, namely 3n/n! ∏n−1
j=0 (1− 3j), helps in

integer factoring (or in efficiently computing a multiple of n!). However, it turns out that
the product of the n-th coefficients of 3

√
1 + 9x and 3

√
(1 + 9x)2, is a divisor of 3n(3n)!/(n!)3;

and computing it efficiently implies both the consequences. Exploiting the product of such
binomial coefficients leads us to the following generalization; for details see Theorem 6.2
and Theorem 6.3.

Theorem 1.3 (Truncation of algebraic power series). Let k ∈ N. Then, there exists 1 ≤ i < k
with i ∈N, such that truncation of the integral power series (1+ k2x)i/k cannot have small constant-
free circuits unless (i) integer factoring is easy (in the non-uniform setting) (see Algorithm 1), or (ii)
some multiple of n! is easy to compute (i.e. by a small straight-line program).

Remark 1.4. 1. [Sha79] showed that if n! is easy to compute, then integer factoring must
be easy as well. However, it is not clear whether such statement can be drawn from
some multiple of n!. Thus, (i) may not reduce to (ii) (& vice-versa). For details and
definitions, see Section 6.

2. We also show that the hardness of the truncation of the above power series implies that
permanent requires superpolynomial-size constant-free circuits, implying VP0 6= VNP0;
in fact, assuming GRH (Generalized Riemann Hypothesis), it implies VPC 6= VNPC.
This is reminiscent of [Bür09]. For details, we refer to Appendix H.

Finally, we move to the truncations of transcendental functions, where we show, to our
surprise that there do exist some integral transcendental power series whose initial segments
are easy to compute. Thus, transcendental power series does not necessarily mean hard. We
refer the readers to Section 7.1 for the detailed formal statements.

Theorem 1.4 (Informal). There are integeral transcendental power series whose truncations are
easy.

Therefore, Theorem 1.2–Theorem 1.4 together help in getting a good picture of the
characterization sought in Problem 1.2.

1.2 Limitations of known techniques

We first discuss why standard techniques for division elimination and computing the
truncations of power series do not yield the results we discover.

For the division problem, we first discuss why the division elimination method, due to
Strassen [Str73], leads to an exponential blowup in size.

Strassen’s division elimination. For g(x1, . . . , xn)/h(x1, . . . , xn), wlog, assume that
h(0, . . . , 0) = 1 (if not, then shift xi by a random value αi and get h(α1, . . . , αn) as a non-
zero constant, which can be made 1, by scaling). Now, f = g/h = g/ (1− (1− h)) =
g ∑∞

i=0(1− h)i. Here, we use the inverse identity: 1/(1− x) = ∑i≥0 xi. Assume that, f
has degree d. Note that, f̃ := g

(
1 + (1− h) + (1− h)2 + · · ·+ (1− h)d), has a poly(s, log d)

size circuit. Moreover, as 1− h is constant-free, truncation of f̃ upto degree-d (denoted as
Hom≤d f̃), correctly computes f .

Howbeit, computationally, the truncation incurs a poly(d)-size multiplicative blowup.
In general, given a polynomial f , computed by a circuit of size s, it is unlikely that we can
always get poly(s, log d)-size circuit for the polynomial Hom≤d f , unless, permanent has a

5

small circuit (see Lemma D.1 for a proof of this well-known fact). In fact, every method to
eliminate divisions which uses truncation, (for instance, Newton iteration, see [VZGG13],
Kaltofen’s Hensel-lifting [Kal86; Kal87], or allRootNI-technique via logarithmic-derivative
[DSS18]) give polynomial dependence on the degree (or the square-free part) of the quotient
polynomial f ; both can be large.

For computing the truncation of power series of rational functions, Kung and Treib [KT78]
used Newton iteration which also works, more generally, for all algebraically functions.
However, the problem with Newton iteration is that even though the precision doubles
with each iteration, there is always an error term as well (see [KT78] for details). So, if
we want to exactly compute the polynomial up to degree d, we need to truncate in order
to get rid of the error terms. This again, due to the reasons described above, incurs a
poly(d)-size multiplicative blowup, and is unlikely to be possible with an overhead bounded
by poly(log d).

1.3 Proof idea

Our proofs are simple and use natural ideas combined with some subtle observations and
careful maneuvering. We denote x = (x1, . . . , xn).

Division by low-degree polynomial: Proof idea of Theorem 1.1. As a warm up, we first
show a similar theorem for univariate polynomials which is a much simpler case, yet it
constitutes the fundamental idea.
Division by a low-degree polynomial for univariates. Let g be a univariate polynomial in F[x],
computable by an arithmetic circuit C, and we want to divide it by degree-d univariate
polynomial h. We do this by splitting each gate of C into two parts – one computing the
quotient and the other computing the remainder when divided by h (denoted by div h, and
mod h respectively); they are computed corresponding to each gate of the circuit, in the
bottom-up manner.

In case of a ‘+′ gate, the corresponding quotient and the remainder are precisely the
sum of the quotients and the remainders corresponding to its children gates. While for a
‘×′ gate with its children computing polynomials p1 = q1h + r1 and p2 = q2h + r2, we have
p1 p2 mod h = r1r2 mod h, and p1 p2 div h = q1q2h + q2r1 + q1r2 + r1r2 div h. Thus, apart
from combining the outputs of the children gates, we also need to compute the quotient
and the remainder of the product of the remainders of the two children (r1r2 div h and
r1r2 mod h), which is unclear. However, if we are in the regime where the degree of h is low,
then both r1r2 div h and r1r2 mod h will have low degree. So, we can use a simple fact that
every univariate polynomial of degree at most d is trivially computable by an arithmetic
circuit of size O(d). This is sufficient to complete the proof (see Section 3.1 for details).
Going from univariates to multivariates. Here, the strategy is to somehow exploit the core idea
used in the univariate setting. The very first step is to view the polynomials g(x) and h(x) as
univariates in xn, and also see h(x) as a monic polynomial in xn (wlog) where the coefficients
are polynomials in the variables x1, . . . , xn−1,. This step is fairly standard and is achieved via
an invertible linear transformation (see Appendix C).

Now, the obvious idea of splitting each gate in the circuit of g into two gates computing
the quotient and remainder simultaneously, fails directly, as a polynomial whose degree with
respect to xn is bounded by d, may not be computable by a poly(d)-size circuit.

6

To overcome this, we need a subtler observation from the univariate case. Recall that
apart from combining the output from children gates, the only extra quotient and remainder
computation that need to be done locally for a ‘×’ gate are r1r2 mod h and r1r2 div h. Since,
deg(r1), deg(r2) ≤ d− 1, we need to compute the quotient and remainder of a polynomial
of degree at most 2d− 2. We show that when we divide a polynomial of degree d1 by a
polynomial of degree d2, then there exists a circuit of size O(d1d2) which takes as input
the coefficients of both the polynomials and outputs the coefficients of the quotient and
remainder polynomials (see Lemma 3.1). In the univariate case, this gives a multiplicative
blowup of O(d2) which is worse than plugging in the trivial circuits of the quotient and the
remainder (trivial circuit has size O(d)). However, the advantage this offers is that it also
extends to the multivariate case (see Lemma 3.1). There, the degree refers to the degree
wrt xn, and instead of coefficients of the polynomials r1r2 and h as the inputs, we have the
circuits for their coefficients (viewed as univariates in xn) as inputs.

This also suggests the right structure to maintain in the circuit throughout. Since we also
need the circuits for the coefficients of the remainder, we split each gates in the circuit of
g(x) into d + 1 gates: d gates to maintain the remainder, and the (d + 1)-th gate to maintain
the quotient. Note that, since the degree in xn is bounded by d, hence the degree (wrt xn) of
the remainder ≤ d− 1, and the d remainder gates compute the corresponding coefficients
(which will be polynomials in x1, . . . , xn−1). We also need the coefficients of h(x), when
viewed as a univariate in xn; this can be efficiently done with a small blowup using standard
techniques (see Lemma A.1). It turns out that the above idea suffices in the multivariate
setting, see Section 3.2 for details.
Going to border. It turns out that our proof technique is robust to taking approximations, in the
sense of border (or approximative) complexity, used in algebraic and geometric complexity
theory (see Section 3.3 for details). The only subtle difference from the non-border case is
that here the degree of the approximate circuit for h can be large (over F(ε)[x]), but thanks
to homogenization (Lemma A.2) which would keep the degree (in x) low throughout.

Truncation of rational function: Proof idea of Theorem 1.2. Here, the core idea is to use
partial fraction decomposition of rational functions. Over an algebraically closed field (F = F),
this allows us to decompose an arbitrary rational function g(x)/h(x) (with deg(g) < deg(h))
as a sum of rational functions, each of the form b/(x− a)i, where a, b ∈ F (see Lemma 5.1);
this basically follows from factoring of h over F[x] (and thus the a’s are roots of h).

When, deg(h) is small, number of such b/(x− a)i is also small. Moreover, the truncations
of the 1/(x− a)i, for a 6= 0, is easy to compute (see Section 5.1). But there are two subtle issues
to be handled: (i) what to do when a = 0? and (ii) what happens when deg(g) > deg(h)?

Theorem 1.1 along with some basic analysis turns out to be the savior for both the cases.
For the first issue, note that a = 0 implies xm divides h for some m ≥ 1. However,

as g/h ∈ F[[x]], it turns out that xm must also divide g, for such power series to exist
(Lemma B.1). Thus, it suffices to work with g/h = g1/h1, where g1 := g/xm and h1 := h/xm,
both being polynomials in F[x]. But what happens to the size of g1 ? Well, thanks to
Theorem 1.1: as, m is small (because m ≤ deg(h)), it turns out that the circuit complexity of
g1 is also small.

For the second issue, note that, deg(g) > deg(h) implies deg(g1) > deg(h1). But thanks
to Theorem 1.1 again. Of course, g1/h1 = g1 div h1 + (g1 mod h1)/h1. Thus, g1 div h1 and

7

g1 mod h1 have small complexity and moreover deg(g1 mod h1) < deg(h1). Additionally,
g1 div h1 has degree < d (as deg(g) ≤ d). Thus, combining all these, the conclusion follows.
Extending to SOS-complexity. We remark that, similar proof works wrt SOS-complexity
when both g and h have constant-degrees. This is mainly because 1/(1− x)i has small
SOS-complexity as SOS-model is closed under small derivatives (Lemma 8.2). For details, see
Theorem 8.1.

Truncation of algebraic functions: Proof idea of Theorem 1.3. There are two parts of the
proof. But before delving into that, it is not hard to show that (1+ k2x)1/k is an integral power
series; this can be proved by some basic number-theoretic tools, for details see Theorem G.2.

For the first part, we show that easiness of the truncation of each (1 + k2x)i/k, for all
i ∈ [k− 1], leads to an efficient integer factoring algorithm (Algorithm 1). This algorithm
is a subtle generalization of the algorithm of [LR09]. Note that from binomial expansion,
coefficient of xd in (1+ k2x)i/k is Cd,i := kd/d! ·∏d−1

j=0 (i− kj). Moreover, when the truncations
are easy, the coefficients are also easily computable, just by subtracting two consecutive
truncatations and substituting x = 1. For a fixed i and k ≥ 3, it is not clear how Cd,i

behaves (when k = 2, it is = (2d
d)/(2d− 1)). However, if we take product of all the d-degree

coefficients (i.e. ∏i∈[k−1 Cd,i), it turns out to be a ‘nicer’ quantity. In particular, one can show
that this product is a divisor of the integer N(d, k) := k(k−2)d (dk)!/(d!)k. Moreover, N(d, k)
turns out to be easily computable as well.

Can we exploit any property of N(d, k) which could help us factor an integer n? Well, as
N(d, k) is easy, computing gcd of N(d, k) and n is also easy. If we can figure-out a d such that
gcd(N(d, k), n) 6= 1, n, we have already found a factor! So the aim is to somehow reduce the
search space cleverly and find a suitable d. Wlog, one can assume that all the factors of n are
greater than k (otherwise we can remove them by brute-force, as k is constant). Now, we try
to find the smallest prime p dividing n. Of course, there must exist t ∈ S := {k, k2, . . . , k`},
where k` ≤ n/k, such that p ∈ [t + 1, tk] (as these disjoint intervals cover [n]). Note that
|S| = log n. Also, trivially p | N(t, k), as p divides the numerator but cannot divide the
denominator. So, if the gcd(N(t, k), n) 6= n, we are done. But, if the gcd becomes n, it simply
implies all the prime factors of n must lie in the interval [t + 1, tk].

Unfortunately, this interval size is still huge and we cannot brute-force over it. But,
we can further reduce our search space by binary search. This idea is similar to [LR09];
each time we halve the search interval to reduce the search space for candidate d such that
gcd(N(d, k), n) 6= 1, n. At first, we have two integers a, b with a = 1 and b = t such that the
prime factors are in [ak + 1, bk]. Fix c = (a + b)/2 and compute gcd(N(c, k), n). If the gcd is
6= 1, n, we are done, otherwise we branch accordingly into the first half or the second. When
the gcd is 1, it must happen that the factors are in the second half i.e.[ck + 1, bk]. When gcd
= n, the factors are in the first half [ak + 1, ck]. After at most log n steps, we must have either
found a factor and if not, we have found a small interval [sk, (s + 1)k] of length k where all
the prime factors lie. We can now brute-force to find the factors. For details, see Section 6.1
and Algorithm 1.

The second part eventually exploits and recurse on the fact that (dk)!/(d!)k is easy to
compute and (d!)k is easy when (d!) is easy, implying a clear pattern of recurrence from dk
to d (Section 6.2).

Truncation of transcendental power series. Finally, for showing Theorem 1.4 about transcen-
dental power series, we discover some explicit integral power series whose initial segments

8

are non-sparse yet easy to compute. For this purpose, we use stern sequences (Section 7.1)
and power series whose coefficients are multiplicative, and exploit their recursive structures.
Conversely, we show hardness for the truncation of an integral transcendental power series
defined via holonomic sequences (Section 7.2).

2 Preliminaries

Notation. We denote x = (x1, . . . , xn). [n] denotes the set {1, . . . , n}. For a polynomial
f ∈ F[x], we denote up to degree-d part as Hom≤d f and | f |0 as the sparsity or the number
of monomials in f . For a differentiable function f (x), we denote f (k)(x) := dk f /dxk, as the
k-th derivative of f . We also recall the definition of gcd of two polynomials f , g in the ring
F[x]: gcd(f , g) =: h ⇔ h | f , h | g, and h′ | f , g =⇒ h′ | h . It is unique up to constant
multiples.
Field. We denote the underlying field as F and assume that it is algebraically closed. All
our results hold when the characteristic is large or not algebraically closed, as we can go to
polynomial extensions and work with it.
Binomial series. For rational n, (x + a)n = ∑k≥0 (n

k) xk an−k, where (n
k) = n · (n− 1) · · · · (n−

k + 1)/k!.
div and mod operations. For polynomials f and g ∈ F[x], if f = g · h+ r, where h, r ∈ F[x]

such that deg(r) < deg(g), then h is called the quotient, denoted f div g, and r is called the
remainder, denoted f mod g. Operation mod may not be well-defined in the multivariate
settings, however, if one assumes g to be monic in a variable say xn, it is always well-defined
(by thinking g to be a univariate in xn). A polynomial g is monic in xn if the leading
coefficient (the nonzero coefficient of highest degree) of xn is a non-zero constant in F. Of
course, if g | f , then f div g = h and f mod g = 0, irrespective of monic-ness.
Power series and truncation. A formal power series is a generalization of a polynomial,
where the number of terms can be infinite. Formally, A = ∑i≥0 Aixi with Ai ∈ F, is a power
series in the power series ring F[[x]]. We define the degree d truncation trunc(A, d) of A to
be trunc(A, d) := ∑0≤i≤d Aixi. So, trunc(A, d) is always a polynomial of degree at most d.

Definition 2.1 (Straight Line Program). An SLP (straight line program) P (for computing an
integer) of length (or size) n is a sequence of integers a0, . . . , an with a0 = 1 and ak = ai ◦ aj
with i, j < k for ◦ ∈ {+,−,×}. We say that the SLP P computes the integer an. For an
integer N, we define the straight line complexity τ(N) of N to be the length of the smallest
SLP computing N.

Definition 2.2 (Algebraic and Transcendental Power Series). A formal power series f ∈ C[[x]]
is said to be algebraic if there exists a polynomial g ∈ C[x][t] such that g(f) = 0. Otherwise
f is said to be transcendental.

With abuse of notation, for integers, we will sometime use complexity of the integer
(implying τ(·) only). Sometimes we also allow division as a operation in straight line
program (each time we mention if so). For a polynomial f ∈ F[x], we define the complexity
LF(f) of f to be the length of the smallest division-free arithmetic circuit (with only {+,−,×}
gates) computing f . We also define, the complexity τF(f) of f to be the length of the smallest
division and constant-free arithmetic circuit computing f (all the constants are made from

9

1), for formal definition see Section 5.2. We will remove subscript F when the underlying
field is clear from the context.

3 Division elimination in high-degree circuits

This section deals with Problem 1.1, where the divisor has small degree and proves The-
orem 1.1. Section 3.1 shows it in the univariate setting while Section 3.2 deals with the
multivariate setting, and finally, Section 3.3 shows an analogous theorem in the border
complexity setting. Here, we remark that formally, one should use fd = gd/hd, with d as an
index, however with abuse of notation, we use g/h throughout the paper.

3.1 Division of Univariate Polynomials

The following theorem deals with Problem 1.1 in the univariate setup.

Theorem 3.1. Let g, h be polynomials in F[x]. If L(g) = s and deg(h) = d, then both L(g div h)
and L(g mod h) have complexity O(sd).

Proof. Suppose C is a circuit of size s which computes g. We split every gate Φ in C into two
gates Φ1 and Φ2, to make a new circuit C′, which computes both g div h and g mod h. If Φ
is computing some polynomial φ in C, then Φ1 computes the polynomial φ mod h and Φ2
computes the polynomial φ div h.

The proof is inductive and traverses from bottom to the top. The base case is trivial. At
some step, say that we are at a gate Φ. The children gate of φ are computing polynomials
α and β. Let, α = q1h + r1, β = q2h + r2 and φ = qh + r, where the degrees of r, r1, r2 are
smaller than d. So in the new circuit C′, we have already computed r1, q1, r2, q2. If Φ is a ±
gate then it is clear that r = r1 ± r2 and q = q1 ± q2. If Φ is a × gate then we have:

r = (r1r2) mod h , and q = q1q2h + r1q2 + r2q1 + (r1r2) div h.

We know that r is a polynomial of degree at most d − 1. Since, deg(r1r2) ≤ 2d − 2, we
get that deg((r1r2) div h) ≤ d − 2. Therefore, we trivially have that: L(r) = O(d) and
L((r1r2) div h)) = O(d). Hence we can compute r, q using additional O(d) many gates.
Thus, C′ has at most O(sd) many gates. Hence L(g div h) = O(sd) (same for g mod h).

Corollary 3.1. For f , g, h ∈ F[x], if f = g/h with L(g) = s and deg(h) = d then L(f) = O(sd).

Remark 3.1. The polynomial fd := 1 + · · ·+ xd = (xd+1 − 1)/(x− 1) has O(log d) size circuit.
This can also be shown via a recursive computation argument.

Can we expect both div and mod to have poly(s, log d)-size circuits? We show that it is
highly unlikely unless factoring is easy, see Theorem 9.1 for details.

3.2 Division of Multivariate Polynomials

This section deals with division in the multivariate setting. But before that, we solve a
particular case (by folklore techniques) which will play a crucial role to prove the main
Theorem 3.2. For a proof of the following Lemma 3.1, see Appendix E.

10

Lemma 3.1. Suppose g = ∑i≤d1
gixi and h = xd2 + ∑i<d2

hi xi, in F[x]. Suppose g = hq + r,
with r = ∑i<d2

rixi and q = ∑i≤d1−d2
qixi. Then, there is a circuit of size O(d1 d2), whose inputs

are all hi, gi and outputs are all ri, qi.

Now we prove the following Lemma 3.2 which shows that both div and mod have low
complexity when the divisor has low-degree and monic (in fact, constant leading-coefficient
suffices).

Lemma 3.2 (Main Lemma). Let the polynomials g, h ∈ F[x] such that h is monic in xn, L(g) =
s1, L(h) = s2, and degxn

(h) = d. Then, both L(g div h), L(g mod h) ≤ O((s1 + s2) d2).

Proof. Suppose C is a circuit of size s2 which computes h and Cg is the circuit of size s1
which computes g. By using Lemma A.1, there is a circuit of size O(s2 d2), which computes
h0, · · · , hd−1.

Now, we split every gate F in C into d + 1 gates F0, F1, . . . , Fd. Suppose, the gate F is
computing a polynomial PF. Let PF mod h = ∑i<d pixi

n. Then we want the property that Fi
computes pi for i < d. And if i = d then Fi computes PF div h.

Suppose F is a + gate in C with children gates computing the polynomials a and b.
Again express a mod h = ∑i<d aixi

n and b mod h = ∑i<d bixi
n. It is clear that

(a + b) mod h = a mod h + b mod h.

Therefore pi = ai + bi. It is also clear that PF div h = a div h + b div h.
Suppose F is a × gate in C with children gates computing the polynomials a and b.

Again express a mod h = ∑i<d aixi
n and b mod h = ∑i<d bixi

n. It is clear that:

(a · b) mod h = (a mod h · b mod h) mod h.

For div , we have that:

PF div h = a div h · b div h · h+ b div h · a mod h+ a div h · b mod h+(a mod h · b mod h) div h.

We have already computed a mod h, b mod h, a div h, b div h. So, we only need to com-
pute (a mod h · b mod h) mod h and (a mod h · b mod h) div h. Since we have already com-
puted ai, bi for all i < d, by using Lemma 3.1, we can compute all the pi and (a mod h ·
b mod h) div h in O((2d− 2)d) = O(d2) many gates. Therefore the new circuit has O(s1d2)
has many gates. Also we used O(s2d2) gates to computes h0, · · · , hd−1. Hence,

L(g div h) = O((s1 + s2)d2), and L(g mod h) = O((s1 + s2)d2) .

The following theorem settles Problem 1.1, when the divisor has small degree (proving
Theorem 1.1).

Theorem 3.2 (Division elimination for low-degree divisor). Let the polynomials f , g, h ∈ F[x]
such that f = g/h, with L(g) = s1, L(h) = s2, and deg(h) = d. Then, L(f) ≤ O((s1 + s2) d2).

11

Proof. The above Lemma 3.2 shows that when h is monic in xn, the upper bound holds.
Let τ : F[x] −→ F[x], be an invertible monic transformation (sends xi 7→ αi · xn + xi, where
αi ∈ F) s.t. τ(h) is monic wrt xn, such transformation exists (Lemma C.1). Note that,
L(τ(g)) ≤ s+ n = O(s1), and L(τ(h)) ≤ s2 + n = O(s2). Moreover, as τ is degree-preserving,
degxn

(τ(h)) = d.
So, apply Lemma 3.2 to conclude that τ(f) = τ(g) div τ(h), has a circuit of size O((s1 +

s2)d2). We apply τ−1 again (which is just a additive n-blowup) to finally deduce that

L(f) ≤ O((s1 + s2) d2) .

Remark 3.2. This proof holds when one replaces L by τ, i.e. the constant-free circuit complexity
(for definition, see Section 5.2). Note that, neither div nor mod introduce any new constant
in the process. Moreover, one can choose the αi to be explicit and poly(log d)-computable so
that τ is a monic invertible map. This establishes the claim.

3.3 Division in border complexity

The notion of border (equivalently, approximative) complexity is important in computer
science. This concept popped up from early works on matrix multiplication and border
rank of tensors, see [BCS13]). Whether approximation of polynomials provides any additional
computational power is a natural question which fundamentally motivated the foundation
of Geometric Complexity theory (GCT). The notion of border complexity can be motivated
through two ways: topological and algebraic, and both the perspectives are known to be
equivalent [Ald84]. For further details, we refer to [GMQ16; Mul12].

In this paper, we only work with algebraic approximation upper bounds. In the algebraic
definition, one can talk about the convergence ε→ 0. Here, one can see ε as a formal variable
and F(ε) as the function field. For an algebraic complexity class C, the approximation is
defined as follows [BIZ18, Definition 2.1].

Definition 3.1 (Approximative closure of a class [BIZ18]). Let C be an algebraic complexity
class over field F. A family (fn) of polynomials from F[x] is in the class C(F) if there are
polynomials fn;i and a function t : N 7→N such that gn is in the class C over the field F(ε)
with gn(x) = fn(x) + ε fn,1(x) + ε2 fn,2(x) + · · ·+ εt(n) fn,t(n)(x).

Definition 3.2. [Bür04, Defn.3.1] Let f ∈ F[x]. The border complexity L(f) is the smallest
number r, such that there exists F in F(ε)[x] satisfying F|ε=0 = f and LF(ε)(F) ≤ r.

Note that, the circuit of F may be using 1/ε in an intermediate step. So, we cannot
merely assign ε = 0 and get a ε-free circuit. Also, the ε-degree can be exponential in its size
(and thus cannot be interpolated), see [Bür04, Theorem 5.7]). Thus, potentially L(f) can be
significantly smaller than L(f).

The above definition can be used to define closures of complexity class, e.g., VP. In this
case, one can assume wlog that the degrees of gn and fn,i are poly(n). It is known to be
closed under factoring [Bür04, Theorem 4.1]. However, the usual method of Hensel-lifting does
not work when the given circuit class computes polynomials of super-polynomial degree.
Also, Strassen’s method would have a dependency on the degree of the final polynomial.
However, we can prove Theorem 3.2 analogously, in the border sense.

12

Theorem 3.3 (Division elimination in border complexity). Let f , g, h ∈ F[x], such that f = g/h,
with L(g) = s1, L(h) = s2, and deg(h) = d. Then, L(f) ≤ O(s1 d2 + s2 d4).

Proof. By definition, there exists G, H ∈ F(ε)[x], of size at most s1 and s2, respectively,
such that G := g + ε · g̃(x, ε), and H := h + ε · h(x, ε), where g̃, h ∈ F[ε, x]. We note that,
degx(H) can be larger than d. However, using Lemma A.2, we know that LF(ε)(Hom≤d H) ≤
O(s2d2) := s′2.

We denote H̃ := Hom≤d H. It is important to observe that H̃|ε=0 = h. By definition, there
exists m (could be exp(s′2)) such that

H̃ := h + ε · h̃(x, ε) = h + ∑
j∈[m]

εj · hj(x) , where hj ∈ F[x] .

Let τ : F[x] −→ F[x], be an invertible monic transformation (sends xi 7→ αi · xn + xi, where
αi ∈ F) s.t. τ(h) and each τ(hj), for j ∈ [m] is monic wrt xn; such transformation ex-
ists (Lemma C.1). Note that, LF(ε)(τ(G)) ≤ O(s1) and LF(ε)(τ(H̃)) ≤ O(s′2). Further,
degx(τ(H̃)) = d, as τ is a degree-preserving map. We also have the following identities:

τ(H̃) = τ(h) + ε · τ(h̃) and τ(G) = τ(f) · τ(h) + ε · τ(g̃) .

By assumption, the leading coefficient of xn in τ(H̃) (call it α) is in F[ε] (in fact, α 6 ≡
0 mod ε). This basically makes τ(H̃) a monic polynomial over F(ε)[x]. Therefore, div τ(H̃)
and modτ(H̃) now make sense over F(ε)[x]. By simple division, we have

τ(G) div τ(H̃) = τ(f) + ε ·
((

τ(g̃)− τ(f) · τ(h̃)
)

div τ(H̃)
)

. (1)

Note that, Lemma 3.2 implies LF(ε)

(
τ(G) div τ(H̃)

)
= O((s1 + s′2)d

2). By definition of
L and Equation (1), it is trivial to conclude that L(τ(f)) ≤ O((s1 + s′2)d

2) = O(s1 d2 + s2 d4).
As τ is invertible, we can get back f by applying τ−1 (incurring n-additive blowup). This
finally shows

L(f) ≤ O(s1 d2 + s2 d4) .

4 Implications of division elimination in algebraic complexity

An affirmative solution to Problem 1.1 would have nontrivial applications in algebraic
complexity. We briefly discuss some of them in the next few paragraphs.

Division elimination in border complexity. It is not clear whether a positive solution to Prob-
lem 1.1 would resolute to solving VP = VP (the converse direction is also not clear). Note
that, an approximative circuit can use arbitrary scalars from the field F(ε). So it is not clear
if the polynomial computed by an approximative circuit of size s can be expressed as g/h,
where g, h ∈ F[ε, x] can be computed by circuits (using constants from F) of size poly(s).
However, a special case of Problem 1.1, when the denominator is as simple as xd, is open,
and it has interesting implications as we discuss. The following example is from Bürgisser
[Bür04], which relates the complexity of trailing coefficient of a polynomial to the complexity
of the polynomial itself.

13

Let us take a polynomial f (x, ε) ∈ F[x, ε] computed by an arithmetic circuit of size
s (over F). Suppose, f := ∑D

i=d Ci(x) εi where Ci are polynomials in F[x]. The trailing
coefficient of f wrt ε, which is the polynomial Cd can be computed by a circuit of size
poly(s, d), by homogenization. Note that d can be exp(s). In contrast, it can be computed by
an approximative circuit of size just s. The approximative circuit C′ computes the polynomial
f /εd (as limε→0 f /εd = Cd). Note that, εd has O(log d)-size circuit. Now, a positive solution
to Problem 1.1 would imply that f /εd has a division-free circuit C of size poly(s, log d). We
can simply put ε = 0 in C and compute Cd.

Division elimination in polynomial factoring. Another interesting consequence of the above
mentioned case of Problem 1.1 would be the proof of Factor conjecture [Kal87; Bür04]: Any
factor g of a given polynomial f can be computed by poly(s, deg(g))-size circuit. Bürgisser
[Bür04] gave an approximative circuit of poly(s, deg(g)) that involves division by εd where ε
can be seen as a formal variable. See [Bür04; Gro+20] for various consequences of Factor
conjecture.

Division elimination and gcd. It turns out that the existence of small circuits for gcd and
division elimination can resolve the radical conjecture [DSS18]: the squarefree-part or the
radical of a multivariate polynomial f of size s, has size poly(s).

The gcd question [Kal87, Problem 4] asks whether given polynomials f1, . . . , fm, computed
by a circuit size s, their gcd g := gcd(f1, . . . , fm) has size poly(s). Currently, the best known
bound (due to Kaltofen [Kal87]) is poly(s, deg(g)). It is not hard to show that a positive
resolution to both Problem 1.1 and gcd would also resolve the aforementioned radical
conjecture.

In fact, it would also lead to poly(s) bound for computing the reduced rational function.
Given a rational function p/q computed by a circuit (with division gates) of size s, compute
the numerator and denominator in the reduced form (g/h = p/q, where g and h are coprime)
in poly(s). Kaltofen [Kal87, Problem 4] showed a bound of poly(s, deg(g), deg(h)). Note that
getting numerator and denominator of reduced rational function in poly(s) directly implies
solution to both high degree division and gcd questions.

Remark 4.1. It is known that given a polynomial f , computed by poly(s), all its factors cannot
be computed by poly(s)-size circuits. For eg. x2s − 1; it has factors of size exp(s) [LS78].
However, this does not give a counterexample for Problem 1.1 (as the cofactor of a hard
factor is also expected to be hard).

5 Circuit complexity of rational function truncation

First, we deal with rational functions. We show both upper bound and conditional lower
bound results (relating to integer factoring).

5.1 Upper bounds for rational function truncation

We show that complexity of truncation of rational functions where the degrees are small,
has low complexity. For simplicity, we work with F = F, an algebraically closed field. We
first recall the following folklore decomposition.

14

Lemma 5.1 (Partial fraction decomposition). Let g(x)/h(x) be a rational function with deg(g) <
deg(h). If h(x) = ∏i∈[k](x− ai)

di is the factorization of h(x) over F[x], then, there exist bij ∈ F

s.t. :
g(x)/h(x) = ∑

i∈[k]
∑

j∈[di]

bij/(x− ai)
j .

Here is an important lemma which plays a crucial role in the size upper bound of
truncation.

Lemma 5.2. For any non zero a ∈ F, we have L (trunc (1/(x− a), d)) = O(log d).

Proof. This follows from the inverse identity: 1/(a− x) = 1/a ∑i≥0 (x/a)i and the fact that
L(∑0≤i≤d(x/a)i) = O(log d) (By using Remark 3.1).

Now, we prove Theorem 1.2. For brevity, we state it again.

Theorem 5.1 (Truncation of low-degree rational function). Suppose, g and h are two univariate
polynomials in F[x] such that deg(g) ≤ d, deg(h) = dh, and g can be computed a circuit of size
s. Let, g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d can be computed by a circuit of size
poly(s, dh, log d).

Proof. The main idea is to use Lemma 5.1 and the low complexity of the truncation of inverse
identity (Lemma 5.2). However, the given polynomial h may be divisible by x (i.e. h(0) = 0).
In that case, let m be the highest power of x such that xm | h (i.e. xm+1 - h). Note that, as
g/h ∈ F[[x]], xm | g as well (Lemma B.1). As deg(h) ≤ dh, thus m ≤ dh.

By using Theorem 3.2, we know that g1 := g/xm has a cicuit of size O((s + log dh) d2
h) =:

s1. Trivially, h1 := h/xm has degree ≤ dh, and g/h = g1/h1. Denote, g2 := g1 mod h1.
Obviously, deg(g2) < deg(h1) and g1/h1 = g1 div h1 + g2/h1. Invoking Theorem 3.1, one
concludes that L(g1 div h1) = O(s1 dh). Therefore, L(trunc(g1 div h1, d)) = O(s1 dh), as
deg(g1) < d.

Let h1 factors over F[x] as h1 := ∏i∈[k] (x− ai)
di . Trivially, ∑ di ≤ dh. By using Lemma 5.1

on g2/h1, we know that there are constants ai, bij ∈ F such that:

g2(x)/h1(x) = ∑
i∈[k]

∑
j∈[di]

bij/(x− ai)
j .

Note that, for any a ∈ F and t ∈N, dt/dxt (1/(x− a)) = (−1)t t! ·
(
1/(x− a)t+1), and thus,

trunc(1/(x− a)t+1, d) = (−1)t/t! · dt/dxt (trunc(1/(x− a), d)) +
d

∑
i=d−t+1

γi xi , where γi ∈ F .

Using the above identity and Lemma A.3, we can show that

L

trunc

 ∑
j∈[di]

bij/(x− ai)
j, d

 = O(log d · d2
i) .

To show this, note that L(trunc(1/(x − ai), d)) = O(log d), and using Lemma A.3, we
compute all its derivative till the di-th one which has a circuit of size O(log d · d2

i). Using

15

the above identity, we can add di − 1 many monomials of the form cx` with d− di + 2 ≤
` ≤ d (each monomial has trivial size of O(log d)) to the circuit to obtain a circuit for
trunc

(
∑j∈[di] bij/(x− ai)

j, d
)

, which still has size O(log d · d2
i). Thus, doing it for each ai for

i ∈ [k], one obtains that

L (trunc (g(x)/h(x), d)) = L (trunc (g1(x)/h1(x), d))
= L (g1 div h1, d) + L (g2/h1, d)

= O(s1 dh) + L

trunc

∑
i∈[k]

∑
j∈[di]

bij/(x− ai)
j, d

= O((s + log dh) d3

h) + O(log d · ∑
i∈[k]

d2
i)

= O(s d3
h log d)

Remark 5.1. Eventually, we can replace g ∈ F[[x]] with the given complexity trunc(g, d) = s
and show that the exact same proof as above, works.

5.2 Hardness results for rational function truncation.

Now, we give some evidence that we cannot expect logarithmic dependence on dh in
Theorem 5.1, unless integer factoring is easy. Before going into technicalities, we define easy
sequence and constant-free complexity.

Definition 5.1 (Easy sequence). A sequence (an)n of integers is said to be "easy to compute”
if there exists a polynomial p such that straight line complexity of an, i.e. τ(an) ≤ p(log n),
for n ≥ 1.

If a sequence is not easy to compute, it is said to be hard. In fact, for most numbers
N, one can show that τ(N) ≥ log N/ log log N ("close" to the trivial upper bound) [DMS96;
Mor97]. It is believed that (d!) is hard to compute. In fact, its hardness is deeply connected
to the infamous integer factoring problem. [Sha79] showed that d! being easy to compute
will imply factoring is easy in the non-uniform setting 4.

Constant-free circuit complexity. In the same spirit, one can define constant-free circuit
complexity of polynomials where the given constants belong to the set {−1, 0, 1}5. We denote,
τ(f) as the size of the minimal constant-free circuit computing f . Trivially, L(f) ≤ τ(f).

It was shown in [And20] that (an)n∈N, where an := (2n
n), is easy implies (n!)n∈N is easy.

This proof is similar to [Sha79]. This lemma will be crucial to prove the hardness result for
truncations.

4However, this result does not imply that natural numbers can be factored in polynomial time in the
Turing-Machine model, as the numbers used can be poly(n)-bits.

5To use 2n in the circuit, one has to build up a circuit for 2n, of size log n, from 1; whereas in the usual sense
of circuit size, constants are free. Thus, fd := 22d

xd has O(log d)-size circuit but requires Ω(d)-size constant-free
circuit.

16

Lemma 5.3 (Lemma 6.3 in [And20]). If an := (2n
n) has complexity O(logc n), for some c ∈ N,

then (n!) has complexity O(logc+1 n).

In the following theorem, we show that constant-free complexity of the truncation of a
power series with the denominator degree being high, is expected to be large, otherwise n! is
easy.

Theorem 5.2. If τ
(
trunc

(
1/(1 + x)d+1, m

))
= O(logc d), for some constant c ∈ N and m ∈

{d− 1, d}, then (n!) is easy. In fact, τ(n!) = O(logc+1 n).

Proof. From the power series expansion (Section 2), it is easy to see that,

trunc
(

1/(1 + x)d+1, m
)

=
m

∑
i=0

(
−d− 1

i

)
xi.

Let us notice (−d−1
i) = (−d− 1)(−d− 2) . . . (−d− i)/i! = (−1)i(d + i)!/i! d! = (−1)i(d+i

i).
Therefore,

trunc
(

1/(1 + x)d+1, d
)
− trunc

(
1/(1 + x)d+1, d− 1

)
= (−1)d

(
2d
d

)
xd .

By assumption, τ
(
(−1)d(2d

d) xd
)

= O(logc d). Therefore (2d
d) has complexity O(logc d),

as desired (just by substituting x = 1, which gives an SLP). Invoking Lemma 5.3, we
conclude.

6 Hardness of Truncation of algebraic functions

In this section, we show conditional hardness of truncation of power series of algebraic
functions with degree of its minpoly ≥ 3. In the first part, we show connection with integer
factoring. In the second part, we show connection with computation of multiple of (n!).

Throughout the section, we will be working with algebraic functions of the form (1 +
k2x)i/k, for i, k ∈N with i < k. Here is a crucial claim. For a proof, we refer to Theorem G.2.

Theorem 6.1. Fix i, k ∈ N with i < k. Then, (1 + k2x)i/k ∈ Z[[x]], i.e. it is an integral power
series.

6.1 Hardness of truncation of algebraic functions and integer factoring

Here, we show that if the truncation of each (1 + k2x)i/k, for i ∈ [k− 1], has small constant-
free circuit, then one can factor n in poly(log n) time, in the non-uniform setting. This would
readily imply the first part of Theorem 1.3.

Theorem 6.2. Let k ∈ N. If τ(trunc((1 + k2x)
i
k , d)) = O(logc d) (for some constant c) for all

i ∈ [k− 1] then integer factorization (in the non-uniform setting) can be performed in polynomial
time.

17

Proof. Let, (1 + k2x)
i
k = ∑d≥0 Cd,i xd ∈ Z[[x]], where the coefficient Cd,i of xd is equal to

±kd(−i) · (k− i) · (2k− i) · · · ((d− 1)k− i)/d!. We see that the product of all Cd,i is equal to:

∏
i∈[k−1]

Cd,i = ± k(k−1)d(k− 1)!(dk)!
(d!)kkd(kd− 1)(kd− 2) · · · (kd− (k− 1))

.

The assumption τ(trunc((1+ k2x)
i
k , d)) = O(logc d) implies that τ(Cd,i) = O(logc d) (just

by subtracting two consecutive truncations and substituting x = 1). This further implies that
τ(∏i∈[k−1] Cd,i) = O(logc d), Let us define, for any d ≥ 1,

N(d, k) :=
k(k−2)d(dk)!

(d!)k .

We first argue that N(d, k) ∈ N. This follows from the fact that N(d, k) = ∏i∈[k−1] Cd,i ·
(kd− 1) · · · (kd− (k− 1))/(k− 1)!, and (k− 1)! must divide (kd− 1) · · · (kd− (k− 1)), by
Fact G.1.

Further, since k is constant, it implies that τ(N(d, k)) = O(logc d) (because the extra term
has trivial O(log d)-complexity).

Now, we describe how to find a non-trivial factor of a given integer n. We assume that
all the primes dividing n are larger than k; otherwise we can remove all the prime factors
smaller than k + 1 (since k is a constant).

The idea is to first find a positive integer t such that all the primes dividing n are in the
interval [t + 1, tk], by using an iterative algorithm; if such a t does not exist we would have
already found a non-trivial factor of n (by the algorithm). As an invariant, we maintain an
integer m such that all the prime divisors of n are greater than m. We start with m = k and
compute gcd(N(m, k), n) at each iteration. Since all the primes dividing n are greater than
m (by assumption), we get that gcd(N(m, k), n) = gcd((mk)!, n). If the gcd((mk)!, n) 6= 1, n,
we must have already found a non-trivial factor of n and we are done. Otherwise, we can
have two cases: either (i) gcd((mk)!, n) = 1, or (ii) gcd((mk)!, n) = n.

If gcd((mk)!, n) = 1 then we set m← mk and continue (because in this case all the primes
dividing n must be greater than mk). Otherwise we have gcd((mk)!, n) = n, and hence, all
the primes dividing n are in the interval [m + 1, mk] and we stop with t ← m. We know
that t ≤ dn/ke and this uses at most logk n = log n iterations. So, this step has given us an
integer t such that all the primes dividing n are in the interval [t + 1, tk], and the time taken
is poly(log n), due to only log n many iterations and each step takes poly(log n)-time due to
the fact that τ(N(d, k)) = O(logc d) implies gcd computation can be done in poly(log n) (by
euclidean algorithm).

Once, we know that all the primes are in an interval of the form [t + 1, tk], we now try to
reduce the length of it to k so that, we can simply brute force to get a factor of n, otherwise of
course our algorithm would already find a factor. The length reduction part is similar to
binary search algorithm that we describe below.

To find a positive integer s such that all the primes dividing n are in the interval
[sk + 1, (s + 1)k] (Or we find a non-trivial factor of n), again we use an iterative algorithm. As
an invariant, we maintain two positive integers a, b such that all the prime divisors of n are in
the interval [ak + 1, bk]. We start with a = 1, b = t. Our invariant is trivially true at the start.
At each iteration, we set c = d(a + b)/2e and compute gcd(N(c, k), n). Since c ≤ t and all

18

the prime divisors of n are larger than t, we get that gcd(N(c, k), n) = gcd((ck)!, n). Again,
we argue in the same way as before. If the gcd is 6= 1, n, we have already found a non-trivial
factor of n and we are done. Otherwise, we have two cases: either (i) gcd((ck)!, n) = 1, or (ii)
gcd((ck)!, n) = n.

If gcd((ck)!, n) = 1 then it is clear that all the primes dividing n are in the interval
[ck + 1, bk] and hence we set a ← c, b ← b. If gcd((ck)!, n) = n then they all the primes
dividing n are in the interval [ak + 1, ck] and hence we set a← a, b← c. This will terminate
when b− a ≤ 1. Hence we find the desired positive integer s. This uses at most log t = log n
iterations.

Now we just need to search for the prime divisors of n in the interval [sk + 1, (s + 1)k]
(an interval of constant length). Now, we brute force to finally find a non-trivial factor of n.

Similarly, this step also takes poly(log n) as each gcd computation takes poly(log n) time.
So, we have successfully found a non-trivial factor of n by the end of this process, repeating
this, we can get all the factors in poly(log n)-time and we are done.

We also refer to Algorithm 1 in Appendix I.

6.2 Hardness of truncation of algebraic functions and complexity of multiple of
(n!)

In this section, we show that easiness of truncation of (1 + k2x)i/k shows that a multiple of
n! must be easy. Note that, this may not imply that n! is easy, however, from complexity-
theoretic point-of-view, it is believed to be hard because of non-trivial implications. Shub &
Smale [SS95] proved: If n! is ultimately hard to compute, then P 6= NP over the field of complex
numbers.. Here, the computation is over Blum-Shub-Smale (BSS) model and can use complex
numbers in the algorithm. In fact, a stronger version (known as τ-conjecture) connects z(f),
distinct integer roots of f with τ(f). Recently, [Dut21] showed that a similar conjecture, in
the SOS-model, would in fact imply explicit constructions of rigid matrices & VP 6= VNP.
For similar related works, we refer to [Koi11; Koi+15].

Before discussing and stating the formal result, we need an important notion of complex-
ity, which is closely related to τ-complexity.

Definition 6.1 (Ultimately easy). A sequence of integers (an) is ultimately easy if there exists
another sequence (bn) such that τ(an bn) ≤ poly(log n) for all large enough n.

Definition 6.2 (Ultimate complexity). Define the ultimate complexity of an integer n as the
minimum τ-complexity of its multiple, i.e. τ1(n) = minb∈Z\{0} τ(b · n).

It is clear that Definition 6.1 can be stated wrt τ1. We remark that τ1(n1 · n2) ≤ τ1(n1) +
τ1(n2) + 1, for any n1, n2 ∈ Z.

Following the same spirit as above, we prove the second part of Theorem 1.3.

Theorem 6.3. Fix k ∈ N. Suppose, for each i ∈ [k − 1], there exists some constant c such that
τ(trunc

(
(1 + k2 · x)i/k, d

)
= O(logc d), for large enough d. Then, (n!)n∈N is ultimately easy.

Proof. Let, (1 + k2x)
i
k = ∑d≥0 Cd,i xd ∈ Z[[x]]. From the hypothesis, it follows that there

exists c such that τ(Cd,i) ≤ logc d, for each i ∈ [k− 1] (subtract two consecutive terms and

19

substitute x = 1). Further, from the proof in Section 6.1 (and following the same notation),
we know that

∏
i∈[k−1]

Cd,i = ± k(k−2)d(k− 1)!(dk)!
(d!)k(kd− 1)(kd− 2) · · · (kd− (k− 1))

.

Let us define, a(d, k) := (dk)!/(d!)k. Note that, a(d, k) ∈N (it is the multinomial coefficient
(dk

d,...,d)). Further, k(k−2)d · a(d, k) = ∏i∈[k−1] Cd,i · (kd − 1) · · · (kd − (k − 1))/(k − 1)!, and
(k− 1)! must divide (kd− 1) · · · (kd− (k− 1)), by Fact G.1. As k is constant, each kd− i can
be computed in O(log d)-time trivially. Further, τ(∏i∈[k−1] Cd,i) ≤ O(logc d). As τ is additive
over multiplication, it follows that

τ(k(k−2)d · a(d, k)) ≤ O(logc d) ⇒ τ1(a(d, k)) ≤ O(logc d) .

Now we recurse by noticing the following trivial identity that n! = n!/ (bn/kc)!)k ·
((bn/kc)!)k.

We know by the above relation on a(d, k) (and replacing d := bn/kc for some integer n)
that

τ1

(
(k · bn/kc)!
(bn/kc)!k

)
≤ O(logc n) .

Further, any integer n can be written as n = k · bn/kc+ j for some j ≤ k− 1. Note that
k · bn/kc+ j has complexity at most log n for each j ∈ [k− 1]. So, multiplying k · bn/kc+ j
for j ∈ [k− 1], it is straightforward to deduce that

τ1

(
n!

(bn/kc!)k

)
≤ O(logc n) . (2)

As, n! = n!/ (bn/kc)!)k · ((bn/kc)!)k, and τ1

(
(bn/kc!)k

)
≤ τ1 (bn/kc!) + O(1); use Equa-

tion (2):

τ1(n!) ≤ τ1 (bn/kc!) + O(logc n) + O(1)

≤ τ1
(
bn/k2c!

)
+ O(logc n) + O(logc n) + O(1)

...

≤ logk n ·O(logc n) = O(logc+1 n) .

Therefore, (n!) is ultimately easy to compute, as we wanted.

7 Complexity of the truncation of transcendental power series

In this section, we show examples where the truncation of transcendental power series is
easy. We also complement this by showing the existence of integral transcendental power
series which is conditionally hard.

20

7.1 The truncation of transcendental power series can be easy

In this section, we show two examples of integral transcendental power series whose
truncations are easy.

Transcendental series corresponding to the Stern Sequence is easy

Definition 7.1 (The Stern sequence). The sequence (an)n≥0 given by a0 = 0, a1 = 1, and
when n ≥ 1, by a2n = an and a2n+1 = an + an+1, is called the Stern sequence.

The generating function A(x) def
=== ∑ anxn of the Stern sequence has the following

properties.

Theorem 7.1 (Lemma 2.1 and Theorem 2.2 in [Coo11]). If A(z) is the generating function of the
Stern sequence, then

1. A(x2) = A(x)
(

x
x2+x+1

)
.

2. The function A(x) is transcendental.

Now we prove the following Theorem 7.2 which shows that its truncation has small
circuit.

Theorem 7.2. For the generating function A(x) of the Stern sequence, we have

L (trunc (A(x), d)) = O(log2 d) .

Proof. By using Theorem 7.1, we obtain that:

A(x) = (x2 + 1)A(x2) +
A(x2)

x
. (3)

Suppose Bd(x) def
=== trunc

(
A(x), b d

2c+ 1
)

. Notice that the degree of Cd(x) def
=== (x2 +

1)Bd(x2) + Bd(x2)/x is at most 2bd/2c+ 4 and trunc(Cd(x), d) = trunc (A(x), d). Hence we
can compute trunc (A(x), d) from Cd(x) by subtracting at most 4 monomials, which can
be done using O(log d) gates. Also Bd(x) can be computed from trunc (A(x), bd/2c) using
O(log d) gates. Hence we obtain the following recurrence:

L (trunc (A(x), d)) ≤ L (trunc (A(x), bd/2c)) + O(log d) .

This implies, L (trunc (A(x), d)) = O(log2 d).

Transcendental power series whose coefficients are multiplicative

The sequence (fn)n≥0 is defined as: f0 = 1, f1 = 1, f2 = −1, fp = 1 for all odd primes p and

fab = fa fb. We look at the corresponding generating function F(x) def
=== ∑ fnxn .

Theorem 7.3 ([CB08, Theorem 2]). The power series F(x) is transcendental.

Now we prove the following Theorem 7.4 which shows that truncation of F(x) is easy.

21

Theorem 7.4. For F(x), we have L (trunc (F(x), d)) = O(log2 d).

Proof. We use the notation ν2(m) to denote the highest power of 2 which divides m ∈N. We
partition the set [d] into blog dc sets S0, S1, S2, . . . , Sblog dc such that k ∈ Si iff ν2(k) = i. We

define the set Om
def
=== {k | k ≤ m and k is odd}. Now, notice that Si = {2ik | k ∈ Obd/2ic}.

For a set S ∈N, we define the polynomial gS
def
=== ∑i∈S xi. Observe that:

trunc (F(x), d) = 1 +
blog dc

∑
i=1

(−1)igSi .

Trivially, gSi = gObd/2ic
(x2i

). Also notice that gOm = g[m] − gbm
2 c(x2). Therefore, L(gOm) =

(log m), which implies that gSi = O(log d). Hence, L (trunc (F(x), d)) = O(log2 d).

Remark 7.1. Note that, there are power series like ∑i≥0 xi! which are transcendental and
their truncations up to degree d are easy to compute. However, the series is highly sparse
and degree-d truncations has only poly(log d) monomials, hence the easiness is trivial. The
examples we discover in this work are of dense power series.

7.2 The truncation of Transcendental power series can be hard

A sequence (hn)n≥0 is called holonomic if it satisfies the recurrence of the form:

ar(n) hn+r + ar−1(n) hn+r−1 + · · · + a0(n)hn = 0 ,

where ai are polynomials in n. The corresponding generating function, H(x) def
=== ∑ hnxn, is

said to be a holonomic function.
Consider the holonomic sequence fn = (n!) defined by f0 = 1 and fn+1 − (n + 1) fn = 0.

Also consider the corresponding generating function F(x) = ∑n≥0 n!xn. We now show that
F(x) is transcendental and that truncation of F(x) is (conditionally) hard to compute. To
this end, we need the following Lemma 7.1, which follows directly from Proposition 2 in
[Kuh96].

Lemma 7.1 ([Kuh96]). If F(x) = ∑n≥0 fnxn is a power series in C[[x]] and the radius of convergence
of F(x) is zero then F(x) is transcendental.

Corollary 7.1. The power series F(x) = ∑n≥0 n!xn is transcendental.

Proof. It is clear that the radius of convergence of F(x) is zero (follows from the ratio test).
Hence Lemma 7.1 implies that F(x) is transcendental.

Theorem 7.5. If τ(trunc(F(x), d)) = poly(log d) then (d!) has complexity poly(log d).

Proof. We know that d!xd = trunc(F(x), d)− trunc(F(x), d− 1). Setting x = 1, we conclude.

22

8 SOS-complexity of truncation

A univariate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares (SOS) if

f =
s

∑
i=1

ci f 2
i , (4)

for some top-fanin s, where fi(x) ∈ F[x] and ci ∈ F.
Remark 8.1. In real analysis, the SOS representation of a polynomial f (x) ∈ R[x], is defined
where the coefficients ci > 0 (in fact, we can take ci = 1, by taking

√
ci inside fi); thus the

definition makes sense only for non-negative polynomials f . In this sense, (Equation (4)) is a
weighted SOS. However, we will skip the term "weighted" (also because F can be = C here).

Definition 8.1 (Support-sum size SF(f), [DST21]). The size of the representation of f in Equa-
tion (4) is the support-sum, the sum of the support size (or sparsity) of the polynomials fi.
The support-sum size of f , denoted by SF(f), is defined as the minimum support-sum of f .

We will often refer to SF(f) as the SOS-complexity of f . Note that, it is sub-additive,
i.e. for two polynomials f , g ∈ F[x], we have SF(f + g) ≤ SF(f) + SF(g).

Let | f |0 denote the sparsity of f . For any field F of characteristic 6= 2, we have | f |1/2
0 ≤

SF(f) ≤ 2 | f |0 + 2. The lower bound can be shown by counting monomials. The upper
bound is because f = (f + 1)2/4 − (f − 1)2/4. In particular, the SOS-model is complete
when char(F) 6= 2. We will drop the subscript F when it is clear or unnecessary in the
context.

Definition 8.2 (SOS-hardness, [DST21]). An "explicit" univariate (fd(x))d, where fd is of
degree d in F[x], is SOS-hard if S(fd) = ω(d1/2).

Remark 8.2. If S(fd) = O(d1/2), we call (fd) SOS-easy. Eg. fd = ∑d
i=0 xi is SOS-easy

(Lemma B.3).
It was shown in [DST21] that an SOS-hard family, with S(fd) ≥ d1/2+ε, for ε =

ω
(√

log log d
log d

)
, implies VP 6= VNP. We want to characterize the SOS-easy and SOS-hard

families, via natural operations like division and truncation. Towards that, we show the
following Theorem 8.1. We assume F = F (otherwise we can go to small extensions).

Theorem 8.1 (Truncation is SOS-easy). Let g, h ∈ F[x] are both constant-degree polynomials
s.t. g/h ∈ F[[x]]. Then, truncation of g/h upto degree-d is SOS-easy,i.e. S(trunc(g/h, d)) =
O(d1/2).

Before proving this, we need a few important lemmas.

Lemma 8.1. Let f ∈ F[x]. Then, S(f (k)) ≤ O(k S(f)).

Proof. Let f = ∑s
i=1 ci f 2

i be the minimal SOS representation with | fi|0 = ti, i.e. ∑i∈[s] ti =

S(f). Trivially, f (k) = ∑i∈[s] f 2(k)
i . Using the Leibniz rule (Lemma B.2), we have

f 2(k)
i =

2

k
2−1

∑
j=0

(
k
j

)
· f (j)

i · f (k−j)
i +

(
k

k/2

)(
f (k/2)
i

)2
if k ≡ 0 mod 2

2

k−1
2

∑
j=0

(
k
j

)
· f (j)

i · f (k−j)
i if k ≡ 1 mod 2

23

Write each f (j)
i · f (k−j)

i as

f (j)
i · f (k−j)

i = 1/4 · (f (j)
i + f (k−j)

i)2 − 1/4 · (f (j)
i − f (k−j)

i)2 .

Note that, | f (j)
i |0 ≤ ti, for each i ∈ [s] and j ∈ [0, k]. Thus, f 2(k)

i has a representation
with support-sum at most d k+1

2 e · 4 · ti ≤ O(k ti). Applying this to each i ∈ [s] shows that
f (k) has a SOS representation with support-sum at most O (k ·∑i ti) = O(k S(f)); and the
conclusion follows.

Lemma 8.2. S
(
trunc

(
1/(x− a)j , d

))
≤ O

(
j ·
√

d + j
)
, for any j ∈ Z≥0 .

Proof. Let gd(x) := trunc(1/x− a, d) = −1/a ·
(

∑d
i=0 (x/a)i

)
. By differentiation, it follows

that (1/(x− a))(j−1) = (−1)j−1 · (j− 1)! ·
(
1/(x− a)j). Thus, one can conclude that

trunc
(

1/(x− a)j , d
)

= (−1)j−1/(j− 1)! · g(j−1)
d+j−1(x) .

Note that, SF(gd+j−1(x)) = O
(√

d + j− 1
)

(Lemma B.3). Using Lemma 8.1, the conclusion
follows.

Now, we are well-equipped to prove Theorem 8.1.

Proof of Theorem 8.1. This proof is very similar to that of Theorem 5.1. Let m be the highest
power of x such that xm | h (i.e. xm+1 - h). Note that, as g/h ∈ F[[x]], xm | g as well
(Lemma B.1). Suppose, deg(h) =: dh. Thus m ≤ dh. As dh is a constant, so is m. Note that,
g1 := g/xm and h1 := h/xm are both constant degree polynomials.

By definition, g/h = g1/h1. Let g2 := g1 mod h1. Hence, g1/h1 = g1 div h1 + g2/h1
and deg(g2) < deg(h1). Finally, trunc(g1/h1, d) = g1 div h1 + trunc(g2/h1, d). However,
S(g1 div h1) = O(1), as it has constant degree. Thus, it suffices to bound S(trunc(g2/h1, d)).

Suppose, h1 factors over F[x], as h1 := ∏i∈[k] (x− ai)
di . Moreover, using Lemma 5.1, we

know that there are constants ai, bij ∈ F such that

g2(x)/h1(x) = ∑
i∈[k]

∑
j∈[di]

bij/(x− ai)
j .

Therefore,
trunc(g2/h1, d) = ∑

i∈[k]
∑

j∈[di]

bij · trunc
(

1/(x− ai)
j, d
)

.

Note that, di and k are constants. Using Lemma 8.2 and sub-additivity property of S, the
conclusion follows.

Remark 8.3. 1. It is unclear how to extend this proof to non-constant degree polynomials
g and h.

2. It is unclear whether S(g/h) is small, when h | g and S(g) is small and deg(h) is small.

24

9 Constant-free complexity of modxd and PosSLP

In this section, we investigate constant-free complexity of computing modxd and its intrinsic
connection with the positivity questions (i.e. PosSLP, for definition, see Problem 9.3).

Problem 9.1 (Modular complexity). If we have L(f) = s for some f ∈ C[x], what is complexity
of f mod xd?

We prove a conditional lower bounds on the constant-free complexity of f mod xd.

Theorem 9.1. If τ(f) = s implies τ(f mod xd) = poly(s, log d) for all f ∈ Z[x] then (2n
n)n∈N

has complexity poly(log n).

Proof. Suppose m = 2dlog de. Consider
√

1 + 4x, by Lemma F.1, we know that
√

1 + 4x ∈
Z[[x]]. By using Newton’s iteration, we can compute a polynomial g ∈ Z[x] such that g
mod xm =

√
1 + 4x mod xm and τ(g) = O(m) = (log d) (Using Newton’s iteration, see

Theorem 6.5 in [Jin19], also [KT78]). Now g mod xd = trunc(
√

1 + 4x, d). Our assumption
implies that L(trunc(

√
1 + 4x, d) = poly(log d). By a similar argument as in the proof of

Theorem F.1, we get that (2n
n)n∈N

has complexity poly(log n).
An alternative proof: we know τ((x + 1)2n) = O(log n). Now see that ((x + 1)2n)

mod xn+1 − ((x + 1)2n) mod xn = xn(2n
n). Therefore the assumption in the statement of the

theorem implies that (2n
n)n∈N

has complexity poly(log n).

Theorem 9.1 demonstrates that computing remainders modxd should be hard. Now we
pose the following simpler problem.

Problem 9.2 (Special divisibility question). If we have τ(f) = s for some f ∈ C = Z[x], what is
complexity of deciding if f mod xd = 0 , i.e., decide if xd divides f ? Here the input is a circuit C of
size s which computes f .

It turns out that the question essentially reduces to decide the positivity of a number,
computed by an SLP (Theorem 9.2).

Problem 9.3 (PosSLP [All+06]). Given an SLP P (without divisions), decide if the integer computed
by P is positive?

Remark 9.1. [All+06] proved that that the Generic Task of Numerical Computation is
polynomial-time equivalent to PosSLP and also showed that PosSLP lies in the counting
hierarchy CH.

Proposition 1 (Folklore). Given an an SLP P (with divisions) of length n computing a rational
number p

q , there exist a division free SLP Q = (q0, q1, . . . , q6n) such that q6n−1 = p and q6n = q.

Proof. Suppose P = (a0, a1, . . . , an). We split every gate ai in P to two gates bi and ci such
that ai =

bi
ci

. Now notice that:
b1

c1
+

b2

c2
=

b1c2 + b2c1

c1c2
.

b1

c1
· b2

c2
=

b1b2

c1c2
.

This implies the claimed SLP Q.

25

Lemma 9.1. Given two SLP P1, P2 (with divisions) of length n computing the rational numbers a
b

and p
q respectively, problem of deciding

∣∣ a
b

∣∣ > ∣∣∣ p
q

∣∣∣ is in PPosSLP.

Proof. By using Theorem 1, we first obtain SLPs Q = (q0, q1, . . . , q6n) and R = (r0, r1, . . . , r6n)
such that q6n−1 = a, q6n = b and r6n−1 = p, r6n = q. Using the PosSLP oracle, we find the
signs of a

b and p
q . After finding the signs, we can find SLPs (of length 6n + 1) which compute

|a| , |b| , |p| , |q|. This implies an SLP of length 24n + 7 which computes |a| |q| − |p| |b|. And
deciding |a| |q| − |p| |b| > 0 also decides

∣∣ a
b

∣∣ > ∣∣∣ p
q

∣∣∣.
Theorem 9.2. Problem 9.2 is in PPosSLP.

Proof. We are given a constant free circuit C of size s which computes f . It is easy to see
that deg(f) ≤ 2s. We define ‖ f ‖∞ to be the largest absolute value of coefficients of f .
By induction, it is easy to see that ‖ f ‖∞ ≤ 222s

. Let M be any positive integer such that
M > 4 · 2s · ‖ f ‖∞. Now we claim:

xd | f ⇐⇒
∣∣∣∣ f (1

M

)∣∣∣∣ < 1
4Md−1 .

Suppose xd | f . Then we have f = fdxd + fd+1xd+1 + · · ·+ fnxn. In this case:

f
(

1
M

)
=

1
Md−1

(
fd

M
+

fd+1

M2 + · · ·+ fi

Mi−d+1 + · · ·+ fn

Mn−d+1

)
. (5)

In Equation (5), the absolute value of each term fi
Mi−d+1 is less than 1

4·2s . Therefore
∣∣ f (1

M

)∣∣ <
1

4Md−1 .
Now consider the case when xd - g. Let m < d be the least positive integer such that xm

has non-zero coefficient in f . So f = fmxm + g with fm 6= 0 and g = fm+1xm+1 + · · ·+ fnxn.
By using the argument above, we obtain

∣∣g (1
M

)∣∣ < 1
4Mm . Also, | fmxm| ≥ 1

Mm . Therefore∣∣ f (1
M

)∣∣ > 3
4

1
Mm ≥ 3

4
1

Md−1 > 1
4Md−1 . Hence our claim is true.

Now notice that M has straight complexity at most 3s. Therefore f
(1

M

)
has straight

complexity (with divisions) at most 4s + 1. Also, 1
4Md−1 has straight complexity (with

divisions) at most 3s + 2 + 2 log d. Therefore, by using Lemma 9.1 we can check
∣∣ f (1

M

)∣∣ <
1

4Md−1 in PPosSLP. Therefore Problem 9.2 is in PPosSLP.

Theorem 9.2 and Remark 9.1 imply that Problem 9.2 lies in the counting hierarchy CH.

10 Conclusion

Our result on division elimination can be seen as evidence towards the possibility of a
positive solution of Problem 1.1. Though the current techniques may not solve Problem 1.1,
it is interesting to know division elimination (in circuits) is possible without using power
series.

It is known that the decision problem of divisibility testing in the high degree regime:
whether g (of size s and degree exp(s)) is divisible by a polynomial h (of size s and degree
exp(s)) is NP-hard, even when h is a supersparse polynomial [Pla84]. However, its NP-
hardness does not rule out the possibility of positive solution of Problem 1.1.

There are several avenues for extending our study of truncations of power series. Here,
we remark that, Theorem 1.3 implies that, for any prime p, there is a simple algebraic

26

function with degree of its minpoly = p, such that the truncation is conditionally hard. But
it is not clear whether it is true for composite (because i/k can reduce, when k 6= p).

One can also investigate truncation of algebraic power series over characteristic p.
[BCD16] showed that n-th coefficient of an algebraic power series over characteristic p
can be computed in O(log n, p)-time. One can study truncations of power series with 0− 1
coefficients and relate their hardness with classical assumptions in complexity, eg. truncated
Θ-functions [NP18].

Here are some immediate questions of interest which require rigorous investigation.

1. Can we remove the degree condition on g in Theorem 1.2?

2. Does Theorem 1.2 hold in the border sense? Note that, the degree of the approximate
circuit can have degree > d and thus homogenization seems necessarily blowing the
complexity in d.

3. Can we show that the truncation of any "simple" algebraic function (satisfying a minpoly
of degree > 2 with bounded coefficients) must be conditionally hard in Theorem 1.3?
In particular, can we show that (1 + 9x)1/3 is conditionally hard?

4. Does Theorem 1.1 hold in the SOS-complexity regime?

Acknowledgments

We thank Himanshu Shukla for several discussions on the complexity of truncated power
series, and for bringing the reference [CB08] to our attention. P. D. would like to thank
CSE, IIT Kanpur for the hospitality. A. S. would like to thank the Institute of Theoretical
Computer Science at Ulm University for the hospitality. We thank Thomas Thierauf and
Nitin Saxena for discussions and feedback on the draft.

References

[Ald84] Alexander Alder. “Grenzrang und Grenzkomplexität aus algebraischer und
topologischer Sicht.” PhD thesis. Zentralstelle der Studentenschaft, 1984.

[All+06] Eric Allender et al. “On the Complexity of Numerical Analysis.” In: SIAM
Journal on Computing 38 (Jan. 2006). Preliminary version in the 21st Annual IEEE
Conference on Computational Complexity (CCC’06).

[And20] Robert Andrews. “Algebraic Hardness Versus Randomness in Low Characteris-
tic.” In: 35th Computational Complexity Conference (CCC 2020). Vol. 169. Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020, 37:1–37:32. isbn: 978-3-95977-156-6.

[BR88] Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages.
Berlin, Heidelberg: Springer-Verlag, 1988. isbn: 0387186263.

27

10.1109/CCC.2006.30
https://drops.dagstuhl.de/opus/volltexte/2020/12589
https://drops.dagstuhl.de/opus/volltexte/2020/12589
https://dl.acm.org/doi/book/10.5555/52107

[BJ19] Markus Bläser and Gorav Jindal. “On the Complexity of Symmetric Polyno-
mials.” In: 10th Innovations in Theoretical Computer Science Conference (ITCS’19).
Vol. 124. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 47:1–
47:14.

[BCD16] Alin Bostan, Gilles Christol, and Philippe Dumas. “Fast computation of the Nth
term of an algebraic series over a finite prime field.” In: Proceedings of the ACM
on International Symposium on Symbolic and Algebraic Computation (ISSAC’16).
2016, pp. 119–126.

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. “On Algebraic
Branching Programs of Small Width.” In: J. ACM 65.5 (2018). (Preliminary
version in the 32nd Computational Complexity Conference (CCC’17), pp. 1–29.

[Bür04] Peter Bürgisser. “The complexity of factors of multivariate polynomials.” In:
Foundations of Computational Mathematics 4.4 (2004), pp. 369–396.

[Bür09] Peter Bürgisser. “On defining integers and proving arithmetic circuit lower
bounds.” In: Computational Complexity 18.1 (2009), pp. 81–103.

[BCS13] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity
theory. Vol. 315. Springer Science & Business Media, 2013.

[CC86] David V Chudnovsky and Gregory V Chudnovsky. “On expansion of algebraic
functions in power and Puiseux series, I.” In: Journal of Complexity 2.4 (1986),
pp. 271–294.

[Coo11] Michael Coons. “THE TRANSCENDENCE OF SERIES RELATED TO STERN’S
DIATOMIC SEQUENCE.” In: International Journal of Number Theory 06 (Nov.
2011). doi: 10.1142/S1793042110002958.

[CB08] Michael Coons and Peter Borwein. “Transcendence of Power Series for Some
Number Theoretic Functions.” In: Proceedings of the American Mathematical Society
137 (July 2008). doi: 10.1090/S0002-9939-08-09737-2.

[DMS96] Wellington De Melo and Benar Fux Svaiter. “The cost of computing integers.”
In: Proceedings-American Mathematical Society 124 (1996), pp. 1377–1378.

[DL78] Richard A. Demillo and Richard J. Lipton. “A probabilistic remark on algebraic
program testing.” In: Information Processing Letters 7.4 (1978), pp. 193 –195. issn:
0020-0190.

[Dut21] Pranjal Dutta. “Real tau-Conjecture for sum-of-squares: A unified approach
to lower bound and derandomization.” In: 16th International Computer Science
Symposium in Russia (CSR 2021). 2021.

[DSS18] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. “Discovering the roots: Uni-
form closure results for algebraic classes under factoring.” In: Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing. 2018, pp. 1152–
1165.

28

https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://doi.org/10.4230/LIPIcs.ITCS.2019.47
https://dl.acm.org/doi/10.1145/2930889.2930904
https://dl.acm.org/doi/10.1145/2930889.2930904
https://doi.org/10.1145/3209663
https://doi.org/10.1145/3209663
https://arxiv.org/abs/1812.06828
https://link.springer.com/article/10.1007/s00037-009-0260-x
https://link.springer.com/article/10.1007/s00037-009-0260-x
https://www.sciencedirect.com/science/article/pii/0885064X86900063
https://www.sciencedirect.com/science/article/pii/0885064X86900063
https://www.worldscientific.com/doi/abs/10.1142/S1793042110002958
https://www.worldscientific.com/doi/abs/10.1142/S1793042110002958
https://doi.org/10.1142/S1793042110002958
https://doi.org/10.1090/S0002-9939-08-09737-2
https://www.ams.org/journals/proc/1996-124-05/S0002-9939-96-03173-5/S0002-9939-96-03173-5.pdf
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://www.sciencedirect.com/science/article/abs/pii/0020019078900674
https://drive.google.com/file/d/1X8eo9GM4SCNsC2vWjPbUwMX0vff5i2k3/view
https://drive.google.com/file/d/1X8eo9GM4SCNsC2vWjPbUwMX0vff5i2k3/view
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf

[DST21] Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. “A Largish Sum-Of-Squares
Implies Circuit Hardness and Derandomization.” In: 12th Innovations in Theo-
retical Computer Science Conference (ITCS 2021). Vol. 185. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2021, 23:1–23:21.

[GS80] J.von zur Gathen and V. Strassen. “Some polynomials that are hard to compute.”
In: Theoretical Computer Science 11.3 (1980), pp. 331 –335. issn: 0304-3975.

[GMQ16] Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. “Boundaries of
VP and VNP.” In: 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016). Vol. 55. 2016, 34:1–34:14.

[Gro+20] Joshua A Grochow et al. “Complexity in ideals of polynomials: questions on
algebraic complexity of circuits and proofs.” In: Bulletin of EATCS 2.130 (2020).

[Jin19] Gorav Jindal. “On approximate polynomial identity testing and real root find-
ing.” PhD thesis. Saarland University, 2019. doi: http://dx.doi.org/10.22028/
D291-29880.

[Kal86] Erich Kaltofen. “Uniform closure properties of p-computable functions.” In:
Proceedings of the eighteenth annual ACM symposium on Theory of computing. 1986,
pp. 330–337.

[Kal87] Erich Kaltofen. “Single-factor Hensel lifting and its application to the straight-
line complexity of certain polynomials.” In: Proceedings of the 19th annual ACM
symposium on Theory of computing (STOC’87). 1987, pp. 443–452.

[Koi05] Pascal Koiran. “Valiant’s model and the cost of computing integers.” In: compu-
tational complexity 13.3 (2005), pp. 131–146.

[Koi11] Pascal Koiran. “Shallow circuits with high-powered inputs.” In: Innovations in
Computer Science (ICS) (2011).

[KP11] Pascal Koiran and Sylvain Perifel. “Interpolation in Valiant’s theory.” In: Com-
putational Complexity 20.1 (2011), pp. 1–20.

[Koi+15] Pascal Koiran et al. “A τ-Conjecture for Newton Polygons.” In: Foundations of
computational mathematics 15.1 (2015), pp. 185–197.

[Kuh96] FV Kuhlmann. On convergent power series. 1996.

[KT78] Hsiang Kung and Joseph Traub. “All Algebraic Functions Can Be Computed
Fast.” In: J. ACM 25 (Apr. 1978), pp. 245–260.

[LR09] Dick Lipton and Ken Regan. Factoring and Factorials. Feb. 2009. url: https:
//rjlipton.wordpress.com/2009/02/23/factoring-and-factorials/.

[Lip78] Richard J Lipton. “Polynomials with 0-1 coefficients that are hard to evaluate.”
In: SIAM Journal on Computing 7.1 (1978). Preliminary version in the 16th Annual
Symposium on Foundations of Computer Science (FOCS 1975), pp. 61–69.

[Lip94] Richard J Lipton. “Straight-line complexity and integer factorization.” In: In-
ternational Algorithmic Number Theory Symposium (ANTS 94). Springer. 1994,
pp. 71–79.

29

https://drops.dagstuhl.de/opus/volltexte/2021/13562
https://drops.dagstuhl.de/opus/volltexte/2021/13562
http://www.sciencedirect.com/science/article/pii/0304397580900201
https://core.ac.uk/download/pdf/62922137.pdf
https://core.ac.uk/download/pdf/62922137.pdf
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
https://doi.org/http://dx.doi.org/10.22028/D291-29880
https://doi.org/http://dx.doi.org/10.22028/D291-29880
https://dl.acm.org/doi/abs/10.1145/12130.12163
https://dl.acm.org/doi/10.1145/28395.28443
https://dl.acm.org/doi/10.1145/28395.28443
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00477023v4/document
https://link.springer.com/article/10.1007/s00037-011-0002-8
https://link.springer.com/article/10.1007%2Fs10208-014-9216-x
https://www.mathi.uni-heidelberg.de/~roquette/KONVPOTREIHEN.pdf
https://dl.acm.org/doi/10.1145/322063.322068
https://dl.acm.org/doi/10.1145/322063.322068
https://rjlipton.wordpress.com/2009/02/23/factoring-and-factorials/
https://rjlipton.wordpress.com/2009/02/23/factoring-and-factorials/
https://epubs.siam.org/doi/abs/10.1137/0207004?journalCode=smjcat
https://link.springer.com/chapter/10.1007/3-540-58691-1_45

[LS78] Richard J Lipton and Larry J Stockmeyer. “Evaluation of polynomials with
super-preconditioning.” In: Journal of Computer and System Sciences 16.2 (1978),
pp. 124–139.

[Mah14] Meena Mahajan. “Algebraic Complexity Classes.” In: Perspectives in Computa-
tional Complexity. Springer, 2014, pp. 51–75.

[Mor97] Carlos Moreira. “On asymptotic estimates for arithmetic cost functions.” In:
Proceedings of the American Mathematical Society 125.2 (1997), pp. 347–353.

[Mul12] Ketan D Mulmuley. “The GCT program toward the P vs. NP problem.” In:
Communications of the ACM 55.6 (2012), pp. 98–107.

[NP18] Danny Nguyen and Igor Pak. “Complexity of short generating functions.” In:
Forum of Mathematics, Sigma. Vol. 6. Cambridge University Press. 2018.

[Ore22] Øystein Ore. “Über höhere kongruenzen.” In: Norsk Mat. Forenings Skrifter 1.7
(1922), p. 15.

[Pak18] Igor Pak. “Complexity problems in enumerative combinatorics.” In: Proceedings
of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited
lectures. World Sci. Publ., Hackensack, NJ, 2018, pp. 3153–3180.

[Pla84] David A Plaisted. “New NP-hard and NP-complete polynomial and integer
divisibility problems.” In: Theoretical Computer Science 31.1-2 (1984). Preliminary
in the 17th Annual Symposium on Foundations of Computer Science (FOCS
1976), pp. 125–138.

[Sch80] Jacob T Schwartz. “Fast probabilistic algorithms for verification of polynomial
identities.” In: Journal of the ACM (JACM) 27.4 (1980), pp. 701–717.

[Sha79] Adi Shamir. “Factoring numbers in O (logn) arithmetic steps.” In: Information
Processing Letters 8.1 (1979), pp. 28–31.

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent
results and open questions.” In: Foundations and Trends® in Theoretical Computer
Science 5.3–4 (2010), pp. 207–388.

[SS95] Michael Shub and Steve Smale. “On the intractability of Hilbert’s Nullstellensatz
and an algebraic version of “NP 6= P?”” In: Duke Math. J. 81.1 (1995). A cele-
bration of John F. Nash, Jr., 47–54 (1996). issn: 0012-7094. doi: 10.1215/S0012-
7094-95-08105-8. url: https://doi.org/10.1215/S0012-7094-95-08105-8.

[Str73] Volker Strassen. “Vermeidung von Divisionen.” In: Journal für die reine und
angewandte Mathematik 264 (1973), pp. 184–202.

[Val82] L Valiant. “Reducibility by algebraic projections in: Logic and Algorithmic.” In:
Symposium in honour of Ernst Specker. 1982, pp. 365–380.

[Val79] Leslie G Valiant. “Completeness classes in algebra.” In: Proceedings of the 11th
Annual ACM symposium on Theory of computing. ACM. 1979, pp. 249–261.

[VZGG13] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge university press, 2013.

[Wac] Wact. Some Accessible Open Problems. Workshop on Algebraic Complexity Theory
(WACT 2016).

30

https://www.sciencedirect.com/science/article/pii/0022000078900417
https://www.sciencedirect.com/science/article/pii/0022000078900417
https://link.springer.com/chapter/10.1007/978-3-319-05446-9_4
https://www.jstor.org/stable/2161660
https://dl.acm.org/doi/10.1145/2184319.2184341
https://arxiv.org/abs/1702.08660
https://www.worldscientific.com/doi/abs/10.1142/9789813272880_0176
https://www.sciencedirect.com/science/article/pii/0304397584901300
https://www.sciencedirect.com/science/article/pii/0304397584901300
https://dl.acm.org/doi/10.1145/322217.322225
https://dl.acm.org/doi/10.1145/322217.322225
https://www.sciencedirect.com/science/article/abs/pii/0020019079900875
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://www.worldscientific.com/doi/abs/10.1142/9789812792839_0023
https://www.worldscientific.com/doi/abs/10.1142/9789812792839_0023
https://doi.org/10.1215/S0012-7094-95-08105-8
https://doi.org/10.1215/S0012-7094-95-08105-8
https://doi.org/10.1215/S0012-7094-95-08105-8
https://dl.acm.org/doi/10.1145/800135.804419
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf

[Wag86] Klaus W Wagner. “The complexity of combinatorial problems with succinct
input representation.” In: Acta informatica 23.3 (1986), pp. 325–356.

[Zip79] Richard Zippel. “Probabilistic Algorithms for Sparse Polynomials.” In: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation.
EUROSAM ’79. 1979, pp. 216–226. isbn: 3-540-09519-5.

A Basics in Arithmetic circuit complexity

An arithmetic circuit over a field F is a layered directed acyclic graph that uses field operations
{+,×} and computes a polynomial. It can be thought of as an algebraic analog of Boolean
circuits. The leaf nodes are labeled with the input variables x1, . . . , xn and constants from
F. Other nodes are labeled as addition and multiplication gates. The root node outputs the
polynomial computed by the circuit. At times, we also use ÷ gate in the circuit.

For a polynomial f , the size of the smallest circuit computing f is denoted by L(f), it is
the arithmetic circuit complexity of f . Here, size of an arithmetic circuit is assumed to be the
number of nodes (variables included).

In complexity classes, we specify an upper bound on these parameters. Valiant’s class VP
contains the families of n-variate polynomials of degree poly(n) over F, computed by circuits
of poly(n)-size. The class VNP can be seen as a non-deterministic analog of the class VP. A
family of n-variate polynomials (fn)n over F is in VNP if there exists a family of polynomials
(gn)n in VP such that for every x = (x1, . . . , xn) one can write fn(x) = ∑w∈{0,1}t(n) gn(x, w),
for some polynomial t(n) which is called the witness size. It is straightforward to see
that VP ⊆ VNP and conjectured to be different (Valiant’s Hypothesis [Val79]). Equivalently,
symbolic permanentn×n requires nω(1) size circuit.

One can define the class VP0 (respectively, VNP0) as the analogue of VP (respectively,
VNP) in the constant-free regime. For more details see [Koi05; KP11; Mah14; SY10; BCS13].

Coefficient-extraction in arithmetic circuits is easy using interpolation, see the folklore
lemma below, for a proof see [SY10].

Lemma A.1 (Coefficient-Extraction). Let L(f) = s with f ∈ F[x] and f = ∑0≤i≤d fixi
n with

fi ∈ F[x1, x2, . . . , xn−1]. Then there is a circuit C of size O(sd2) computing f0, f1, . . . , fd.

The next lemma is a homogenization trick, used in [Str73]. For a proof, see [SY10,
Theorem 2.2].

Lemma A.2 (Homogenization). If f has an arithmetic circuit of size s, then for any d, there is a
circuit of size O(sd2) computing Hom≤d f .

Lemma A.3. Let f be a polynomial F[x], computed by a size s circuit C. Then, there exists a circuit
C′ of size O(sm2) which computes f , f (1), f (2), . . . , f (m).

Proof. We split every G gate in C to n + 1 gates G0, . . . , Gm in C′. The property we want is
that if the gate G is computing the polynomial g in C then Gk computes the polynomial g(k)

in C′. Suppose G is a + gate in C with children gates computing the polynomials g1 and
g2. Now we know that g(k) = g(k)1 + g(k)2 . Thus we can easily propagate the derivatives on
addition/subtraction gates. If G is a × gate then using Lemma B.2, we know that:

(g1g2)
(k) =

k

∑
i=0

(
k
i

)
g(k−i)

1 g(i)2

31

https://link.springer.com/article/10.1007/BF00289117
https://link.springer.com/article/10.1007/BF00289117
https://link.springer.com/chapter/10.1007/3-540-09519-5_73

Thus we can computes g, g(1), g(2), . . . , g(m) using additional O(m2) gates. Therefore C′ has
O(sm2) gates.

Polynomial Identity Testing (PIT) is a fundamental question in algebraic complexity. It
asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
It is known that efficient evaluation at random points lead to a randomized polynomial time
algorithm for PIT. This is known as Polynomial Identity Lemma [Ore22; DL78; Zip79; Sch80].

Lemma A.4 (Polynomial Identity Lemma). Let p(x) be an n-variate nonzero polynomial of degree
d. Let S ⊆ F be a finite set. Then,

Pr
α∼Sn

[p(α) = 0] ≤ d/|S| .
Here, α ∈ Sn is picked independently and uniformly at random.

B Basic mathematical tools

Lemma B.1 (Power series valuation). Let g, h ∈ F[x] such that g/h ∈ F[[x]]. Let m (respec. n)
be the highest power dividing g (respec. h) i.e. xm | g and xm+1 - g (respec. for h). Then, m ≥ n.

Proof. Suppose, m < n. Note that, there exists 0 6= α ∈ F, such that h = α xn · (1 + x h̃), for
some h̃ ∈ F[x]. Similarly, let g = β xm · (1 + x g̃), for some g̃ ∈ F[x] and β ∈ F. Thus,

g
h

=
β

α
· xm−n · 1 + x g̃

1 + x h̃

=
β

α
· xm−n · (1 + x g̃) · (1 + x h̃ + (x h̃)2 + · · ·)

6∈ F[[x]] , a contradiction .

Lemma B.2 (General Leibniz rule). If f and g are k-time differentiable functions, then

(f g)(k) =
k

∑
i=0

(
k
i

)
f (k−i) g(i) .

Lemma B.3. Define fd := ∑d
i=0 xi. Then, SF(fd) ≤ 9 · d1/2, over any field F.

Proof of Lemma B.3. Fix some n ∈N. Note that,

fn2−1(x) =
(

1 + x + . . . + xn−1
)
·
(

1 + xn + . . . + xn(n−1)
)

.
As each factor has n terms, we can write the product as sum of two squares with each
polynomial having at most 2n terms. Therefore,

SF(fn2−1(x)) ≤ 4 n . (6)
For general d, let n ∈N be such that n2 − 1 ≤ d < (n + 1)2 − 1. By definition,

fd(x) = fn2−1(x) + xn2 · fd−n2(x) .
Note that, | fd−n2(x)|0 ≤ d + 1− n2 ≤ 2n. Thus, using the trivial upper bound on S(f), we
must have

SF(xn2 · fd−n2(x)) ≤ 2 · (2n + 1) . (7)

Combining Equation (6) and Equation (7), we get that SF(fd(x)) ≤ 8 · d
√

d + 1e + 2 , and
the conclusion follows.

32

C Monic transformation

Given any polynomial p(x) in variables x = (x1, . . . , xn), there is a standard trick to make it
monic in xn by applying a linear transformation on the variables: for α = (α1, . . . , αn−1) ∈
Fn−1, let

τα : xi 7→ αixn + xi ,

for i ∈ [n− 1], and xn 7→ xn. Note that deg(τα(p)) ≤ deg(p) [it may decrease because of
non-trivial cancellations]. It is easy to see that τα is an invertible map. We show that τα(p) is
monic in xn, for a random transformation τα i.e. when α ∈ Fn−1 chosen randomly. In fact, we
show that this map can simultaneously make polynomials monic given that the field F is
sufficiently large.

Lemma C.1 (Monic Transformation). Let p1(x), . . . , pm(x) be m-many polynomial of degree d.
Let S ⊆ F be a finite set. For α ∈ Sn−1, picked independently and uniformly at random,

Pr

[
m∧

i=1

τα(pi(x)) is monic in xn

]
≥ 1− dm

|S| .

Proof. Consider the terms of degree d of a non-zero polynomial p ∈ F[x]. Define the set

T := {β = (β1, . . . , βn) | |β|0 = ∑
i

βi = d, and coefxβ(p) 6= 0} .

We also denote β′ = (β1, . . . , βn−1), the first n − 1-coordinates of β, and similarly x′ =
(x1, . . . , xn−1). Note that, τα(xβ) = αβ′ · xd

n + (lower terms in xn).
Observe that the homogeneous component of degree d in τα(p) can be written as

ad,p(x) = ∑β∈T cβ · τα(xβ), for some constants cβ. Trivially, ad,p is a nonzero polynomial, and
moreover,

ad,p(α) = (∑
β∈T

cβαβ′) · xd
n + (lower terms in xn).

In order to make τα(p) monic in xn, we want (∑β∈T cβαβ′) 6= 0. So, define, another
polynomial bd,p(x′) = (∑β∈T cβx′β

′
). It can have degree atmost d.

As we want each τα(p) monic where p = pm(x), it suffices to find α such that

∏i∈[m] bd,pi(α) 6= 0. Note that, deg
(

∏i∈[m] bd,pi(x)
)
≤ d · m. Thus, when we pick α at

random, the probability that ∏i∈[m] bd,pi(α) = 0, is at most ≤ dm/|S|, from Lemma A.4.
Hence, the conclusion follows.

D Truncation is hard

One can show that truncation (or cost of mod) cannot be expected to be logarithmically
dependent on the precision (unless permanent is easy), reminiscent to [Val82]. We sketch the
proof for the sake of completeness.

Lemma D.1 (Folkore). Suppose, for any polynomial f (x) ∈ F[x] of size s, Hom≤d f (x) can be
computed by circuit of size poly(s, log d), then VP = VNP.

33

Proof. Consider the following polynomial of n2 + n variables, where we denote
y = (y1, . . . , yn), and z = (z1,1, . . . , zn,n):

g(y, z) := ∏
i∈[n]

 ∑
j∈[n]

yjzi,j

Observe that coefficient of y1 . . . yn in g is nothing but perm(z1,1, . . . , zn,n), the permanent

polynomial on variables z. Further, each coefyα(g) is a multilinear polynomial in z, of degree
n. Consider a new polynomial f by substituting yi = x(n+1)i−1

(Kronecker substitution). In
particular, let

f (x, z) := g(x, xn+1, x(n+1)2
, . . . , x(n+1)n−1

, z).

As Kronecker substitution gives different weights to different monomials and the max-
imum degree can be n · (n + 1)n−1 (i.e. when yn

n gets substituted), it is easy to deduce
that

f =
n·(n+1)n−1

∑
k=0

ck(z) · xk .

Here, each ck(z) is a multilinear polynomial of degree n. Moreover, from the above discus-
sion,

cj(z1,1, . . . , zn,n) = perm(z1,1, . . . , zn,n) , where j := 1 + (n + 1) + . . . + (n + 1)n−1 .

In that case, the degree of cj(z) · xj is m := j + n = nO(n). Thus, we can conclude that
Hom=m(f) = cj(z) · xj = perm(z) · xj.

Observe that L(g) ≤ poly(n). After Kronecker substitution, the blowup in size in still
poly i.e. L(f) ≤ poly(n). Hence, assuming the hypothesis, we would get that

perm(z) · xj = Hom=m(f) = Hom≤m(f) − Hom≤m−1(f) ,
has poly(n) size circuit. This implies perm(z) has poly(n) size circuit (by substituting x = 1),
i.e. VP = VNP.

E Details for Section 3

Here we prove Lemma 3.1. For completeness, we again state the lemma.

Lemma E.1. Suppose g = ∑i≤d1
gixi and h = xd2 + ∑i<d2

hi xi, in F[x]. Suppose g = hq + r,
with r = ∑i<d2

rixi and q = ∑i≤d1−d2
qixi. Then, there is a circuit of size O(d1 d2), whose inputs

are all hi, gi and outputs are all ri, qi.

Proof. We shall denote the desired circuit by Cd1,d2 . So we want:
Cd1,d2(g0, g1, . . . , gd1 , h0, h1, . . . , hd2) = (r1, r2, . . . , rd2−1, q0, q1, . . . , qd1−d2).

If d1 < d2, we know that q = 0. Hence:
Cd2−1,d2(g0, g1, . . . , gd1−1, h0, h1, . . . , hd1) = (g1, g2, . . . , gd1−1).

If d1 > d2, we perform a long division step:

g← g− h · xd1−d2 · gd1 = ∑
i≤d1−d2−1

gi xi +
d1−1

∑
i≥d1−d2

(
gi − hi−(d1−d2) gd1

)
xi.

34

Note that, we can set qd1−d2 = gd1 . Define:

g def
=== (g0, g1, . . . , gd1−d2−1, gd1−d2 − h0gd1 , . . . , gd1−1 − hd2−1gd1) .

Then we have:
Cd1,d2(g0, g1, . . . , gd1 , h0, h1, . . . , hd2) = (Cd1−1,d2(g, h0, h1, . . . , hd2), gd1). (8)

Hence if S(d1, d2) is the size of Cd1,d2 then Equation (8) implies that S(d1, d2) = S(d1− 1, d2) +
2d2 and S(d2 − 1, d2) = 2d2 − 1. Therefore S(d1, d2) ≤ 2 d1 d2.

F Conditional hardness of
√

1 + 4x

We first show that
√

1 + 4x ∈ Z[[x]].

Lemma F.1 (Folklore). We have
√

1 + 4x = ∑i≥0 (2i
i)/(2i− 1) xi ∈ Z[[x]].

Proof. We know that,
√

1 + 4x = ∑i≥0 (
1/2

i)(4x)i. Now, it is easy to see that:(1
2
d

)
=

1
2 ·
(1

2 − 1
)
·
(1

2 − 2
)
· · · · ·

(1
2 − d + 1

)
d!

= (−1)d−1 ·
(2d

d)

4d(2d− 1)
.

This implies that
√

1 + 4x = ∑i≥0 (2i
i)/(2i− 1) xi. Further, it is also easy to verify that(

2d
d

)
=

(
4
(

2d− 2
d− 1

)
−
(

2d
d

))
· (2d− 1) =⇒

(
2d
d

)
/(2d− 1) ∈ N .

Therefore,
√

1 + 4x ∈ Z[[x]], as desired.

Lemma F.1 implies that all the truncations of
√

1 + 4x can be computed by division-free
circuits.

Theorem F.1. If τ(trunc
(√

1 + 4x, d
)
= O(logc d), for some constant c ∈ N, then (d!) is easy.

In fact, τ(d!) = O(logc+1 d).

Proof. By assumption, we know that τ(trunc
(√

1 + 4x, d− 1
)
= O(logc d) and

τ(trunc
(√

1 + 4x, d
)
= O(logc d). By using Lemma F.1, we see that:

trunc
(√

1 + 4x, d
)
− trunc

(√
1 + 4x, d− 1

)
= (−1)d−1xd (2d

d)

2d− 1
.

Hence, τ((−1)d−1xd · (2d
d)/(2d − 1) = O(logc d). Therefore

(
(−1)n−1(2d

d)/(2d− 1)
)

has

complexity O(logc d) by substituting x = 1. This also implies that (2d
d) has complexity

O(logc d). Invoking Lemma 5.3, we conclude.

Corollary F.1. If (d!) has complexity ω(poly(log d)), then τ(trunc
(√

1 + 4x, d
)
= ω(poly(log d)).

G Integral power series: Details for Section 6

We will use some number-theoretic tool to show that the candidate power series is integral.
So, before delving into that, we go through some preliminary tools being used.

Fact G.1 (Folklore). Product of any k consecutive positive integers is divisible by k!.

35

Definition G.1 (p-adic valuation). Let p be a prime and n ∈ Z. We denote p-adic valuation
of n as νp(n) to be the highest exponent such that pνp(n) | n. Formally, νp : Z −→N defined
by

νp(n) = max{v ∈ N : pv | n} .

Note that, by definition, νp(rad(n)) = 1 if p | n, and 0 otherwise.

Theorem G.1 (Legendre’s formula). For a prime p and n ∈N, νp(n) =
∞

∑
j=1
bn/pjc .

Now, we prove integrality of a power series which is our candidate algebraic function for
Theorem 1.3. It suffices to prove the integrality of (1 + k2x)1/k, which we prove below.

Theorem G.2 (Restatement of Theorem 6.1, Integral power series). Let k ∈ N. Define
fk(x) :=

(
1 + k2 · x

)1/k. Then, fk(x) ∈ Z[[x]].

Proof. By binomial expansion, fk ∈ Q[[x]]. Let fk(x) = ∑d≥0 ad · xd. We’ll prove by strong
induction that indeed the coefficients are integers.

Obviously a0 = 1, and assume that for m ∈N we have proved that a` ∈ Z for 0 ≤ ` < m.
The coefficient at xm in

(
∑∞

d=0 adxd)k
=
(
1 + ∑∞

d=1 adxd)k is equal to k · am plus a bunch of
terms that we know are integer by the induction hypothesis; hence k · am = b ∈ Z. But by
the binomial series formula we have

am = k2m ·
(

1/k
m

)
=

k2m ·∏m−1
j=0 (1/k− j)

m!
=

km ·∏m−1
j=0 (1− kj)

m!
.

It suffices to prove that k | b. If we can show that νp(b) ≥ νp(k) for every prime p dividing k,
this would certainly imply that k | b. So, fix a prime p | k. Note that

b = k · am = X/m! , where X := km+1 ·
m−1

∏
j=0

(1− kj) .

As, p | k, we must have ∏m−1
j=0 (1 − kj) ≡ 1 mod p. Thus, νp(X) = νp

(
km+1) =

(m + 1)νp(k). And by Theorem G.1, νp(m!) = ∑∞
j=1
⌊
m/pj⌋ < ∑∞

j=1 m/pj = m/p− 1 ≤ m.
Thus,

νp(b) = νp(X)− νp(m!) ≥ (m + 1)νp(k)−m ≥ νp(k) ,

as we wanted. Putting it together gives am ∈ Z proving the inductive step. Hence, the
conclusion follows.

H From hardness of algebraic functions to hardness of permanent
in constant-free regime

Here, we sketch why one of the truncations being hard implies permanent does not have
small constant-free circuits (implying VP0 6= VNP0). The proof is reminiscent to [Bür09]. We
point out the main components. We denote Permn as the permanent polynomial of a n× n
symbolic matrix.

36

Theorem H.1 (Hardness of permanent). Let us fix i, k ∈ N such that i < k. Further, assume
that, L

(
trunc

(
(1 + k2 x)i/k) , d

)
= ω(poly(log d)), then τ(Permn) = ω(poly(log n)).

Remark H.1. One can also prove a conditional implication referring to the original Valiant
hypothesis VPC 6= VNPC, assuming GRH (Generalized Riemann Hypothesis). This has also
been pointed out in [Bür09, Corollary 4.2]. This basically follows from the fact that under
GRH and assuming VP = VNP, then CH ⊆ P/poly.

Before going into the proof sketch, we define CH-definable sequences. The counting
hierarchy is denoted by CH [Wag86]. The class of poly-size circuits can be expressed by the
nonuniform advice class P/poly.

Let q(n) be a polynomial. Let a = (a(n, `))n∈N, `≤q(n) be a sequence of integers such
that a(n, `) has exponential bitsize, i.e., |a(n, `)| ≤ 2nc

for all k and some constant c. We think
of n, ` as being represented in binary using O(log n) bits.

With the sequence, we associate a language that determines the bits of a(n, `) in binary,
Sgn(a) = {(n, `) | a(n, `) ≥ 0},
Bit(a) = {(n, `, j, b) | the j-th bit of a(n, `) equals b} .

Definition H.1 ([Bür09, Definition 3.2]). The sequence a = (a(n, `))n,` of integers of expo-
nential bitsize is CH-definable if Sgn(a) ∈ CH and Bit(a) ∈ CH.

The sequences of integers that are definable in CH are closed under iterated addition,
iterated multiplication, and integer division [Bür09, Theorem 3.10]. Koiran et al. [KP11,
Theorem 2.14] used the binary version of the same theorem.

Theorem H.2. [Bür09; KP11] (i) Let q(n) be a polynomial and suppose (a(n, `))n∈N,`≤q(n) is
CH-definable. Then the sum- and product-sequences b(n) and c(n) are CH-definable, where

b(n) =
q(n)

∑
`=0

a(n, `) and c(n) =
q(n)

∏
`=0

a(n, `) .

(ii) Suppose (s(n))n∈N and (t(n))n∈N are definable in CH and t(n) > 0 for all n. Then the sequence
of quotients bs(n)/t(n)cn∈N is definable in CH.

Now, we state the most important theorem proven in [Bür09, Theorem 4.1] from which
Theorem H.1 will follow almost trivially.

Theorem H.3. Let q be a polynomially bounded function and (b(n, `))n∈N,`≤q(n) and (d(n))n∈N

are definable in CH. Let

fn =
q(n)

∑
`=0

b(n, `)x` ∈ Z[x] , gn = fn/d(n) ∈ Q[x] .

If τ(Permn) = poly(log n), then LQ(gn) = poly(log n).

Now, we are ready to prove Theorem H.1.

Proof sketch of Theorem H.1. Let, (1 + k2 · x)i/k := ∑j≥0 ai,j xj ∈ Z[[x]]. By binomial expan-
sion, we have

ai,j = k2j ·
(

i/k
j

)
= kj/j! ·

j−1

∏
`=0

(i− k`) .

37

As k is a constant, ∏
j−1
`=0 (i − k`), j!, kj are all trivially definable in CH, by Theorem H.2.

Further, by Theorem G.2, ai,j ∈ Z implying (ai,j) CH-definable, again by Theorem H.2.
The rest directly follows from Theorem H.3. Note that, if τ(Permn) = poly(log n), then

from the above argument, truncation of the power series upto n i.e. fn = ∑n
j=0 ai,jxj must be

easy, as the coeffecients are CH-definable. This directly contradicts our assumption that the
truncation is hard. Hence, permanent cannot have polynomial size constant-free circuits.

I Algorithm

Here, we write the algorithm for the first part of Theorem 1.3.

38

Algorithm 1 Integer factorization assuming the truncations of (1 + k2x)i/k being easy for
each i
Input: A composite positive integer n.
Output: A non-trivial factor of n.

1: Define N(d, k) := k(k−2)d(dk)!
(d!)k .

2: m ← k.
3: while true do
4: Compute gcd(N(m, k), n).
5: if gcd(N(m, k), n) = 1 then
6: m ← mk.
7: else if gcd(N(m, k), n) = n then
8: t ← m. . This m is the desired t.
9: break

10: else
11: return gcd(N(m, k), n) . Here gcd(N(m, k), n) is a non-trivial factor of n.
12: end if
13: end while

. At this step, all the primes dividing n are in the interval [t + 1, tk].
14: a ← 1.
15: b ← t.
16: while true do
17: if b− a ≤ 1 then
18: s ← a. . This a is the desired s.
19: break
20: end if
21: c ← d(a + b)/2e.
22: Compute gcd(N(c, k), n).
23: if gcd(N(c, k), n) = 1 then
24: a ← c.
25: else if gcd(N(c, k), n) = n then
26: b ← c.
27: else
28: return gcd(N(c, k), n) . Here gcd(N(c, k), n) is a non-trivial factor of n.
29: end if
30: end while

. At this step, all the primes dividing n are in the interval [sk + 1, (s + 1)k].
31: for i = sk + 1 to (s + 1)k do
32: if i divides n then
33: return i . Here i is a non-trivial factor of n.
34: end if
35: end for

39

	Introduction
	Our contributions
	Limitations of known techniques
	Proof idea

	Preliminaries
	Division elimination in high-degree circuits
	Division of Univariate Polynomials
	Division of Multivariate Polynomials
	Division in border complexity

	Implications of division elimination in algebraic complexity
	Circuit complexity of rational function truncation
	Upper bounds for rational function truncation
	Hardness results for rational function truncation.

	Hardness of Truncation of algebraic functions
	Hardness of truncation of algebraic functions and integer factoring
	Hardness of truncation of algebraic functions and complexity of multiple of n!

	Complexity of the truncation of transcendental power series
	The truncation of transcendental power series can be easy
	The truncation of Transcendental power series can be hard

	SOS-complexity of truncation
	Constant-free complexity of and PosSLP
	Conclusion
	Basics in Arithmetic circuit complexity
	Basic mathematical tools
	Monic transformation
	Truncation is hard
	Details for
	Conditional hardness of
	Integral power series: Details for
	From hardness of algebraic functions to hardness of permanent in constant-free regime
	Algorithm

