Arithmetic Circuit Complexity of Division and Truncation

> Pranjal Dutta (Chennai Mathematical Institute \& IIT Kanpur)
> Gorav Jindal (Technische Universität Berlin, Berlin) Anurag Pandey (Saarland University, Saarbrücken) Amit Sinhababu (Aalen University, Germany)

Computational Complexity Conference (CCC) 2021
June 24, 2021

Motivation

- Suppose we can "compute" polynomials g, h efficiently.
- If h divides g, can we also "compute" $f \xlongequal{\text { def }} \frac{g}{h}$ efficiently?
- What do "compute" and "efficiently" mean here?

Polynomials and Arithmetic Circuits

- Every arithmetic circuit computes a polynomial and vice versa.

- Above circuit computes the polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ where $f=10 x_{3}\left(x_{1}+x_{2}\right)+x_{1}+x_{2}+x_{4}$.
- Size and depth have same definitions as in the Boolean case.

Arithmetic Complexity

Definition

The arithmetic complexity $L(f)$ of a polynomial $f \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is defined as the minimum size of any arithmetic circuit computing f.

■ Thus $L(f) \leq 10$, where $f=10 x_{3}\left(x_{1}+x_{2}\right)+x_{1}+x_{2}+x_{4}$.

Permanent vs. Determinant

- It is not hard to show that $L\left(\operatorname{det}_{n}\right)=\operatorname{poly}(n)$ where

$$
\operatorname{det}_{n}=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \prod_{i \in[n]} x_{i, \sigma(i)}
$$

is the famous determinant polynomial.

- Define the permanent polynomial:

$$
\operatorname{per}_{n} \xlongequal{\text { def }} \sum_{\sigma \in S_{n}} \prod_{i \in[n]} x_{i, \sigma(i)}
$$

Conjecture (Valiant)

Divisions in Arithmetic Circuits

- We only used $\{+, \times\}$ gates in the arithmetic circuits above. - What if we also used divisions?

Lemma (Folklore)

If f can be computed by a size s circuit using $\{+, \times, \div\}$ gates then there exist g, h with $L(g), L(h) \leq 6 s$ such that $f=\frac{g}{h}$.

Division Elimination

Problem (1)(Kaltofen 87)

If a polynomial can be computed by an arithmetic circuit (with division) of size s, can it be computed by a division-free arithmetic circuit of size poly (s) ?

Problem (2)

If $L(g), L(h) \leq s$ and h divides g then is it true that $L\left(\frac{g}{h}\right) \leq \operatorname{poly}(s)$?

- Problem (1) \Longleftrightarrow Problem (2).

Known Results

Theorem (Strassen 73)

If f can be computed by an arithmetic circuit (with division) of size s, then $L(f) \leq \operatorname{poly}(s, \operatorname{deg}(f))$.

Example

If $g=x^{2^{s}}-1$ and $h=x-1$ then Strassen's result implies the upper bound $L(f) \leq 2^{O(s)}$.

Main Result

Theorem (Main Theorem)

If $L(g) \leq s_{1}, L(h) \leq s_{2}$ and h divides g then $L\left(\frac{g}{h}\right) \leq O\left(\left(s_{1}+s_{2}\right) d_{h}^{2}\right)$, where $d_{h}=\operatorname{deg}(h)$.

- Essentially, it is "easy" to divide by low degree polynomials.

■ It is an exponential improvement over Strassen's result when $\operatorname{deg}(h)$ is $\operatorname{poly}\left(s_{1}\right)$ and $\operatorname{deg}(f)$ is $\exp \left(s_{2}\right)$.

Proof Technique

- First consider the simpler case when g, h are uni-variate.
- C is a circuit of size $L(g)$ computing g.
- We split every gate in C into two gates as:
- First gate computes quotient modulo h and other remainder.

Addition Gate

- Suppose $p=p_{1}+p_{2}$ (in C) with $p_{1}=q_{1} h+r_{1}, p_{2}=q_{2} h+r_{2}$.
- Then:

$$
\begin{aligned}
p \bmod h & =r_{1}+r_{2} \\
p \operatorname{div} h & =q_{1}+q_{2}
\end{aligned}
$$

Multiplication Gate

- Suppose $p=p_{1} \times p_{2}$ (in C) with

$$
p_{1}=q_{1} h+r_{1}, p_{2}=q_{2} h+r_{2} .
$$

- Then:

$$
\begin{aligned}
p \bmod h & =r_{1} r_{2} \bmod h \\
p \operatorname{div} h & =q_{1} q_{2} h+q_{1} r_{2}+q_{2} r_{1}+\left(r_{1} r_{2} \operatorname{div} h\right)
\end{aligned}
$$

- Need to only compute $\left(r_{1} r_{2} \bmod h\right)$ and $\left(r_{1} r_{2}\right.$ div $\left.h\right)$.
- Easy to compute since they are polynomials of degree at $\operatorname{most} \operatorname{deg}(h)-1$ (naively).

Multivariate Case

- Assume h to be monic in x_{n}.
- Achievable by an invertible linear transformation of variables.
- Thus $\bmod h$ and div h are defined (w.r.t x_{n}).
- C is a circuit of size $L(g)$ computing g.

Multivariate Case

- We split every gate T in C to $d_{h}+1\left(d_{h} \xlongequal{\text { def }} \operatorname{deg}(h)\right)$ many gates.
- T computes the polynomial $p=q h+r$.
- $r=r_{0}+r_{1} x_{n}+\cdots+r_{d_{h}-1} x_{n}^{d_{h}-1}$ with $r_{i} \in \mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$.
- First d_{h} gates compute $r_{0}, r_{1}, \ldots, r_{d_{h}-1}$.
- Last gate computes q.

Addition Gate

- Suppose $p=p_{1}+p_{2}($ in $C)$ with $p_{1}=q_{1} h+a, p_{2}=q_{2} h+b$

$$
\begin{aligned}
& a=a_{0}+a_{1} x_{n}+\cdots+a_{d_{h}-1} x_{n}^{d_{h}-1} \\
& b=b_{0}+b_{1} x_{n}+\cdots+b_{d_{h}-1} x_{n}^{d_{h}-1}
\end{aligned}
$$

- Then:

$$
\begin{aligned}
r_{i} & \xlongequal{\text { def }} a_{i}+b_{i} \\
p \bmod h & =r_{0}+r_{1} x_{n}+\cdots+r_{d_{h}-1} x_{n}^{d_{h}-1} \\
p \operatorname{div} h & =q_{1}+q_{2}
\end{aligned}
$$

Multiplication Gate

- Suppose $p=p_{1} \times p_{2}($ in $C)$ with $p_{1}=q_{1} h+a, p_{2}=q_{2} h+b$.

$$
\begin{aligned}
a & =a_{0}+a_{1} x_{n}+\cdots+a_{d_{h}-1} x_{n}^{d_{h}-1} \\
b & =b_{0}+b_{1} x_{n}+\cdots+b_{d_{h}-1} x_{n}^{d_{h}-1}
\end{aligned}
$$

- Then:

$$
\begin{aligned}
p \bmod h & =a b \bmod h \\
p \operatorname{div} h & =q_{1} q_{2} h+q_{1} r_{2}+q_{2} r_{1}+(a b \operatorname{div} h)
\end{aligned}
$$

- By using the polynomial long division, we can efficiently compute:
- $a b \operatorname{div} h$
- Coefficients of $a b \bmod h$

Power Series

- $A=\sum_{i \geq 0} A_{i} x^{i}$ is a power series in the power series ring $\mathbb{C}[[x]]$.
- Degree d truncation $\operatorname{trunc}(A, d)$ of A is:
$\operatorname{trunc}(A, d) \xlongequal{\text { def }} \sum_{0 \leq i \leq d} A_{i} x^{i}$.
- A uni-variate polynomial family $\left(f_{d}\right)_{d \in \mathbb{N}}\left(\operatorname{deg}\left(f_{d}\right)=d\right)$ is "easy" if $L\left(f_{d}\right)=\operatorname{poly}(\log d)$.
- Otherwise we call it "hard".
- Study the complexity of polynomial families obtained by truncation of power series.

Rational Functions

Theorem

If g, h are constant degree polynomials and $f=\frac{g}{h} \in \mathbb{C}[[x]]$ is a power series then the polynomial family $(\operatorname{trunc}(f, d))_{d \in \mathbb{N}}$ is easy.

- This theorem also holds for some cases where g, h have non-constant degree.

Upper Bound Idea

Lemma (Partial fraction decomposition)

If $\frac{g}{h} \in \mathbb{C}[[x]]$ is a rational function with $\operatorname{deg}(g)<\operatorname{deg}(h)$ and $h(x)=\prod_{i \in[k]}\left(x-a_{i}\right)^{d_{i}}$ then:

$$
\frac{g}{h}=\sum_{i \in[k]} \sum_{j \in\left[d_{i}\right]} \frac{b_{i j}}{\left(x-a_{i}\right)^{j}}
$$

(for some $b_{i j} \in \mathbb{C}$)

- $(\operatorname{trunc}(1 /(x-a), d))_{d \in \mathbb{N}}$ is easy
- By computing higher order derivatives, (trunc $\left.\left(1 /(x-a)^{j}, d\right)\right)_{d \in \mathbb{N}}$ is also easy.

Constant Free Complexity

Definition

For any polynomial $f, \tau(f)$ is the size of the minimal constant-free circuit computing f. Only constants allowed are $\{-1,0,1\}$.

- This definition also extends to computation of integers.
- A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of integers is "easy" to compute if $\tau\left(a_{n}\right) \leq \operatorname{poly}(\log n)$.

Known Results

Lemma (Folklore)

If $(n!)_{n \in \mathbb{N}}$ is easy then integer factorization can be performed in polynomial time.

- (Andrews 2020) $\Longrightarrow\left(\binom{2 n}{n}\right)_{n \in \mathbb{N}}$ is easy then so is $(n!)_{n \in \mathbb{N}}$.
- Easiness of truncation of $\sqrt{1+4 x}$ implies easiness of $\left(\binom{2 n}{n}\right)_{n \in \mathbb{N}}$.
- Thus polynomial time algorithms for integer factorization.

Generalizing Hardness of $\sqrt{1+4 x}$

Theorem

For any constant k, if $\tau\left(\operatorname{trunc}\left(\left(1+k^{2} x\right)^{\frac{i}{k}}, d\right)\right)=\operatorname{poly}(\log d)($ for all $i \in[k-1])$ then integer factorization can be performed in polynomial time (in the non-uniform setting).

- The case $k=2$ follows from (Andrews 2020).

Hardness Idea

- Easiness of trunc $\left(\left(1+k^{2} x\right)^{\frac{i}{k}}, d\right)$ (for all $\left.i \in[k-1]\right)$ implies the easiness of:

$$
N(n, k) \xlongequal{\text { def }} \frac{k^{(k-2) d}(n k)!}{(n!)^{k}}
$$

- By a variant of binary search, easiness of $N(n, k)$ implies efficient integer factorization.
- We do not know if easiness of $\operatorname{trunc}\left(\left(1+k^{2} x\right)^{\frac{i}{k}}, d\right)$ implies easiness of $(n!)_{n \in \mathbb{N}}$.

Stern Sequence (Easy)

Definition

Sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by
$a_{0}=0, a_{1}=1, a_{2 n}=a_{n}, a_{2 n+1}=a_{n}+a_{n+1}$, is the Stern sequence.

Lemma

The generating function $A(x) \xlongequal{\text { def }} \sum a_{n} x^{n}$ of the Stern sequence is transcendental.

Theorem

$L(\operatorname{trunc}(A(x), d))=O\left(\log ^{2} d\right)$.

Hard Transcendental Power Series

Lemma

The power series $F(x) \xlongequal{\text { def }} \sum_{n \geq 0} n!x^{n}$ is transcendental.

- If truncation of $F(x)$ is easy to compute then $(n!)_{n \in \mathbb{N}}$ is easy to compute.
- So truncation of $F(x)$ is likely to be hard.

Conclusion

- Can divide by low degree polynomials efficiently.
- Our division complexity upper bound also holds for the border complexity.
- Truncation of general algebraic functions is likely to be hard
- Truncation of rational functions is easy
- We also show some examples of Transcendental power series:
- Whose truncation is easy
- Whose truncation is conditionally hard

Thanks

Thanks for your attention $)^{:}$

