On the Order of Power Series and the Sum of Square Roots Problem

Louis Gaillard ${ }^{1}$ Gorav Jindal ${ }^{2}$

${ }^{1}$ ENS de Lyon, Lyon, France
${ }^{2}$ Max Planck Institute for Software Systems, Saarbrücken, Germany

ISSAC 2023, Troms \varnothing, July 26

Sum of Square Roots Problem

Problem (SSR)

Given a list $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S:=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}>0$.

Sum of Square Roots Problem

Problem (SSR)

Given a list $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S:=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}>0$.

- Introduced by Garey, Graham \& Johnson in 1976. Conjectured to be in P.
- Difficult open problem: number of bits of precision needed to represent S ?

Sum of Square Roots Problem

Problem (SSR)

Given a list $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S:=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}>0$.

- Introduced by Garey, Graham \& Johnson in 1976. Conjectured to be in P.
- Difficult open problem: number of bits of precision needed to represent S ?

```
Lemma (Gap property [Tiwari 1992] )
If \(a_{i}<2^{B}\) for all \(i\), and \(S \neq 0\), then \(|S|>2^{-2^{n} \operatorname{poly}(n, B)}\).
```


Conjecture

If $S \neq 0$, then $|S|>2^{-\operatorname{poly}(n, B)}$.

Sum of Square Roots Problem

Problem (SSR)

Given a list $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S:=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}>0$.

- Introduced by Garey, Graham \& Johnson in 1976. Conjectured to be in P.
- Difficult open problem: number of bits of precision needed to represent S ?

```
Lemma (Gap property [Tiwari 1992] )
If a}\mp@subsup{a}{i}{}<\mp@subsup{2}{}{B}\mathrm{ for all i, and S}\not=0\mathrm{ , then }|S|>\mp@subsup{2}{}{-\mp@subsup{2}{}{n}}\mathbf{poly}(n,B)
```

```
Conjecture
If S\not=0, then }|S|>\mp@subsup{2}{}{-\operatorname{poly}(n,B)}\mathrm{ .
```

- Applications: Euclidean Traveling Salesman Problem \in NP with access to an oracle for SSR.

Positivity testing for straight line programs

Definition (Straight line program (SLP))

A sequence of integers $\left(a_{0}, a_{1}, \ldots, a_{\ell}\right)$ is a SLP if $a_{0}=1$ and for all $1 \leq i \leq \ell, a_{i}=a_{j} \circ_{i} a_{k}$, where $o_{i} \in\{+,-, *\}$ and $j, k<i$.

$$
\begin{aligned}
& a_{1}=a_{0}+a_{0} \\
& a_{i}=a_{i-1} \times a_{i-1}, \text { for } 2 \leq i \leq n+1
\end{aligned}
$$

Positivity testing for straight line programs

Definition (Straight line program (SLP))

A sequence of integers $\left(a_{0}, a_{1}, \ldots, a_{\ell}\right)$ is a SLP if $a_{0}=1$ and for all $1 \leq i \leq \ell, a_{i}=a_{j} \circ_{i} a_{k}$, where $o_{i} \in\{+,-, *\}$ and $j, k<i$.

$$
\begin{aligned}
a_{1} & =a_{0}+a_{0}, \\
a_{i} & =a_{i-1} \times a_{i-1}, \text { for } 2 \leq i \leq n+1
\end{aligned}
$$

Problem (PosSLP)

Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen 2009
Given a SLP that computes an integer N, decide whether $N>0$.

Positivity testing for straight line programs

Definition (Straight line program (SLP))

A sequence of integers $\left(a_{0}, a_{1}, \ldots, a_{\ell}\right)$ is a SLP if $a_{0}=1$ and for all $1 \leq i \leq \ell, a_{i}=a_{j} \circ_{i} a_{k}$, where $o_{i} \in\{+,-, *\}$ and $j, k<i$.

$$
\begin{aligned}
& a_{1}=a_{0}+a_{0} \\
& a_{i}=a_{i-1} \times a_{i-1}, \text { for } 2 \leq i \leq n+1
\end{aligned}
$$

Problem (PosSLP)

Allender, Bürgisser, Kjeldgaard-Pedersen, Miltersen 2009
Given a SLP that computes an integer N, decide whether $N>0$.

- Complexity of PosSLP characterizes the hardness of deciding the sign of expressions involving real numbers
- PosSLP $\in C H$ (Counting Hierarchy)
- SSR \leq PosSLP
\rightarrow SSR $\in \mathrm{CH}:$ Best known complexity upper-bound / Far from SSR $\in P$

Part 1: The polynomial analogue

$$
N=9876=9 \cdot 10^{3}+8 \cdot 10^{2}+7 \cdot 10+6 \quad P(x)=9 x^{3}+8 x^{2}+7 x+6
$$

Sum of square roots of polynomials
Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

Sum of square roots of polynomials
Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

$$
S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \quad \text { becomes } \quad S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) \sqrt{f_{i}(x)} \quad k=\mathbb{Q}, \mathbb{C}, \ldots
$$

with $c_{i} \in k, f_{i}, g_{i} \in k[x]$ of degree $\leq d$ and $f_{i}(0)=1$.

Sum of square roots of polynomials
Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

$$
S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \quad \text { becomes } \quad S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) \sqrt{f_{i}(x)} \quad k=\mathbb{Q}, \mathbb{C}, \ldots
$$

with $c_{i} \in k, f_{i}, g_{i} \in k[x]$ of degree $\leq d$ and $f_{i}(0)=1$.

$$
\operatorname{ord}(S):=\sup \left\{t\left|x^{t}\right| S(x)\right\}
$$

Theorem ([KS12])
$S(x) \neq 0 \Longrightarrow \operatorname{ord}(S) \leq d n^{2}+n-1$.

Main argument: study of the order of the Wronskian determinant of $\left(g_{i} \sqrt{f_{i}}\right)_{i}$.

Sum of square roots of polynomials
Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

$$
S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \text { becomes } S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) \sqrt{f_{i}(x)}
$$

with $c_{i} \in k, f_{i}, g_{i} \in k[x]$ of degree $\leq d$ and $f_{i}(0)=1$.

$$
\operatorname{ord}(S):=\sup \left\{t\left|x^{t}\right| S(x)\right\}
$$

Theorem ([KS12])
$S(x) \neq 0 \Longrightarrow \operatorname{ord}(S) \leq d n^{2}+n-1$.

Main argument: study of the order of the Wronskian determinant of $\left(g_{i} \sqrt{f_{i}}\right)_{i}$.

They deduced that SSR is easy for a nontrivial class of instances called polynomial integers: suppose $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \neq 0\left(\delta_{i} \in\{-1,1\}\right)$, with $a_{i}=X^{d_{i}}+b_{1, i} X^{d_{i}-1}+\cdots+b_{d_{i}, i}$ for $d_{i}>0$, $X>0$ and $b_{j, i}$ integers.

If $\left|b_{j, i}\right| \ll X$ then it is easy to decide the sign of S.

Sum of square roots of polynomials

Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

$$
S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \text { becomes } S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) \sqrt{f_{i}(x)}
$$

with $c_{i} \in k, f_{i}, g_{i} \in k[x]$ of degree $\leq d$ and $f_{i}(0)=1$.

$$
\operatorname{ord}(S):=\sup \left\{t\left|x^{t}\right| S(x)\right\}
$$

Theorem ([KS12])
$S(x) \neq 0 \Longrightarrow \operatorname{ord}(S) \leq d n^{2}+n-1$.

Main argument: study of the order of the Wronskian determinant of $\left(g_{i} \sqrt{f_{i}}\right)_{i}$.

They deduced that SSR is easy for a nontrivial class of instances called polynomial integers: suppose $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \neq 0\left(\delta_{i} \in\{-1,1\}\right)$, with $a_{i}=X^{d_{i}}+b_{1, i} X^{d_{i}-1}+\cdots+b_{d_{i}, i}$ for $d_{i}>0$, $X>0$ and $b_{j, i}$ integers.

If $\left|b_{j, i}\right| \ll X$ then it is easy to decide the sign of S.

Goal

Extend this to other special families of power series $\left(y_{i}\right)$. Bound $\operatorname{ord}(S)$ for $S(x)=\sum_{i} c_{i} g_{i}(x) y_{i}(x)$.

Order of the Wronskian

Let \mathcal{F} be a n-dimensional linear subspace of $k[[x]]$ with basis $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$. Define

$$
\mathcal{O}(\mathcal{F}):=\sup \{\operatorname{ord}(f) \mid f \in \mathcal{F} \backslash\{0\}\} .
$$

Order of the Wronskian

Let \mathcal{F} be a n-dimensional linear subspace of $k[[x]]$ with basis $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$. Define

$$
\mathcal{O}(\mathcal{F}):=\sup \{\operatorname{ord}(f) \mid f \in \mathcal{F} \backslash\{0\}\} .
$$

Given \mathcal{F}, how to bound $\mathcal{O}(\mathcal{F})$?

Order of the Wronskian

Let \mathcal{F} be a n-dimensional linear subspace of $k[[x]]$ with basis $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$. Define

$$
\mathcal{O}(\mathcal{F}):=\sup \{\operatorname{ord}(f) \mid f \in \mathcal{F} \backslash\{0\}\} .
$$

Given \mathcal{F}, how to bound $\mathcal{O}(\mathcal{F})$?

$$
W(\mathbf{f}):=\operatorname{det}\left(\begin{array}{ccc}
f_{1} & \ldots & f_{n} \\
f_{1}^{(1)} & \ldots & f_{n}^{(1)} \\
\vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right)
$$

Fact: $\operatorname{ord}(W(\mathbf{f}))$ does not depend on the choice of the basis \mathbf{f}. We can define

$$
W_{\text {ord }}(\mathcal{F}):=\operatorname{ord}(W(\mathbf{f}))
$$

Order of the Wronskian

Let \mathcal{F} be a n-dimensional linear subspace of $k[[x]]$ with basis $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$. Define

$$
\mathcal{O}(\mathcal{F}):=\sup \{\operatorname{ord}(f) \mid f \in \mathcal{F} \backslash\{0\}\} .
$$

Given \mathcal{F}, how to bound $\mathcal{O}(\mathcal{F})$?

$$
W(\mathbf{f}):=\operatorname{det}\left(\begin{array}{ccc}
f_{1} & \ldots & f_{n} \\
f_{1}^{(1)} & \ldots & f_{n}^{(1)} \\
\vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right)
$$

Fact: $\operatorname{ord}(W(\mathbf{f}))$ does not depend on the choice of the basis \mathbf{f}. We can define

$$
W_{\text {ord }}(\mathcal{F}):=\operatorname{ord}(W(\mathbf{f})) .
$$

Theorem

$\mathcal{O}(\mathcal{F})$ and $W_{\text {ord }}(\mathcal{F})$ are equivalent up to a polynomial factor.

Order of the Wronskian

Let \mathcal{F} be a n-dimensional linear subspace of $k[[x]]$ with basis $\mathbf{f}:=\left(f_{1}, \ldots, f_{n}\right)$. Define

$$
\mathcal{O}(\mathcal{F}):=\sup \{\operatorname{ord}(f) \mid f \in \mathcal{F} \backslash\{0\}\} .
$$

Given \mathcal{F}, how to bound $\mathcal{O}(\mathcal{F})$?

$$
W(\mathbf{f}):=\operatorname{det}\left(\begin{array}{ccc}
f_{1} & \ldots & f_{n} \\
f_{1}^{(1)} & \ldots & f_{n}^{(1)} \\
\vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & \ldots & f_{n}^{(n-1)}
\end{array}\right)
$$

Fact: $\operatorname{ord}(W(\mathbf{f}))$ does not depend on the choice of the basis \mathbf{f}. We can define

$$
W_{\text {ord }}(\mathcal{F}):=\operatorname{ord}(W(\mathbf{f})) .
$$

Theorem

$\mathcal{O}(\mathcal{F})$ and $W_{\text {ord }}(\mathcal{F})$ are equivalent up to a polynomial factor.

$$
\begin{aligned}
\mathcal{O}(\mathcal{F}) & \leq W_{\text {ord }}(\mathcal{F})+n-1 & \text { Voorhoeve \& and Van Der Poorten, } 1975 \\
W_{\text {ord }}(\mathcal{F}) & \leq n \cdot \mathcal{O}(\mathcal{F})-n(n-1) & \text { Our result }
\end{aligned}
$$

Both bounds are tight. Ex: $\mathcal{F}=\operatorname{span}\left(1, x, \ldots, x^{n-1}\right)$.

Bound for solutions of differential equations of order 1

Bound for solutions of differential equations of order 1

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x)$, with $y_{i}^{\prime}-\frac{p_{i}}{q_{i}} y_{i}=0$, for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$, with $q_{i}(0) \neq 0$. If $S \neq 0$ then $\operatorname{ord}(S) \leq \sum_{i=1}^{n}$ ord $y_{i}+n^{2} d+n-1$.

Proof:

Bound for solutions of differential equations of order 1

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x)$, with $y_{i}^{\prime}-\frac{p_{i}}{q_{i}} y_{i}=0$, for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$, with $q_{i}(0) \neq 0$. If $S \neq 0$ then $\operatorname{ord}(S) \leq \sum_{i=1}^{n}$ ord $y_{i}+n^{2} d+n-1$.

Proof: Let $f_{i}:=g_{i} y_{i}$. We have

$$
\begin{gathered}
f_{i}^{(j)}=\sum_{k=0}^{j}\binom{j}{k} g_{i}^{(j-k)} y_{i}^{(k)} \\
y_{i}^{(k)}=\frac{q_{i}^{n-1-k} P_{i, k}}{q_{i}^{n-1}} y_{i}
\end{gathered}
$$

with $P_{i, k} \in k[x]$ of degree $\leq k d$ (by induction).

Bound for solutions of differential equations of order 1

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x)$, with $y_{i}^{\prime}-\frac{p_{i}}{q_{i}} y_{i}=0$, for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$, with $q_{i}(0) \neq 0$. If $S \neq 0$ then $\operatorname{ord}(S) \leq \sum_{i=1}^{n}$ ord $y_{i}+n^{2} d+n-1$.

Proof: Let $f_{i}:=g_{i} y_{i}$. We have

$$
\begin{gathered}
f_{i}^{(j)}=\sum_{k=0}^{j}\binom{j}{k} g_{i}^{(j-k)} y_{i}^{(k)} \\
y_{i}^{(k)}=\frac{q_{i}^{n-1-k} P_{i, k}}{q_{i}^{n-1}} y_{i}
\end{gathered}
$$

with $P_{i, k} \in k[x]$ of degree $\leq k d$ (by induction).

$$
W(\mathbf{f})=\prod_{i=1}^{n} \frac{y_{i}}{q_{i}^{n-1}} \operatorname{det} D
$$

where D is matrix with polynomial entries of degree at most $n d$.

Bound for solutions of differential equations of order 1

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x)$, with $y_{i}^{\prime}-\frac{p_{i}}{q_{i}} y_{i}=0$, for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$, with $q_{i}(0) \neq 0$. If $S \neq 0$ then $\operatorname{ord}(S) \leq \sum_{i=1}^{n}$ ord $y_{i}+n^{2} d+n-1$.

Proof: Let $f_{i}:=g_{i} y_{i}$. We have

$$
\begin{gathered}
f_{i}^{(j)}=\sum_{k=0}^{j}\binom{j}{k} g_{i}^{(j-k)} y_{i}^{(k)} \\
y_{i}^{(k)}=\frac{q_{i}^{n-1-k} P_{i, k}}{q_{i}^{n-1}} y_{i}
\end{gathered}
$$

$$
\operatorname{ord} W(\mathbf{f})=\sum_{i} \operatorname{ord} y_{i}+\underbrace{\operatorname{ord}(\operatorname{det} D)}_{\leq \operatorname{deg}(\operatorname{det} D) \leq n^{2} d}
$$

with $P_{i, k} \in k[x]$ of degree $\leq k d$ (by induction).

$$
\begin{aligned}
\operatorname{ord}(S) & \leq \operatorname{ord} W(\mathbf{f})+n-1 \\
& \leq \sum_{i=1}^{n} \operatorname{ord}\left(y_{i}\right)+n^{2} d+n-1
\end{aligned}
$$

where D is matrix with polynomial entries of degree at most $n d$.

Applications

$$
\text { ord } S \leq \sum_{i=1}^{n} \text { ord } y_{i}+n^{2} d+n-1
$$

Applications

$$
\operatorname{ord} S \leq \sum_{i=1}^{n} \text { ord } y_{i}+n^{2} d+n-1
$$

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x) \neq 0$ for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$ and $y_{i}=\exp \left(\frac{p_{i}}{q_{i}}\right)$ with $q_{i}(0) \neq 0$ or $y_{i}=\left(\frac{p_{i}}{q_{i}}\right)^{\alpha_{i}}$ with $p_{i}(0), q_{i}(0) \neq 0$ and $\alpha_{i} \in k$. We have

$$
\operatorname{ord}(S) \leq 2 n^{2} d+n-1
$$

Applications

$$
\operatorname{ord} S \leq \sum_{i=1}^{n} \operatorname{ord} y_{i}+n^{2} d+n-1
$$

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} g_{i}(x) y_{i}(x) \neq 0$ for $c_{i} \in k, g_{i}, p_{i}, q_{i} \in k[x]$ of degree $\leq d$ and $y_{i}=\exp \left(\frac{p_{i}}{q_{i}}\right)$ with $q_{i}(0) \neq 0$ or $y_{i}=\left(\frac{p_{i}}{q_{i}}\right)^{\alpha_{i}}$ with $p_{i}(0), q_{i}(0) \neq 0$ and $\alpha_{i} \in k$. We have

$$
\operatorname{ord}(S) \leq 2 n^{2} d+n-1
$$

Proof:

- If $y_{i}=\exp \left(\frac{p_{i}}{q_{i}}\right)$, then $y_{i}^{\prime}-\frac{p_{i}^{\prime} q_{i}-p_{i} q_{i}^{\prime}}{q_{i}^{2}} y_{i}=0$.
- If $y_{i}=\left(\frac{p_{i}}{q_{i}}\right)^{\alpha_{i}}$, then $y_{i}^{\prime}-\alpha_{i} \frac{p_{i}^{\prime} q_{i}-p_{i} q_{i}^{\prime}}{p_{i} q_{i}} y_{i}=0$.

Application to sums of logarithms

Application to sums of logarithms

Problem (Sum of Logs)

Given integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ with $a_{i}>0$, decide whether $\sum_{i=1}^{n} b_{i} \log a_{i}>0$.

- Analogue to SSR but with log.
- Complexity of this problem connected to a refinement of the abc-conjecture formulated by Baker.
- Reduces to PosSLP.

Application to sums of logarithms

Problem (Sum of Logs)

Given integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ with $a_{i}>0$, decide whether $\sum_{i=1}^{n} b_{i} \log a_{i}>0$.

- Analogue to SSR but with log.
- Complexity of this problem connected to a refinement of the abc-conjecture formulated by Baker.
- Reduces to PosSLP.

Theorem

Let $S(x)=\sum_{i=1}^{n} c_{i} \log \left(f_{i}(x)\right) \neq 0$, with $c_{i} \in k$ and $f_{i} \in k[x]$ of degree $\leq d$ such that $f_{i}(0)=1$. Then ord $S \leq n d$.

- With the same techniques as in [KS12], we deduce that Sum of Logs is easy for a restrictive but nontrivial class of instances.

Part 2: Back to integers

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

- a_{i} 's given in binary \rightarrow Blömer gave a polynomial-time algorithm

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

- a_{i} 's given in binary \rightarrow Blömer gave a polynomial-time algorithm
- a_{i} 's given by SLPs \rightarrow SSR $_{\text {SLP }}$

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

- a_{i} 's given in binary \rightarrow Blömer gave a polynomial-time algorithm
- a_{i} 's given by SLPs $\rightarrow \operatorname{SSR}_{\text {SLP }}$
- a_{i} 's given by SLPs and $\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)\right)=1 \rightarrow 1-\operatorname{dim} \operatorname{SSR}_{\text {SLP }}$

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

- a_{i} 's given in binary \rightarrow Blömer gave a polynomial-time algorithm
- a_{i} 's given by SLPs \rightarrow SSR $_{\text {SLP }}$
- a_{i} 's given by SLPs and $\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)\right)=1 \rightarrow 1-\operatorname{dim} \operatorname{SSR}_{\text {SLP }}$
- Goals:
- Compare SSR $_{\text {SLP }}$ with PIT (or EqSLP [Allender et al. 2009])
- Find an efficient randomized algorithm to solve SSR $_{\text {SLP }}$

Testing zero for sums of square roots

Problem (Testing Equality)

Given n positive integers $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$, decide whether $S=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$.

- a_{i} 's given in binary \rightarrow Blömer gave a polynomial-time algorithm
- a_{i} 's given by SLPs \rightarrow SSR $_{\text {SLP }}$
- a_{i} 's given by SLPs and $\operatorname{dim}\left(\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)\right)=1 \rightarrow 1-\operatorname{dim} \operatorname{SSR}_{\text {SLP }}$
- Goals:
- Compare SSR $_{\text {SLP }}$ with PIT (or EqSLP [Allender et al. 2009])
- Find an efficient randomized algorithm to solve SSR $_{\text {SLP }}$

Theorem

Under GRH, there exists a randomized polynomial time algorithm with an oracle for 1-dim SSR $_{\text {SLP }}$ that solves $\mathrm{SSR}_{\mathrm{SLP}}$.

Ingredients of the proof
Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Ingredients of the proof
Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Lemma (Kneser)

For all $1 \leq i \leq n$, there exists a unique $1 \leq j \leq \ell$ such that $\sqrt{a_{i}} \in \mathbb{Q} \cdot \sqrt{a_{j}}$.

Ingredients of the proof
Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Lemma (Kneser)

For all $1 \leq i \leq n$, there exists a unique $1 \leq j \leq \ell$ such that $\sqrt{a_{i}} \in \mathbb{Q} \cdot \sqrt{a_{j}}$.
This implies

$$
\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0 \Longleftrightarrow \forall 1 \leq j \leq \ell, \quad \sum_{i: \sqrt{a_{i}} \in \mathbb{Q} \sqrt{a_{j}}} \delta_{i} \sqrt{a_{i}}=0 .
$$

Ingredients of the proof
Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Lemma (Kneser)

For all $1 \leq i \leq n$, there exists a unique $1 \leq j \leq \ell$ such that $\sqrt{a_{i}} \in \mathbb{Q} \cdot \sqrt{a_{j}}$.
This implies

$$
\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0 \Longleftrightarrow \forall 1 \leq j \leq \ell, \quad \sum_{i: \sqrt{a_{i}} \in \mathbb{Q} \sqrt{a_{j}}} \delta_{i} \sqrt{a_{i}}=0 .
$$

Need an efficient way to build the 1-dimensional subsums, i.e. need an efficient way to test if $\sqrt{a} / \sqrt{b} \in \mathbb{Q}$ or equivalently if $a b$ is a perfect square.

Ingredients of the proof
Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Lemma (Kneser)

For all $1 \leq i \leq n$, there exists a unique $1 \leq j \leq \ell$ such that $\sqrt{a_{i}} \in \mathbb{Q} \cdot \sqrt{a_{j}}$.
This implies

$$
\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0 \Longleftrightarrow \forall 1 \leq j \leq \ell, \quad \sum_{i: \sqrt{a_{i}} \in \mathbb{Q} \sqrt{a_{j}}} \delta_{i} \sqrt{a_{i}}=0 .
$$

Need an efficient way to build the 1-dimensional subsums, i.e. need an efficient way to test if $\sqrt{a} / \sqrt{b} \in \mathbb{Q}$ or equivalently if $a b$ is a perfect square.

Lemma

Given an SLP of size t computing an integer N, under GRH, there exists a randomized algorithm running in polynomial time (in t) to decide if N is a perfect square.

Ingredients of the proof

Let a_{1}, \ldots, a_{n} be positive integers and $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{-1,1\}^{n}$. Wlog, we can assume $\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{\ell}}\right)$ to be a basis of $\operatorname{span}_{\mathbb{Q}}\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)$.

Lemma (Kneser)

For all $1 \leq i \leq n$, there exists a unique $1 \leq j \leq \ell$ such that $\sqrt{a_{i}} \in \mathbb{Q} \cdot \sqrt{a_{j}}$.
This implies

$$
\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0 \Longleftrightarrow \forall 1 \leq j \leq \ell, \quad \sum_{i: \sqrt{a_{i}} \in \mathbb{Q} \sqrt{a_{j}}} \delta_{i} \sqrt{a_{i}}=0 .
$$

Need an efficient way to build the 1-dimensional subsums, i.e. need an efficient way to test if $\sqrt{a} / \sqrt{b} \in \mathbb{Q}$ or equivalently if $a b$ is a perfect square.

Lemma

Given an SLP of size t computing an integer N, under GRH, there exists a randomized algorithm running in polynomial time (in t) to decide if N is a perfect square.

Idea: Reduce N modulo a random prime $p \leq 2^{q(t)}$. If N is not a square, the density of prime numbers p such that N is a square in $\mathbb{Z} / p \mathbb{Z}$ is $1 / 2$. Use an effective version of the Chebotarev's theorem (valid under GRH).

Conclusion

- Bound on the order of linear combination of solutions of differential equations of order 1. Can we extend this to higher order D-finite functions? What about algebraic functions?
- $W_{\text {ord }}(\mathcal{F}) \leq n \cdot \mathcal{O}(\mathcal{F})-n(n-1)$.
- Open question related to PosSLP

Given positive integers a, b, c, n in binary, determine the sign of $a^{n}+b^{n}-c^{n}$. Can we find an algorithm that solves this problem in time $O(\log (\max (a, b, c, n)))$?

References I

Neeraj Kayal and Chandan Saha.
On the sum of square roots of polynomials and related problems.
ACM Transactions on Computation Theory (TOCT), 4(4):1-15, 2012.

