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Complexity of Numerical Analysis Sum of Square Roots Problem

Sum of Square Roots Problem

Problem (SSR)
Given a list (a1, . . . , an) of positive integers and (δ1, . . . , δn) ∈ {−1, 1}n, decide whether
S :=

∑n
i=1 δi

√ai > 0.

Introduced by Garey, Graham & Johnson in 1976. Conjectured to be in P.
Difficult open problem: number of bits of precision needed to represent S?

Lemma (Gap property [Tiwari 1992] )
If ai < 2B for all i , and S ̸= 0, then |S| > 2−2npoly(n,B).

Conjecture
If S ̸= 0, then |S| > 2−poly(n,B).

Applications: Euclidean Traveling Salesman Problem ∈ NP with access to an oracle for SSR.
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Complexity of Numerical Analysis PosSLP

Positivity testing for straight line programs

Definition (Straight line program (SLP))
A sequence of integers (a0, a1, . . . , aℓ) is a SLP if a0 = 1 and for all 1 ≤ i ≤ ℓ, ai = aj ◦i ak ,
where ◦i ∈ {+, −, ∗} and j, k < i .

a1 = a0 + a0,

ai = ai−1 × ai−1, for 2 ≤ i ≤ n + 1
1 + × × × ×

1
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22
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n

Problem (PosSLP)
Given a SLP that computes an integer N, decide whether N > 0.

Complexity of PosSLP characterizes the hardness of deciding the sign of expressions
involving real numbers
PosSLP ∈ CH (Counting Hierarchy)
SSR ≤ PosSLP

→ SSR ∈ CH: Best known complexity upper-bound / Far from SSR ∈ P
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The polynomial analogue

Part 1: The polynomial analogue

N = 9876 = 9 · 103 + 8 · 102 + 7 · 10 + 6 P(x) = 9x3 + 8x2 + 7x + 6
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The polynomial analogue

Sum of square roots of polynomials
Variant of SSR with polynomials proposed by Kayal and Saha [KS12]

S =
n∑

i=1

δi
√

ai becomes S(x) =
n∑

i=1

ci gi (x)
√

fi (x)

with ci ∈ k, fi , gi ∈ k[x ] of degree ≤ d and fi (0) = 1.

Theorem ([KS12])
S(x) ̸= 0 =⇒ ord(S) ≤ dn2 + n − 1.

Main argument: study of the order of the
Wronskian determinant of (gi

√
fi )i .

They deduced that SSR is easy for a nontrivial class of instances called polynomial integers:
suppose S =

∑n
i=1 δi

√ai ̸= 0 (δi ∈ {−1, 1}), with ai = Xdi + b1,i Xdi −1 + · · · + bdi ,i for di > 0,
X > 0 and bj,i integers.

If |bj,i | ≪ X then it is easy to decide the sign of S.

Goal
Extend this to other special families of power series (yi ). Bound ord(S)
for S(x) =

∑
i ci gi (x)yi (x).
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The polynomial analogue

Order of the Wronskian
Let F be a n-dimensional linear subspace of k[[x ]] with basis f := (f1, . . . , fn). Define

O(F) := sup{ord(f ) |f ∈ F \ {0}} .

Given F , how to bound O(F)?

W (f) := det


f1 . . . fn

f (1)
1 . . . f (1)

n
...

...
...

f (n−1)
1 . . . f (n−1)

n


Fact: ord(W (f)) does not depend on the choice of

the basis f. We can define

Word(F) := ord(W (f)).

Theorem
O(F) and Word(F) are equivalent up to a polynomial factor.

O(F) ≤ Word(F) + n − 1
Word(F) ≤ n · O(F) − n(n − 1)

Both bounds are tight. Ex: F = span(1, x , . . . , xn−1).
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The polynomial analogue

Bound for solutions of differential equations of order 1

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x), with y ′

i − pi
qi

yi = 0, for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d, with
qi (0) ̸= 0. If S ̸= 0 then ord(S) ≤

∑n
i=1 ord yi + n2d + n − 1.

Proof: Let fi := gi yi . We have

f (j)
i =

j∑
k=0

( j
k
)

g (j−k)
i y (k)

i

y (k)
i =

qn−1−k
i Pi,k

qn−1
i

yi

with Pi,k ∈ k[x ] of degree ≤ kd (by induction).

W (f) =
n∏

i=1

yi

qn−1
i

det D

where D is matrix with polynomial entries of
degree at most nd .

ord W (f) =
∑

i

ord yi + ord(det D)︸ ︷︷ ︸
≤deg(det D)≤n2d

ord(S) ≤ ord W (f) + n − 1

≤
n∑

i=1

ord(yi ) + n2d + n − 1

Louis Gaillard, Gorav Jindal Order of Power Series & SSR Problem ISSAC 2023, Tromsø, July 26 7 / 14



The polynomial analogue

Bound for solutions of differential equations of order 1

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x), with y ′

i − pi
qi

yi = 0, for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d, with
qi (0) ̸= 0. If S ̸= 0 then ord(S) ≤

∑n
i=1 ord yi + n2d + n − 1.

Proof:

Let fi := gi yi . We have

f (j)
i =

j∑
k=0

( j
k
)

g (j−k)
i y (k)

i

y (k)
i =

qn−1−k
i Pi,k

qn−1
i

yi

with Pi,k ∈ k[x ] of degree ≤ kd (by induction).

W (f) =
n∏

i=1

yi

qn−1
i

det D

where D is matrix with polynomial entries of
degree at most nd .

ord W (f) =
∑

i

ord yi + ord(det D)︸ ︷︷ ︸
≤deg(det D)≤n2d

ord(S) ≤ ord W (f) + n − 1

≤
n∑

i=1

ord(yi ) + n2d + n − 1

Louis Gaillard, Gorav Jindal Order of Power Series & SSR Problem ISSAC 2023, Tromsø, July 26 7 / 14



The polynomial analogue

Bound for solutions of differential equations of order 1

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x), with y ′

i − pi
qi

yi = 0, for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d, with
qi (0) ̸= 0. If S ̸= 0 then ord(S) ≤

∑n
i=1 ord yi + n2d + n − 1.

Proof: Let fi := gi yi . We have

f (j)
i =

j∑
k=0

( j
k
)

g (j−k)
i y (k)

i

y (k)
i =

qn−1−k
i Pi,k

qn−1
i

yi

with Pi,k ∈ k[x ] of degree ≤ kd (by induction).

W (f) =
n∏

i=1

yi

qn−1
i

det D

where D is matrix with polynomial entries of
degree at most nd .

ord W (f) =
∑

i

ord yi + ord(det D)︸ ︷︷ ︸
≤deg(det D)≤n2d

ord(S) ≤ ord W (f) + n − 1

≤
n∑

i=1

ord(yi ) + n2d + n − 1

Louis Gaillard, Gorav Jindal Order of Power Series & SSR Problem ISSAC 2023, Tromsø, July 26 7 / 14



The polynomial analogue

Bound for solutions of differential equations of order 1

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x), with y ′

i − pi
qi

yi = 0, for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d, with
qi (0) ̸= 0. If S ̸= 0 then ord(S) ≤

∑n
i=1 ord yi + n2d + n − 1.

Proof: Let fi := gi yi . We have

f (j)
i =

j∑
k=0

( j
k
)

g (j−k)
i y (k)

i

y (k)
i =

qn−1−k
i Pi,k

qn−1
i

yi

with Pi,k ∈ k[x ] of degree ≤ kd (by induction).

W (f) =
n∏

i=1

yi

qn−1
i

det D

where D is matrix with polynomial entries of
degree at most nd .

ord W (f) =
∑

i

ord yi + ord(det D)︸ ︷︷ ︸
≤deg(det D)≤n2d

ord(S) ≤ ord W (f) + n − 1

≤
n∑

i=1

ord(yi ) + n2d + n − 1

Louis Gaillard, Gorav Jindal Order of Power Series & SSR Problem ISSAC 2023, Tromsø, July 26 7 / 14



The polynomial analogue

Bound for solutions of differential equations of order 1

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x), with y ′

i − pi
qi

yi = 0, for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d, with
qi (0) ̸= 0. If S ̸= 0 then ord(S) ≤

∑n
i=1 ord yi + n2d + n − 1.

Proof: Let fi := gi yi . We have

f (j)
i =

j∑
k=0

( j
k
)

g (j−k)
i y (k)

i

y (k)
i =

qn−1−k
i Pi,k

qn−1
i

yi

with Pi,k ∈ k[x ] of degree ≤ kd (by induction).

W (f) =
n∏

i=1

yi

qn−1
i

det D

where D is matrix with polynomial entries of
degree at most nd .

ord W (f) =
∑

i

ord yi + ord(det D)︸ ︷︷ ︸
≤deg(det D)≤n2d

ord(S) ≤ ord W (f) + n − 1

≤
n∑

i=1

ord(yi ) + n2d + n − 1

Louis Gaillard, Gorav Jindal Order of Power Series & SSR Problem ISSAC 2023, Tromsø, July 26 7 / 14



The polynomial analogue

Applications

ord S ≤
n∑

i=1

ord yi + n2d + n − 1.

Theorem
Let S(x) =

∑n
i=1 ci gi (x)yi (x) ̸= 0 for ci ∈ k, gi , pi , qi ∈ k[x ] of degree ≤ d and yi = exp

( pi
qi

)
with qi (0) ̸= 0 or yi =

( pi
qi

)αi with pi (0), qi (0) ̸= 0 and αi ∈ k. We have

ord(S) ≤ 2n2d + n − 1.

Proof:

If yi = exp
( pi

qi

)
, then y ′

i − p′
i qi −pi q′

i
q2

i
yi = 0.

If yi =
( pi

qi

)αi , then y ′
i − αi

p′
i qi − pi q′

i
pi qi

yi = 0.
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The polynomial analogue

Application to sums of logarithms

Problem (Sum of Logs)
Given integers (a1, . . . , an) and (b1, . . . , bn) with ai > 0, decide whether

∑n
i=1 bi log ai > 0.

Analogue to SSR but with log.
Complexity of this problem connected to a refinement of the abc-conjecture formulated by
Baker.
Reduces to PosSLP.

Theorem
Let S(x) =

∑n
i=1 ci log(fi (x)) ̸= 0, with ci ∈ k and fi ∈ k[x ] of degree ≤ d such that fi (0) = 1.

Then ord S ≤ nd.

With the same techniques as in [KS12], we deduce that Sum of Logs is easy for a restrictive
but nontrivial class of instances.
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Sums of square roots of SLPs

Part 2: Back to integers
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Sums of square roots of SLPs

Testing zero for sums of square roots

Problem (Testing Equality)
Given n positive integers (a1, . . . , an) and (δ1, . . . , δn) ∈ {−1, 1}n, decide whether
S =

∑n
i=1 δi

√ai = 0.

ai ’s given in binary → Blömer gave a polynomial-time algorithm

ai ’s given by SLPs → SSRSLP

ai ’s given by SLPs and dim
(

spanQ(√a1, . . . ,
√an)

)
= 1 → 1-dim SSRSLP

Goals:

▶ Compare SSRSLP with PIT (or EqSLP [Allender et al. 2009])
▶ Find an efficient randomized algorithm to solve SSRSLP

Theorem
Under GRH, there exists a randomized polynomial time algorithm with an oracle for
1-dim SSRSLP that solves SSRSLP.
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Sums of square roots of SLPs

Ingredients of the proof
Let a1, . . . , an be positive integers and (δ1, . . . , δn) ∈ {−1, 1}n. Wlog, we can assume
(√a1, . . . ,

√aℓ) to be a basis of spanQ(√a1, . . . ,
√an).

Lemma (Kneser)
For all 1 ≤ i ≤ n, there exists a unique 1 ≤ j ≤ ℓ such that √ai ∈ Q · √aj .

This implies

n∑
i=1

δi
√

ai = 0 ⇐⇒ ∀1 ≤ j ≤ ℓ,
∑

i : √ai ∈Q√aj

δi
√

ai = 0.

Need an efficient way to build the 1-dimensional subsums, i.e. need an efficient way to test if√
a/

√
b ∈ Q or equivalently if ab is a perfect square.

Lemma
Given an SLP of size t computing an integer N, under GRH, there exists a randomized algorithm
running in polynomial time (in t) to decide if N is a perfect square.

Idea: Reduce N modulo a random prime p ≤ 2q(t). If N is not a square, the density of prime
numbers p such that N is a square in Z/pZ is 1/2. Use an effective version of the Chebotarev’s
theorem (valid under GRH).
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Conclusion

Conclusion

Bound on the order of linear combination of solutions of differential equations of order 1.
Can we extend this to higher order D-finite functions? What about algebraic functions?

Word(F) ≤ n · O(F) − n(n − 1).

Open question related to PosSLP
Given positive integers a, b, c, n in binary, determine the sign of an + bn − cn.

Can we find an algorithm that solves this problem in time O(log(max(a, b, c, n)))?
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