PosSLP and Sum of Squares

Markus Bläser¹ Julian Dörfler² Gorav Jindal³

December 16, 2024 FSTTCS 2024, IIT Gandhinagar, India

¹Saarland University, Saarland Informatics Campus, Saarbrücken, Germany ²Saarland University, Saarland Informatics Campus, Saarbrücken, Germany ³Max Planck Institute for Software Systems, Saarbrücken, Germany

Table of Contents

- **[Certificates for Positivity](#page-30-0)**
- [Positivity of Polynomials](#page-66-0)

Decision problems on Integers

 \bullet Given an integer N as input, how to decide if:

- \blacktriangleright N is zero?
- \triangleright N is positive?

Decision problems on Integers

 \bullet Given an integer N as input, how to decide if:

- \triangleright N is zero?
- \triangleright N is positive?

• Of course, N is not given as input in its bit string representation.

Decision problems on Integers

 \bullet Given an integer N as input, how to decide if:

- \blacktriangleright N is zero?
- \triangleright N is positive?

• Of course, N is not given as input in its bit string representation.

Example

Given $a, b, c, n \in \mathbb{N}$, $N := a^n + b^n - c^n$. Decide if:

- N is zero (Fermat's Last Theorem)?
- \bullet N is positive?

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 4/26

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates $x_1, x_2, ..., x_n$. Internal nodes are operations $+, -, \times$.

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates x_1, x_2, \ldots, x_n . Internal nodes are operations $+, -, \times$.

- Each arithmetic circuit computes a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$.
- \bullet Size $=$ Number of nodes.

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates x_1, x_2, \ldots, x_n . Internal nodes are operations $+, -, \times$.

- Each arithmetic circuit computes a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$.
- \bullet Size $=$ Number of nodes.

Definition (SLP)

A straight-line program (SLP) is a sequence of instructions for evaluation of an arithmetic circuit.

• SLPs and arithmetic circuits are used interchangeably.

Example

Example

• This circuit computes the polynomial $(x_1 - 1) + x_2x_3$.

Table of Contents

- **[Certificates for Positivity](#page-30-0)**
- [Positivity of Polynomials](#page-66-0)

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 6/26

Definition (PosSLP)

Given a SLP P without indeterminates, decide if the integer N computed by P is positive.

Definition (PosSLP)

Given a SLP P without indeterminates, decide if the integer N computed by P is positive.

- Such a SLP P is sequence of integers $(b_0, b_1, b_2, \ldots, b_\ell)$ with
	- \blacktriangleright $b_0 = 1$.
	- **For all** $1 \le i \le \ell$, $b_i = b_i \circ_i b_k$, with $\circ_i \in \{+, -, *\}$ and $j, k < i$.

Definition (PosSLP)

Given a SLP P without indeterminates, decide if the integer N computed by P is positive.

- Such a SLP P is sequence of integers $(b_0, b_1, b_2, \ldots, b_\ell)$ with
	- \blacktriangleright b₀ = 1.
	- **For all** $1 \le i \le \ell$, $b_i = b_i \circ_i b_k$, with $\circ_i \in \{+, -, *\}$ and *i*, $k < i$.
- Integer computed by P is b_ℓ , size of P is $\ell.$

Definition (PosSLP)

Given a SLP P without indeterminates, decide if the integer N computed by P is positive.

- Such a SLP P is sequence of integers $(b_0, b_1, b_2, \ldots, b_\ell)$ with
	- \blacktriangleright b₀ = 1.
	- **For all** $1 \le i \le \ell$ **,** $b_i = b_i \circ_i b_k$ **, with** $\circ_i \in \{+, -, *\}$ and $i, k < i$.
- Integer computed by P is b_ℓ , size of P is $\ell.$

Remark

We $\boldsymbol{\mathsf{cannot}}$ simply compute $b_\ell.$

Problem (SSR)

Given $S = \sum_{i=1}^n \delta_i \sqrt{a_i}$, with $\delta_i \in \{+1, -1\}$ and $a_i \in \mathbb{N}$, decide if $S > 0$.

Problem (SSR)

Given $S = \sum_{i=1}^n \delta_i \sqrt{a_i}$, with $\delta_i \in \{+1, -1\}$ and $a_i \in \mathbb{N}$, decide if $S > 0$.

Posed by (Garey, Graham, and Johnson [1976\)](#page-89-0) in connection with the Euclidean Traveling Salesman Problem (ETSP).

Problem (SSR)

Given $S = \sum_{i=1}^n \delta_i \sqrt{a_i}$, with $\delta_i \in \{+1, -1\}$ and $a_i \in \mathbb{N}$, decide if $S > 0$.

- Posed by (Garey, Graham, and Johnson [1976\)](#page-89-0) in connection with the Euclidean Traveling Salesman Problem (ETSP).
- **ETSP** is in NP relative to SSR

Problem (SSR)

Given $S = \sum_{i=1}^n \delta_i \sqrt{a_i}$, with $\delta_i \in \{+1, -1\}$ and $a_i \in \mathbb{N}$, decide if $S > 0$.

Posed by (Garey, Graham, and Johnson [1976\)](#page-89-0) in connection with the Euclidean Traveling Salesman Problem (ETSP).

ETSP is in NP relative to SSR

Theorem ((Tiwari [1992\)](#page-91-0))

 $SSR <_{P}$ PosSLP.

Problem (SSR)

Given $S = \sum_{i=1}^n \delta_i \sqrt{a_i}$, with $\delta_i \in \{+1, -1\}$ and $a_i \in \mathbb{N}$, decide if $S > 0$.

- Posed by (Garey, Graham, and Johnson [1976\)](#page-89-0) in connection with the Euclidean Traveling Salesman Problem (ETSP).
- **ETSP** is in NP relative to SSR

Theorem ((Tiwari [1992\)](#page-91-0))

 $SSR <_{P}$ PosSLP.

Proof.

A lower bound on $|{\mathcal S}|$. Newton iteration: If $x_0=a,~x_{i+1}=\frac{1}{2}$ $rac{1}{2}\left(x_i+\frac{a}{x}\right)$ $\overline{x_i}$ \setminus then $x_i \rightarrow \sqrt{a}$. √

 \bullet EquSLP: Given a SLP computing $N \in \mathbb{Z}$, decide if $N = 0$.

- \bullet EquSLP: Given a SLP computing $N \in \mathbb{Z}$, decide if $N = 0$.
- PIT: Given an arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$, decide if $f = 0$.

- **•** EquSLP: Given a SLP computing $N \in \mathbb{Z}$, decide if $N = 0$.
- PIT: Given an arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$, decide if $f = 0$.
- DegSLP: Given a arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x]$ and $d \in \mathbb{N}$, decide if deg(f) $\leq d$.

- **•** EquSLP: Given a SLP computing $N \in \mathbb{Z}$, decide if $N = 0$.
- PIT: Given an arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$, decide if $f = 0$.
- DegSLP: Given a arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x]$ and $d \in \mathbb{N}$, decide if deg(f) $\leq d$.
- BitSLP: Given a SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1.

Lower bounds for PosSLP

• Best upper bounds for PosSLP is CH.

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 10/26

Lower bounds for PosSLP

- Best upper bounds for PosSLP is CH.
- Unfortunately, nontrivial lower bounds for PosSLP remain unknown.

Lower bounds for PosSLP

- Best upper bounds for PosSLP is CH.
- Unfortunately, nontrivial lower bounds for PosSLP remain unknown.

Theorem ((Bürgisser and Jindal [2024\)](#page-88-0))

If a constructive variant of the **radical conjecture** of (Dutta, Saxena, and Sinhababu [2018\)](#page-88-1) is true and PosSLP \in BPP then NP \subseteq BPP.

Table of Contents

[Positivity of Polynomials](#page-66-0)

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 11/26

• For $N > 0$, how do we certify the positivity of N?

- For $N > 0$, how do we certify the positivity of N?
- \bullet $\tau(N)$:= size of the smallest SLP which computes N.
- $\bullet \tau_+(N) :=$ size of the smallest subtraction free SLP which computes N.

- For $N > 0$, how do we certify the positivity of N?
- $\bullet \tau(N) :=$ size of the smallest SLP which computes N.
- $\bullet \tau_+(N) :=$ size of the smallest subtraction free SLP which computes N.
- If $N > 0$ then there exists a subtraction free SLP which computes N.

- For $N > 0$, how do we certify the positivity of N?
- \bullet $\tau(N)$:= size of the smallest SLP which computes N.
- $\bullet \tau_+(N) :=$ size of the smallest subtraction free SLP which computes N.
- If $N > 0$ then there exists a subtraction free SLP which computes N.

Lemma ((Jindal and Saranurak [2012\)](#page-89-1))

If $\tau_+(N) \leq \text{poly}(\tau(N))$ then PosSLP \in PH.

- For $N > 0$, how do we certify the positivity of N?
- $\bullet \tau(N) :=$ size of the smallest SLP which computes N.
- $\bullet \tau_+(N) :=$ size of the smallest subtraction free SLP which computes N.
- If $N > 0$ then there exists a subtraction free SLP which computes N.

Lemma ((Jindal and Saranurak [2012\)](#page-89-1))

- If $\tau_+(N) \leq \text{poly}(\tau(N))$ then PosSLP \in PH.
	- There exist integer sequences where $\tau_{+}(n) > \tau(n)$ (Jindal and Saranurak [2012\)](#page-89-1).
Monotone Complexity

- For $N > 0$, how do we certify the positivity of N?
- $\bullet \tau(N) :=$ size of the smallest SLP which computes N.
- $\bullet \tau_+(N) :=$ size of the smallest subtraction free SLP which computes N.
- If $N > 0$ then there exists a subtraction free SLP which computes N.

Lemma ((Jindal and Saranurak [2012\)](#page-89-0))

- If $\tau_+(N) \leq \text{poly}(\tau(N))$ then PosSLP \in PH.
	- There exist integer sequences where $\tau_{+}(n) > \tau(n)$ (Jindal and Saranurak [2012\)](#page-89-0).

Lagrange's four-square theorem

Theorem (Lagrange 1770)

Every non-negative integer can be written as a sum of four non-negative integer squares.

Lagrange's four-square theorem

Theorem (Lagrange 1770)

Every non-negative integer can be written as a sum of four non-negative integer squares.

- So PosSLP is same as:
	- First check if $N = 0$ using EquSLP.
	- ► Given non-zero N (as SLP) decide if $\exists a, b, c, d \in \mathbb{N}$ such that $N = a^2 + b^2 + c^2 + d^2$.

Lagrange's four-square theorem

Theorem (Lagrange 1770)

Every non-negative integer can be written as a sum of four non-negative integer squares.

- So PosSLP is same as:
	- First check if $N = 0$ using EquSLP.
	- ► Given non-zero N (as SLP) decide if $\exists a, b, c, d \in \mathbb{N}$ such that $N = a^2 + b^2 + c^2 + d^2$.
- How about shorter Sum of Squares certificates?

- $n \in \mathbb{N}$ is 3SoS if it can be expressed as the sum of three squares (of integers).
- $n \in \mathbb{N}$ is 2SoS if it can be expressed as the sum of two squares (of integers).

- $n \in \mathbb{N}$ is 3SoS if it can be expressed as the sum of three squares (of integers).
- $n \in \mathbb{N}$ is 2SoS if it can be expressed as the sum of two squares (of integers).

Problem (3SoSSLP)

Given a SLP computing $N \in \mathbb{Z}$, decide whether N is a 3SoS.

- $n \in \mathbb{N}$ is 3SoS if it can be expressed as the sum of three squares (of integers).
- $n \in \mathbb{N}$ is 2SoS if it can be expressed as the sum of two squares (of integers).

Problem (3SoSSLP)

Given a SLP computing $N \in \mathbb{Z}$, decide whether N is a 3SoS.

Problem (2SoSSLP)

Given a SLP computing $N \in \mathbb{Z}$, decide whether N is a 2SoS.

Theorem ((Legendre [1798\)](#page-90-0))

An integer is 3SoS if and only if it is not of the form $4^a(8b+7)$, with $a, b \in \mathbb{N}$.

Theorem ((Legendre [1798\)](#page-90-0))

An integer is 3SoS if and only if it is not of the form $4^a(8b+7)$, with $a, b \in \mathbb{N}$.

Lemma

EquSLP $\leq_P 3$ SoSSLP.

Theorem ((Legendre [1798\)](#page-90-0))

An integer is 3SoS if and only if it is not of the form $4^a(8b+7)$, with $a, b \in \mathbb{N}$.

Lemma

EquSLP \leq_{P} 3SoSSLP.

Proof.

Suppose $M = N^2$. If $M \in \mathbb{Z}_+$ then $7M^4$ not a 3SoS.

3SoS integers are "dense" in N and occur very "frequently".

• 3SoS integers are "dense" in N and occur very "frequently".

Theorem ((Landau [1908\)](#page-90-1))

Asymptotic density of 3SoS integers in $\mathbb N$ is 5/6.

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 16/26

• 3SoS integers are "dense" in N and occur very "frequently".

Theorem ((Landau [1908\)](#page-90-1))

Asymptotic density of 3SoS integers in $\mathbb N$ is 5/6.

Lemma

 $\forall n \in \mathbb{N}$ at least one element in the set $\{n, n+2\}$ is 3SoS.

• 3SoS integers are "dense" in N and occur very "frequently".

Theorem ((Landau [1908\)](#page-90-1))

Asymptotic density of 3SoS integers in $\mathbb N$ is 5/6.

Lemma

 $\forall n \in \mathbb{N}$ at least one element in the set $\{n, n+2\}$ is 3SoS.

Theorem

 $\mathsf{PosSLP} \in \mathsf{P}^{3\mathsf{SoSSLP}}$.

• 3SoS integers are "dense" in N and occur very "frequently".

Theorem ((Landau [1908\)](#page-90-1))

Asymptotic density of 3SoS integers in $\mathbb N$ is 5/6.

Lemma

 $\forall n \in \mathbb{N}$ at least one element in the set $\{n, n+2\}$ is 3SoS.

Theorem

 $\mathsf{PosSLP} \in \mathsf{P}^{3\mathsf{SoSSLP}}$.

Proof.

Given SLP for N, first check if $N \in \{0, -1, -2\}$. Assume $N \notin \{0, -1, -2\}$. Check if N is a 3SoS. Check if $N + 2$ is a 3SoS.

Problem (Div2SLP)

Given $N \in \mathbb{Z}$ by SLP, and $\ell \in \mathbb{N}$, decide if 2^{ℓ} divides $|N|$.

Problem (Div2SLP)

Given $N \in \mathbb{Z}$ by SLP, and $\ell \in \mathbb{N}$, decide if 2^{ℓ} divides $|N|$.

Lemma

DegSLP \leq_P Div2SLP.

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 17/26

Problem (Div2SLP)

Given $N \in \mathbb{Z}$ by SLP, and $\ell \in \mathbb{N}$, decide if 2^{ℓ} divides $|N|$.

Lemma

DegSLP \leq_P Div2SLP.

• It is natural that Div2SLP is useful for deciding 3SoSSLP.

Problem (Div2SLP)

Given $N \in \mathbb{Z}$ by SLP, and $\ell \in \mathbb{N}$, decide if 2^{ℓ} divides $|N|$.

Lemma

DegSLP \leq_P Div2SLP.

• It is natural that Div2SLP is useful for deciding 3SoSSLP.

Theorem

 3 So $\mathsf{SSLP} \in \mathsf{P}^{\{\mathsf{Div2SLP},\mathsf{PosSLP}\}}$.

Problem (Div2SLP)

Given $N \in \mathbb{Z}$ by SLP, and $\ell \in \mathbb{N}$, decide if 2^{ℓ} divides $|N|$.

Lemma

DegSLP \leq_P Div2SLP.

• It is natural that Div2SLP is useful for deciding 3SoSSLP.

Theorem

 3 So $\mathsf{SSLP} \in \mathsf{P}^{\{\mathsf{Div2SLP},\mathsf{PosSLP}\}}$.

Proof.

To decide if N is 3SoS, first check if $N > 0$. Then use Div2SLP oracle to check the 3SoS condition.

Theorem (Gauss 1801; Jacobi 1829)

An integer $n > 1$ is not 2SoS if and only if the prime-power decomposition of n contains a prime of the form $4k + 3$ with an odd power.

Theorem (Gauss 1801; Jacobi 1829)

An integer $n > 1$ is not 2SoS if and only if the prime-power decomposition of n contains a prime of the form $4k + 3$ with an odd power.

Lemma

EquSLP \leq_{P} 2SoSSLP.

Theorem (Gauss 1801; Jacobi 1829)

An integer $n > 1$ is not 2SoS if and only if the prime-power decomposition of n contains a prime of the form $4k + 3$ with an odd power.

Lemma

EquSLP \leq_{P} 2SoSSLP.

Proof.

Suppose $M = N^2$. If $M \in \mathbb{Z}_+$ then $3M^2$ not a 2SoS.

Theorem (Gauss 1801; Jacobi 1829)

An integer $n > 1$ is not 2SoS if and only if the prime-power decomposition of n contains a prime of the form $4k + 3$ with an odd power.

Lemma

Proof.

Suppose
$$
M = N^2
$$
. If $M \in \mathbb{Z}_+$ then $3M^2$ not a 2SoS.

Theorem

If Generalized Cramér conjecture is true then $\text{PosSLP} \in \mathsf{NP}^\text{2SoSSLP}.$

Problem (SquSLP)

Given a SLP representing $N \in \mathbb{Z}$, decide whether $N = a^2$ for some $a \in \mathbb{Z}$.

Problem (SquSLP)

Given a SLP representing $N \in \mathbb{Z}$, decide whether $N = a^2$ for some $a \in \mathbb{Z}$.

Lemma

EquSLP \leq_P SquSLP.

Problem (SquSLP)

Given a SLP representing $N \in \mathbb{Z}$, decide whether $N = a^2$ for some $a \in \mathbb{Z}$.

Lemma

EquSLP \leq_P SquSLP.

Proof.

Suppose $M=N^2+1$. M is a square iff N is zero.

Problem (SquSLP)

Given a SLP representing $N \in \mathbb{Z}$, decide whether $N = a^2$ for some $a \in \mathbb{Z}$.

Lemma

EquSLP \leq_P SquSLP.

Proof.

Suppose $M=N^2+1$. M is a square iff N is zero.

Theorem ((Jindal and Gaillard [2023\)](#page-89-1))

SquSLP can be decided in randomized polynomial time, assuming GRH.

Problem (SquSLP)

Given a SLP representing $N \in \mathbb{Z}$, decide whether $N = a^2$ for some $a \in \mathbb{Z}$.

Lemma

EquSLP \leq_P SquSLP.

Proof.

Suppose $M=N^2+1$. M is a square iff N is zero.

Theorem ((Jindal and Gaillard [2023\)](#page-89-1))

SquSLP can be decided in randomized polynomial time, assuming GRH.

Proof.

To decide if $N=a^2$, choose a random prime ρ and decide if N mod ρ is a square in \mathbb{F}_p .

Table of Contents

- **[Certificates for Positivity](#page-30-0)**
- 4 [Positivity of Polynomials](#page-66-0)

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 20/26

• Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.

- Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.
- What does it even mean?

- Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.
- What does it even mean?

Definition

 $f \in \mathbb{R}[x]$ is **positive** if $f(x) \ge 0$ for all $x \in \mathbb{R}$.

- Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.
- What does it even mean?

Definition

 $f \in \mathbb{R}[x]$ is **positive** if $f(x) \ge 0$ for all $x \in \mathbb{R}$.

Theorem (Folklore)

For every positive polynomial $f \in \mathbb{R}[x]$, there exist $g, h \in \mathbb{R}[x]$ such that $f = g^2 + h^2$.

- Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.
- What does it even mean?

Definition

 $f \in \mathbb{R}[x]$ is **positive** if $f(x) \ge 0$ for all $x \in \mathbb{R}$.

Theorem (Folklore)

For every positive polynomial $f \in \mathbb{R}[x]$, there exist $g, h \in \mathbb{R}[x]$ such that $f = g^2 + h^2$.

Theorem ((Pourchet [1971\)](#page-90-2))

For every positive polynomial $f \in \mathbb{Q}[x]$, there exist $g_1, g_2, \ldots, g_5 \in \mathbb{Q}[x]$ such that $f = \sum_{i=1}^{5} g_i^2$.
- Given a polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.
- What does it even mean?

Definition

 $f \in \mathbb{R}[x]$ is **positive** if $f(x) \ge 0$ for all $x \in \mathbb{R}$.

Theorem (Folklore)

For every positive polynomial $f \in \mathbb{R}[x]$, there exist $g, h \in \mathbb{R}[x]$ such that $f = g^2 + h^2$.

Theorem ((Pourchet [1971\)](#page-90-0))

For every positive polynomial $f \in \mathbb{Q}[x]$, there exist $g_1, g_2, \ldots, g_5 \in \mathbb{Q}[x]$ such that $f = \sum_{i=1}^{5} g_i^2$.

Problem (PosPolySLP)

Given a straight-line program computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.

Problem (PosPolySLP)

Given a straight-line program computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.

Theorem

PosPolySLP is coNP-hard .

Problem (PosPolySLP)

Given a straight-line program computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f is positive.

Theorem

PosPolySLP is coNP-hard .

Problem (SquPolySLP)

Given a straight-line program representing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if $\exists g \in \mathbb{Z}[x]$ such that $f = g^2$.

Markus Bläser, Julian Dörfler, Gorav Jindal [PosSLP and Sum of Squares](#page-0-0) FSTTCS 2024, December 16 23 / 26

Can we use SquSLP to solve SquPolySLP?

• Can we use SquSLP to solve SquPolySLP?

Theorem ((Murty [2008\)](#page-90-1))

For $f \in \mathbb{Z}[x]$, $\exists g \in \mathbb{Z}[x]$ with $f = g^2$ iff $\forall t \in \mathbb{Z}$, $f(t)$ is a perfect square.

• Can we use SquSLP to solve SquPolySLP?

Theorem ((Murty [2008\)](#page-90-1))

For $f \in \mathbb{Z}[x]$, $\exists g \in \mathbb{Z}[x]$ with $f = g^2$ iff $\forall t \in \mathbb{Z}$, $f(t)$ is a perfect square.

Lemma

 $SquPolySLP \in \mathsf{coRP}.$

• Can we use SquSLP to solve SquPolySLP?

Theorem ((Murty [2008\)](#page-90-1))

For $f \in \mathbb{Z}[x]$, $\exists g \in \mathbb{Z}[x]$ with $f = g^2$ iff $\forall t \in \mathbb{Z}$, $f(t)$ is a perfect square.

Lemma

```
SquPolySLP \in \mathsf{coRP}.
```
Proof.

Pick a random $t \in \mathbb{Z}$ and decide if $f(t)$ is a square using algorithm for SquSLP. This works by using an effective variant of Hilbert's irreducibility theorem.

Summary of Complexity reductions

Problem (OrdSLP)

Given a SLP representing a polynomial $f \in \mathbb{Z}[x]$ and $\ell \in \mathbb{N}$, decide if x^{ℓ} divides f .

Summary of Complexity reductions

Problem (OrdSLP)

Given a SLP representing a polynomial $f \in \mathbb{Z}[x]$ and $\ell \in \mathbb{N}$, decide if x^{ℓ} divides f .

- \triangleright Div2SLP is at least as hard as DegSLP.
- \blacktriangleright Is it NP-hard as well?
- \blacktriangleright How does Div2SLP relate to PosSLP?

- \triangleright Div2SLP is at least as hard as DegSLP.
- \blacktriangleright Is it NP-hard as well?
- \blacktriangleright How does Div2SLP relate to PosSLP?
- SLP and Sum of Squares for Polynomials:
	- \triangleright Complexity of polynomial analogues for 2SoSSLP, 3SoSSLP.

- \triangleright Div2SLP is at least as hard as DegSLP.
- \blacktriangleright Is it NP-hard as well?
- \blacktriangleright How does Div2SLP relate to PosSLP?
- SLP and Sum of Squares for Polynomials:
	- \triangleright Complexity of polynomial analogues for 2SoSSLP, 3SoSSLP.
- Unconditional hardness results for the PosSLP problem?

- \triangleright Div2SLP is at least as hard as DegSLP.
- \blacktriangleright Is it NP-hard as well?
- \blacktriangleright How does Div2SLP relate to PosSLP?
- SLP and Sum of Squares for Polynomials:
	- ▶ Complexity of polynomial analogues for 2SoSSLP, 3SoSSLP.
- Unconditional hardness results for the PosSLP problem?
- Efficient algorithms for special cases of PosSLP.

Thanks for your attention! Any questions?

Literature I

冨 Allender, E. et al. (2006). "On the complexity of numerical analysis". In: 21st Annual IEEE Conference on Computational Complexity (CCC'06), 9 pp. - 339. DOI: [10.1109/CCC.2006.30](https://doi.org/10.1109/CCC.2006.30). **Bürgisser, Peter and Gorav Jindal (2024). "On the Hardness of**

PosSLP". In: pp. 1872-1886. DOI: [10.1137/1.9781611977912.75](https://doi.org/10.1137/1.9781611977912.75). eprint: [https:](https://epubs.siam.org/doi/pdf/10.1137/1.9781611977912.75)

[//epubs.siam.org/doi/pdf/10.1137/1.9781611977912.75](https://epubs.siam.org/doi/pdf/10.1137/1.9781611977912.75). url: [https:](https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.75)

[//epubs.siam.org/doi/abs/10.1137/1.9781611977912.75](https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.75).

Dutta, Pranjal, Nitin Saxena, and Amit Sinhababu (2018). "Discovering the roots: uniform closure results for algebraic classes under factoring". In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2018. Los Angeles, CA, USA: Association for Computing Machinery, pp. 1152-1165. ISBN: 9781450355599. doi: [10.1145/3188745.3188760](https://doi.org/10.1145/3188745.3188760). url: <https://doi.org/10.1145/3188745.3188760>.

Literature II

晶 Garey, M. R., R. L. Graham, and D. S. Johnson (1976). "Some NP-complete geometric problems". In: Proceedings of the Eighth Annual ACM Symposium on Theory of Computing. STOC '76. Hershey, Pennsylvania, USA: Association for Computing Machinery, pp. 10-22. ISBN: 9781450374149. DOI: [10.1145/800113.803626](https://doi.org/10.1145/800113.803626). url: <https://doi.org/10.1145/800113.803626>. Jindal, Gorav and Louis Gaillard (2023). "On the Order of Power Series and the Sum of Square Roots Problem". In: Proceedings of the

2023 International Symposium on Symbolic and Algebraic Computation, pp. 354–362.

Jindal, Gorav and Thatchaphol Saranurak (2012). "Subtraction makes computing integers faster". In: CoRR abs/1212.2549. arXiv: [1212.2549](https://arxiv.org/abs/1212.2549). url: <http://arxiv.org/abs/1212.2549>.

Literature III

晶 Landau, E. (1908). Uber die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderliche Quadrate. URL: <https://books.google.de/books?id=e3XBnQAACAAJ>. Legendre, Adrien Marie (1798). Essai sur la théorie des nombres. fr. Duprat. DOI: [10.3931/E-RARA-3663](https://doi.org/10.3931/E-RARA-3663). URL: <https://www.e-rara.ch/zut/doi/10.3931/e-rara-3663>. 譶 Murty, M Ram (2008). "Polynomials assuming square values". In: Number theory and discrete geometry, pp. 155–163. 宇 Pourchet, Y. (1971). "Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques". fre. In: Acta Arithmetica 19.1, pp. 89–104. URL: <http://eudml.org/doc/205020>.

Literature IV

譶

Tiwari, Prasoon (1992). "A problem that is easier to solve on the unit-cost algebraic RAM". In: Journal of Complexity 8.4, pp. 393-397. issn: 0885-064X. doi: [https://doi.org/10.1016/0885-064X\(92\)90003-T](https://doi.org/https://doi.org/10.1016/0885-064X(92)90003-T). url: [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/0885064X9290003T) [0885064X9290003T](https://www.sciencedirect.com/science/article/pii/0885064X9290003T).