On the Hardness of PosSLP

Peter Bürgisser¹ Gorav Jindal²

January 8, 2024 SODA 2024, Alexandria, Virginia, USA

¹Institut für Mathematik, Technische Universität Berlin, Germany ²Max Planck Institute for Software Systems, Saarbrücken, Germany

Table of Contents

3 Conditional Hardness of PosSLP

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:
 - f may evaluate to irrational numbers

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:
 - f may evaluate to irrational numbers
 - Only an approximation \tilde{x} of x might be known in practice

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:
 - f may evaluate to irrational numbers
 - Only an approximation \tilde{x} of x might be known in practice
 - Exact computation f(x) may be computationally expensive

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:
 - f may evaluate to irrational numbers
 - Only an approximation \tilde{x} of x might be known in practice
 - Exact computation f(x) may be computationally expensive
- Can we efficiently approximate f(x)?

- An algorithm (represented as function f) with $f: \mathbb{R}^n \to \mathbb{R}$
- On an input $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, compute f(x)
- Exact computation of f(x) may not be possible because:
 - f may evaluate to irrational numbers
 - Only an approximation \tilde{x} of x might be known in practice
 - Exact computation f(x) may be computationally expensive
- Can we efficiently approximate f(x)?
- It is reasonable to assume that *f* can be approximated using polynomials

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates x_1, x_2, \ldots, x_n . Internal nodes are operations $+, -, \times, \div$.

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates x_1, x_2, \ldots, x_n . Internal nodes are operations $+, -, \times, \div$.

- Each arithmetic circuit computes a rational function $\frac{f}{g}$ with $f, g \in \mathbb{Z}[x_1, x_2, \dots, x_n]$
- Size = Number of nodes

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0, 1 or indeterminates x_1, x_2, \ldots, x_n . Internal nodes are operations $+, -, \times, \div$.

- Each arithmetic circuit computes a rational function $\frac{f}{g}$ with $f, g \in \mathbb{Z}[x_1, x_2, \dots, x_n]$
- Size = Number of nodes

Definition (SLP)

A straight-line program (SLP) is a sequence of instructions for evaluation of an arithmetic circuit.

• SLPs and arithmetic circuits are used interchangeably.

Example

Example

• This circuit computes the polynomial $(x_1 - 1) + x_2 x_3$

Floating point representations

• For any non-zero $u \in \mathbb{R}$, there exists unique $u' \in \mathbb{R}$, $m \in \mathbb{Z}$ with $\frac{1}{2} \le |u'| < 1$ such that $u = u'2^m$

Floating point representations

- For any non-zero $u \in \mathbb{R}$, there exists unique $u' \in \mathbb{R}$, $m \in \mathbb{Z}$ with $\frac{1}{2} \le |u'| < 1$ such that $u = u'2^m$
- For $k \in \mathbb{N}$, approximate u' by a v such that $|v u'| \le 2^{-(k+1)}$

Floating point representations

- For any non-zero $u \in \mathbb{R}$, there exists unique $u' \in \mathbb{R}$, $m \in \mathbb{Z}$ with $\frac{1}{2} \le |u'| < 1$ such that $u = u'2^m$
- For $k \in \mathbb{N}$, approximate u' by a v such that $|v u'| \leq 2^{-(k+1)}$
- This pair (v, m) is a floating point approximation of u with k significant bits

• Given a function $f : \mathbb{R}^n \to \mathbb{R}$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ as inputs, approximate f(x)

- Given a function $f : \mathbb{R}^n \to \mathbb{R}$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ as inputs, approximate f(x)
- There is a method to compute or approximate f

- Given a function $f : \mathbb{R}^n \to \mathbb{R}$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ as inputs, approximate f(x)
- There is a method to compute or approximate f
- Assume f can be computed using an SLP

- Given a function $f : \mathbb{R}^n \to \mathbb{R}$ and $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ as inputs, approximate f(x)
- There is a method to compute or approximate f
- Assume f can be computed using an SLP

Problem (Generic task of numerical computation (GTNC))

Given a SLP P with indeterminates $x_1, x_2, ..., x_n$, floating point numbers $a_1, a_2, ..., a_n$ and an integer k in unary, compute a floating point approximation of $P(a_1, a_2, ..., a_n)$ with k significant bits.

Table of Contents

3 Conditional Hardness of PosSLP

PosSLP

• Motivation: To characterize the complexity of numerical analysis (GTNC)

PosSLP

 Motivation: To characterize the complexity of numerical analysis (GTNC)

Definition (PosSLP)

Given a division-free SLP P without indeterminates, decide if the integer N computed by P is positive.

PosSLP

 Motivation: To characterize the complexity of numerical analysis (GTNC)

Definition (PosSLP)

Given a division-free SLP P without indeterminates, decide if the integer N computed by P is positive.

- Such an SLP P is sequence of integers (b₀, b₁, b₂,..., b_ℓ) with b₀ = 1 and for all 1 ≤ i ≤ ℓ, b_i = b_j ∘_i b_k, where ∘_i ∈ {+, -, *} and j, k < i
- Integer computed by P is b_{ℓ} , Size of P is ℓ

Connection to numerical analysis

Theorem ((Allender et al. 2006))

GTNC is polynomial time Turing equivalent to PosSLP.

• EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0

 \longleftrightarrow = Polynomial time Turing equivalence

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$, decide if f = 0

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial f ∈ ℤ[x₁, x₂, . . . , x_n], decide if f = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial *f* ∈ ℤ[x₁, x₂, . . . , x_n], decide if *f* = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial *f* ∈ ℤ[x₁, x₂, . . . , x_n], decide if *f* = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial f ∈ ℤ[x₁, x₂, . . . , x_n], decide if f = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model

←→ = Polynomial time Turing equivalence

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial f ∈ Z[x₁, x₂,..., x_n], decide if f = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \ldots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model
- SSR: Sum of Square roots problem
- KTP: Koiran's trinomial sign problem (Koiran 2019)

 \longleftrightarrow = Polynomial time Turing equivalence

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if N = 0
- PIT: Given a division-free arithmetic circuit computing a polynomial f ∈ Z[x₁, x₂,..., x_n], decide if f = 0
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}[x_1, x_2, \dots, x_n]$ and $d \in \mathbb{N}$, decide if deg $(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if i^{th} bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model
- SSR: Sum of Square roots problem
- KTP: Koiran's trinomial sign problem (Koiran 2019)
- CH: Counting hierarchy
- Image: Bar a given semialgebraic set is non empty

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))

 $PosSLP \in CH$, here CH is the counting hierarchy.

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))

 $PosSLP \in CH$, here CH is the counting hierarchy.

• Another approach: for $n \in \mathbb{N}$,

- $\tau(n) :=$ size of the smallest SLP which computes n
- $\tau_+(n) :=$ size of the smallest subtraction free SLP which computes n

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))

 $PosSLP \in CH$, here CH is the counting hierarchy.

• Another approach: for $n \in \mathbb{N}$,

- $\tau(n) :=$ size of the smallest SLP which computes n
- $\tau_+(n) :=$ size of the smallest subtraction free SLP which computes n
- If $au_+(n) \leq \mathsf{poly}(au(n))$ then $\mathsf{PosSLP} \in \mathsf{PH}$ (Jindal and Saranurak 2012)

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))

 $PosSLP \in CH$, here CH is the counting hierarchy.

- Another approach: for $n \in \mathbb{N}$,
 - $\tau(n) :=$ size of the smallest SLP which computes n
 - $au_+(n) :=$ size of the smallest subtraction free SLP which computes n
- If $au_+(n) \leq \mathsf{poly}(au(n))$ then $\mathsf{PosSLP} \in \mathsf{PH}$ (Jindal and Saranurak 2012)
- There exist integer sequences where $au_+(n) > au(n)$ (Jindal and Saranurak 2012)

Lower bounds for PosSLP

• Unfortunately, nontrivial lower bounds for PosSLP remain unknown

Lower bounds for PosSLP

• Unfortunately, nontrivial lower bounds for PosSLP remain unknown

Theorem (This paper)

If a constructive variant of the radical conjecture is true and $PosSLP \in BPP$ then $NP \subseteq BPP$.

Table of Contents

 RealRootSLP: Given an arithmetic circuit computing a univariate polynomial f ∈ ℤ[x], decide if f has a real root

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial f ∈ ℤ[x], decide if f has a real root
- 3SAT≤_P RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial f ∈ ℤ[x], decide if f has a real root
- 3SAT≤_P RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)
 - ▶ 3SAT formula $\phi \longrightarrow$ An arithmetic circuit computing a polynomial f_{ϕ} such that ϕ is satisfiable iff f_{ϕ} has a real root

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial f ∈ ℤ[x], decide if f has a real root
- 3SAT≤_P RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)
 - ▶ 3SAT formula $\phi \longrightarrow$ An arithmetic circuit computing a polynomial f_{ϕ} such that ϕ is satisfiable iff f_{ϕ} has a real root
 - All the real roots (if any) of f_{ϕ} are in (-1, 1)

Idea for NP-hardness of PosSLP

• If ϕ is satisfiable then f_{ϕ} "should" look like:

Main idea

Idea for NP-hardness of PosSLP

• If ϕ is satisfiable then f_{ϕ} "should" look like:

Idea for NP-hardness of PosSLP

• If ϕ is satisfiable then f_{ϕ} "should" look like:

• If ϕ is not satisfiable then f_{ϕ} "should" look like:

Idea for NP-hardness of PosSLP

• If ϕ is satisfiable then f_{ϕ} "should" look like:

• If ϕ is not satisfiable then f_{ϕ} "should" look like:

Main idea

Idea for NP-hardness of PosSLP

• If ϕ is satisfiable then f_{ϕ} "should" look like:

• If ϕ is not satisfiable then f_{ϕ} "should" look like:

• Pick a random rational q in (-1, 1), check if $f_{\phi}(1)$ and $f_{\phi}(q)$ have different signs, i.e. $(-1)f_{\phi}(1)f_{\phi}(q) > 0$

Challenges

• f_{ϕ} only changes sign on real roots of odd multiplicity

Challenges

- f_{ϕ} only changes sign on real roots of odd multiplicity
- What if f_{ϕ} has roots only of even multiplicity? \rightsquigarrow Radical conjecture

Challenges

- f_{ϕ} only changes sign on real roots of odd multiplicity
- What if f_{ϕ} has roots only of even multiplicity? \rightsquigarrow Radical conjecture
- Even if f_{ϕ} has roots only of odd multiplicity, how likely is it that $f_{\phi}(1)$ and $f_{\phi}(q)$ have different signs? \rightsquigarrow **UniqueSAT**

• $\tau(f) =$ size of the smallest arithmetic circuit computing f

- $\tau(f) =$ size of the smallest arithmetic circuit computing f
- rad(f) = Radical of f, i.e, the square free part of f

- $\tau(f) =$ size of the smallest arithmetic circuit computing f
- rad(f) = Radical of f, i.e, the square free part of f
- rad(f) has only simple roots and has all the roots of f

- $\tau(f) =$ size of the smallest arithmetic circuit computing f
- rad(f) = Radical of f, i.e, the square free part of f
- rad(f) has only simple roots and has all the roots of f

Conjecture ((Dutta, Saxena, and Sinhababu 2022), Radical conjecture)

For univariate $f \in \mathbb{Z}[x]$, $\tau(\operatorname{rad}(f)) \leq \operatorname{poly}(\tau(f))$.

• It implies $\tau(\operatorname{rad}(f_{\phi})) \leq \operatorname{poly}(n)$, $n = \operatorname{number of literals in } \phi$

UniqueSAT

• Under randomized polynomial time reductions, ϕ can be assumed to have a unique satisfying assignment (Valiant and Vazirani 1986)

UniqueSAT

• Under randomized polynomial time reductions, ϕ can be assumed to have a unique satisfying assignment (Valiant and Vazirani 1986)

Theorem (This paper)

If ϕ has a unique satisfying assignment then $\operatorname{rad}(f_{\phi})(1)$ and $\operatorname{rad}(f_{\phi})(q)$ have different signs with probability at least $\frac{1}{4\pi}$, where q is a random rational in (-1, 1).

Lower Bound

Lower Bound

Theorem (This paper)

If a constructive variant of the radical conjecture is true and $PosSLP \in BPP$ then $NP \subseteq BPP$.

Future research directions

• Radical conjecture is a strong assumption, can we do without it?

Future research directions

- Radical conjecture is a strong assumption, can we do without it?
- Special cases of PosSLP:
 - Koiran's trinomial sign problem (Koiran 2019)
 - Sum of square roots problem
 - Decide if $a^n + b^n c^n > 0$
 - Many more.....

Thanks for your attention! Any questions?

Literature I

Allender, E. et al. (2006). "On the complexity of numerical analysis". In: 21st Annual IEEE Conference on Computational Complexity (CCC'06), 9 pp.-339. DOI: 10.1109/CCC.2006.30. 📔 Dutta, Pranjal, Nitin Saxena, and Amit Sinhababu (June 2022). "Discovering the Roots: Uniform Closure Results for Algebraic Classes Under Factoring". In: J. ACM 69.3. ISSN: 0004-5411. DOI: 10.1145/3510359. URL: https://doi.org/10.1145/3510359. Jindal, Gorav and Thatchaphol Saranurak (2012). "Subtraction makes computing integers faster". In: CoRR abs/1212.2549. arXiv: 1212.2549. URL: http://arxiv.org/abs/1212.2549. Koiran, Pascal (2019). "Root separation for trinomials". In: Journal of Symbolic Computation 95, pp. 151–161. ISSN: 0747-7171. DOI: https://doi.org/10.1016/j.jsc.2019.02.004. URL: https://www.sciencedirect.com/science/article/pii/ S074771711930015X.

Literature II

Perrucci, Daniel and Juan Sabia (2007). "Real roots of univariate polynomials and straight line programs". In: Journal of Discrete Algorithms 5.3. Selected papers from Ad Hoc Now 2005, pp. 471–478. ISSN: 1570-8667. DOI: https://doi.org/10.1016/j.jda.2006.10.002. URL: https://www.sciencedirect.com/science/article/pii/ S1570866706000840. Valiant, L.G. and V.V. Vazirani (1986). "NP is as easy as detecting unique solutions". In: Theoretical Computer Science 47, pp. 85–93. ISSN: 0304-3975. DOI: https://doi.org/10.1016/0304-3975(86)90135-0. URL: https://www.sciencedirect.com/science/article/pii/ 0304397586901350.