On the Hardness of PosSLP

January 8, 2024
SODA 2024, Alexandria, Virginia, USA

[^0]
Table of Contents

(1) Motivation

(3) Conditional Hardness of PosSLP

Sin! ACM-SIAM Symposium on
2924 Discrete Algorithms

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:
- f may evaluate to irrational numbers

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:
- f may evaluate to irrational numbers
- Only an approximation \tilde{x} of x might be known in practice

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:
- f may evaluate to irrational numbers
- Only an approximation \tilde{x} of x might be known in practice
- Exact computation $f(x)$ may be computationally expensive

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:
- f may evaluate to irrational numbers
- Only an approximation \tilde{x} of x might be known in practice
- Exact computation $f(x)$ may be computationally expensive
- Can we efficiently approximate $f(x)$?

Motivation: Numerical stable algorithms

- An algorithm (represented as function f) with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$
- On an input $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, compute $f(x)$
- Exact computation of $f(x)$ may not be possible because:
- f may evaluate to irrational numbers
- Only an approximation \tilde{x} of x might be known in practice
- Exact computation $f(x)$ may be computationally expensive
- Can we efficiently approximate $f(x)$?
- It is reasonable to assume that f can be approximated using polynomials

Arithmetic circuits and SLPs

Siaml ACM-SIAM Symposium on
2024 Discrete Algorithms

Arithmetic circuits and SLPs

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0,1 or indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. Internal nodes are operations ,,$+- \times, \div$.

Arithmetic circuits and SLPs

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0,1 or indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. Internal nodes are operations ,,$+- \times, \div$.

- Each arithmetic circuit computes a rational function $\frac{f}{g}$ with $f, g \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- Size $=$ Number of nodes

Arithmetic circuits and SLPs

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants 0,1 or indeterminates $x_{1}, x_{2}, \ldots, x_{n}$. Internal nodes are operations ,,$+- \times, \div$.

- Each arithmetic circuit computes a rational function $\frac{f}{g}$ with $f, g \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- Size $=$ Number of nodes

Definition (SLP)

A straight-line program (SLP) is a sequence of instructions for evaluation of an arithmetic circuit.

- SLPs and arithmetic circuits are used interchangeably.

Example

Siant. ACM-SIAM Symposium on
2024 Discrete Algorithms

Example

- This circuit computes the polynomial $\left(x_{1}-1\right)+x_{2} x_{3}$
siaml. ACM-SIAM Symposium on
2024 Discrete Algorithms

Floating point representations

- For any non-zero $u \in \mathbb{R}$, there exists unique $u^{\prime} \in \mathbb{R}, m \in \mathbb{Z}$ with $\frac{1}{2} \leq\left|u^{\prime}\right|<1$ such that $u=u^{\prime} 2^{m}$

Floating point representations

- For any non-zero $u \in \mathbb{R}$, there exists unique $u^{\prime} \in \mathbb{R}, m \in \mathbb{Z}$ with $\frac{1}{2} \leq\left|u^{\prime}\right|<1$ such that $u=u^{\prime} 2^{m}$
- For $k \in \mathbb{N}$, approximate u^{\prime} by a v such that $\left|v-u^{\prime}\right| \leq 2^{-(k+1)}$

Floating point representations

- For any non-zero $u \in \mathbb{R}$, there exists unique $u^{\prime} \in \mathbb{R}, m \in \mathbb{Z}$ with $\frac{1}{2} \leq\left|u^{\prime}\right|<1$ such that $u=u^{\prime} 2^{m}$
- For $k \in \mathbb{N}$, approximate u^{\prime} by a v such that $\left|v-u^{\prime}\right| \leq 2^{-(k+1)}$
- This pair (v, m) is a floating point approximation of u with k significant bits

Task of a numerical analyst

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as inputs, approximate $f(x)$

Task of a numerical analyst

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as inputs, approximate $f(x)$
- There is a method to compute or approximate f

Task of a numerical analyst

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as inputs, approximate $f(x)$
- There is a method to compute or approximate f
- Assume f can be computed using an SLP

Task of a numerical analyst

- Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as inputs, approximate $f(x)$
- There is a method to compute or approximate f
- Assume f can be computed using an SLP

Problem (Generic task of numerical computation (GTNC))

Given a SLP P with indeterminates $x_{1}, x_{2}, \ldots, x_{n}$, floating point numbers $a_{1}, a_{2}, \ldots, a_{n}$ and an integer k in unary, compute a floating point approximation of $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with k significant bits.

Table of Contents

(1) Motivation

(2) PosSLP
(3) Conditional Hardness of PosSLP

SinTl. ACM-SIAM Symposium on
2024 Discrete Algorithms

PosSLP

- Motivation: To characterize the complexity of numerical analysis (GTNC)

Siヨת. ACM-SIAM Symposium on
2924 Discrete Algorithms

PosSLP

- Motivation: To characterize the complexity of numerical analysis (GTNC)

Definition (PosSLP)

Given a division-free SLP P without indeterminates, decide if the integer N computed by P is positive.

PosSLP

- Motivation: To characterize the complexity of numerical analysis (GTNC)

Definition (PosSLP)

Given a division-free SLP P without indeterminates, decide if the integer N computed by P is positive.

- Such an SLP P is sequence of integers $\left(b_{0}, b_{1}, b_{2}, \ldots, b_{\ell}\right)$ with $b_{0}=1$ and for all $1 \leq i \leq \ell, b_{i}=b_{j} \circ_{i} b_{k}$, where $\circ_{i} \in\{+,-, *\}$ and $j, k<i$
- Integer computed by P is b_{ℓ}, Size of P is ℓ

Connection to numerical analysis

Theorem ((Allender et al. 2006))
GTNC is polynomial time Turing equivalent to PosSLP.

2024 Discrete Algorithms

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

$\longleftrightarrow=$ Polynomial time Turing equivalence
siaml. ACM-SIAM Symposium on
2024 Discrete Algorithms

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$
- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if $i^{\text {th }}$ bit of N is 1

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if $i^{\text {th }}$ bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix

Siaml. ACM-siam Symposium on
2924 Discrete Algorithms

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if $i^{\text {th }}$ bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$
- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if $i^{\text {th }}$ bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model
- SSR: Sum of Square roots problem
- KTP: Koiran's trinomial sign problem (Koiran 2019)

Complexity landscape of PosSLP

- EquSLP: Given a division-free SLP computing $N \in \mathbb{Z}$, decide if $N=0$

$\longleftrightarrow=$ Polynomial time Turing equivalence
- PIT: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, decide if $f=0$
- DegSLP: Given a division-free arithmetic circuit computing a polynomial $f \in \mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $d \in \mathbb{N}$, decide if $\operatorname{deg}(f) \leq d$
- BitSLP: Given a division-free SLP computing $N \in \mathbb{Z}$ and $i \in \mathbb{N}$, decide if $i^{\text {th }}$ bit of N is 1
- Semidefinite feasibility problem (SDFP): Given an affine subspace of matrices, decide if it contains a positive semidefinite matrix
- BSS: Blum, Shub, and Smale model
- SSR: Sum of Square roots problem
- KTP: Koiran's trinomial sign problem (Koiran 2019)
- CH : Counting hierarchy
- $\exists \mathbb{R}$: decide if a given semialgebraic set is non empty

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))
PosSLP $\in \mathrm{CH}$, here CH is the counting hierarchy.

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))
 PosSLP $\in \mathrm{CH}$, here CH is the counting hierarchy.

- Another approach: for $n \in \mathbb{N}$,
- $\tau(n):=$ size of the smallest SLP which computes n
- $\tau_{+}(n):=$ size of the smallest subtraction free SLP which computes n

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))
 PosSLP $\in \mathrm{CH}$, here CH is the counting hierarchy.

- Another approach: for $n \in \mathbb{N}$,
- $\tau(n):=$ size of the smallest SLP which computes n
- $\tau_{+}(n):=$ size of the smallest subtraction free SLP which computes n
- If $\tau_{+}(n) \leq \operatorname{poly}(\tau(n))$ then PosSLP $\in \mathrm{PH}$ (Jindal and Saranurak 2012)

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))
 PosSLP $\in \mathrm{CH}$, here CH is the counting hierarchy.

- Another approach: for $n \in \mathbb{N}$,
- $\tau(n):=$ size of the smallest SLP which computes n
- $\tau_{+}(n):=$ size of the smallest subtraction free SLP which computes n
- If $\tau_{+}(n) \leq \operatorname{poly}(\tau(n))$ then PosSLP $\in \mathrm{PH}$ (Jindal and Saranurak 2012)
- There exist integer sequences where $\tau_{+}(n)>\tau(n)$ (Jindal and Saranurak 2012)

Lower bounds for PosSLP

- Unfortunately, nontrivial lower bounds for PosSLP remain unknown

Lower bounds for PosSLP

- Unfortunately, nontrivial lower bounds for PosSLP remain unknown

Theorem (This paper)
If a constructive variant of the radical conjecture is true and PosSLP \in BPP then NP \subseteq BPP.

Table of Contents

(1) Motivation

(3) Conditional Hardness of PosSLP

SiЕתl. ACM-SIAM Symposium on
2924 Discrete Algorithms

Existence of real roots

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f has a real root

Siəת. ACM-SIAM Symposium on
2924 Discrete Algorithms

Existence of real roots

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f has a real root
- 3 SAT \leq_{P} RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)

Existence of real roots

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f has a real root
- 3 SAT \leq_{P} RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)
- 3SAT formula $\phi \longrightarrow$ An arithmetic circuit computing a polynomial f_{ϕ} such that ϕ is satisfiable iff f_{ϕ} has a real root

Existence of real roots

- RealRootSLP: Given an arithmetic circuit computing a univariate polynomial $f \in \mathbb{Z}[x]$, decide if f has a real root
- 3 SAT \leq_{P} RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and Sabia 2007)
- 3SAT formula $\phi \longrightarrow$ An arithmetic circuit computing a polynomial f_{ϕ} such that ϕ is satisfiable iff f_{ϕ} has a real root
- All the real roots (if any) of f_{ϕ} are in $(-1,1)$

Idea for NP-hardness of PosSLP

- If ϕ is satisfiable then f_{ϕ} "should" look like:

Siอת. ACM-SIAM Symposium on
2924 Discrete Algorithms

Idea for NP-hardness of PosSLP

- If ϕ is satisfiable then f_{ϕ} "should" look like:

 2924 Discrete Algorithms

Idea for NP-hardness of PosSLP

- If ϕ is satisfiable then f_{ϕ} "should" look like:

- If ϕ is not satisfiable then f_{ϕ} "should" look like:

Idea for NP-hardness of PosSLP

- If ϕ is satisfiable then f_{ϕ} "should" look like:

- If ϕ is not satisfiable then f_{ϕ} "should" look like:

2924 Discrete Algorithms

Idea for NP-hardness of PosSLP

- If ϕ is satisfiable then f_{ϕ} "should" look like:

- If ϕ is not satisfiable then f_{ϕ} "should" look like:

- Pick a random rational q in $(-1,1)$, check if $f_{\phi}(1)$ and $f_{\phi}(q)$ have different signs, i.e, $(-1) f_{\phi}(1) f_{\phi}(q)>0$

Challenges

- f_{ϕ} only changes sign on real roots of odd multiplicity

Sỉar. Acm-SiAM Symposium on 2024 Discrete Algorithms

Challenges

- f_{ϕ} only changes sign on real roots of odd multiplicity
- What if f_{ϕ} has roots only of even multiplicity? \rightsquigarrow Radical conjecture

Challenges

- f_{ϕ} only changes sign on real roots of odd multiplicity
- What if f_{ϕ} has roots only of even multiplicity? \rightsquigarrow Radical conjecture
- Even if f_{ϕ} has roots only of odd multiplicity, how likely is it that $f_{\phi}(1)$ and $f_{\phi}(q)$ have different signs? \rightsquigarrow UniqueSAT

Radical conjecture

- $\tau(f)=$ size of the smallest arithmetic circuit computing f
siaml. ACM-SIAM Symposium on
2024 Discrete Algorithms

Radical conjecture

- $\tau(f)=$ size of the smallest arithmetic circuit computing f
- $\operatorname{rad}(f)=$ Radical of f, i.e, the square free part of f

Radical conjecture

- $\tau(f)=$ size of the smallest arithmetic circuit computing f
- $\operatorname{rad}(f)=$ Radical of f, i.e, the square free part of f
- $\operatorname{rad}(f)$ has only simple roots and has all the roots of f

Radical conjecture

- $\tau(f)=$ size of the smallest arithmetic circuit computing f
- $\operatorname{rad}(f)=$ Radical of f, i.e, the square free part of f
- $\operatorname{rad}(f)$ has only simple roots and has all the roots of f

Conjecture ((Dutta, Saxena, and Sinhababu 2022), Radical conjecture)

For univariate $f \in \mathbb{Z}[x], \tau(\operatorname{rad}(f)) \leq \operatorname{poly}(\tau(f))$.

- It implies $\tau\left(\operatorname{rad}\left(f_{\phi}\right)\right) \leq \operatorname{poly}(n), n=$ number of literals in ϕ

UniqueSAT

- Under randomized polynomial time reductions, ϕ can be assumed to have a unique satisfying assignment (Valiant and Vazirani 1986)

UniqueSAT

- Under randomized polynomial time reductions, ϕ can be assumed to have a unique satisfying assignment (Valiant and Vazirani 1986)

Theorem (This paper)

If ϕ has a unique satisfying assignment then $\operatorname{rad}\left(f_{\phi}\right)(1)$ and $\operatorname{rad}\left(f_{\phi}\right)(q)$ have different signs with probability at least $\frac{1}{4 \pi}$, where q is a random rational in $(-1,1)$.

Lower Bound

siaml. Acm.slam symposium on
2024 Discrete Algorithms

Lower Bound

Theorem (This paper)

If a constructive variant of the radical conjecture is true and PosSLP \in BPP then NP \subseteq BPP.

Future research directions

- Radical conjecture is a strong assumption, can we do without it?

Siอת. ACM-SIAM Symposium on
2924 Discrete Algorithms

Future research directions

- Radical conjecture is a strong assumption, can we do without it?
- Special cases of PosSLP:
- Koiran's trinomial sign problem (Koiran 2019)
- Sum of square roots problem
- Decide if $a^{n}+b^{n}-c^{n}>0$
- Many more.....

Thanks for your attention! Any questions?

5inTL. ACM-SIAM Symposium on 2924 Discrete Algorithms

Literature I

囦 Allender，E．et al．（2006）．＂On the complexity of numerical analysis＂． In：21st Annual IEEE Conference on Computational Complexity （CCC＇06）， 9 pp．－339．DOI：10．1109／CCC．2006．30．
Dutta，Pranjal，Nitin Saxena，and Amit Sinhababu（June 2022）． ＂Discovering the Roots：Uniform Closure Results for Algebraic Classes Under Factoring＂．In：J．ACM 69．3．ISSN：0004－5411．DOI： 10．1145／3510359．URL：https：／／doi．org／10．1145／3510359．
围 Jindal，Gorav and Thatchaphol Saranurak（2012）．＂Subtraction makes computing integers faster＂．In：CoRR abs／1212．2549．arXiv： 1212．2549．URL：http：／／arxiv．org／abs／1212．2549．
囯 Koiran，Pascal（2019）．＂Root separation for trinomials＂．In：Journal of Symbolic Computation 95，pp．151－161．ISSN：0747－7171．DOI： https：／／doi．org／10．1016／j．jsc．2019．02．004．URL： https：／／www．sciencedirect．com／science／article／pii／ S074771711930015X．

Literature II

Rerrucci, Daniel and Juan Sabia (2007). "Real roots of univariate polynomials and straight line programs". In: Journal of Discrete Algorithms 5.3. Selected papers from Ad Hoc Now 2005, pp. 471-478. ISSN: 1570-8667. DOI:
https://doi.org/10.1016/j.jda.2006.10.002. URL: https://www.sciencedirect.com/science/article/pii/ S1570866706000840.
目 Valiant, L.G. and V.V. Vazirani (1986). "NP is as easy as detecting unique solutions". In: Theoretical Computer Science 47, pp. 85-93. ISSN: 0304-3975. DOI:
https://doi.org/10.1016/0304-3975(86)90135-0. URL: https://www.sciencedirect.com/science/article/pii/ 0304397586901350.

[^0]: ${ }^{1}$ Institut für Mathematik, Technische Universität Berlin, Germany
 ${ }^{2}$ Max Planck Institute for Software Systems, Saarbrücken, Germany

