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Abstract
The Skolem Problem asks, given an integer linear recurrence sequence (LRS), to determine whether
the sequence contains a zero term or not. Its decidability is a longstanding open problem in
theoretical computer science and automata theory. Currently, decidability is only known for LRS
of order at most 4. On the other hand, the sole known complexity result is NP-hardness, due to
Blondel and Portier.

A fundamental result in this area is the celebrated Skolem-Mahler-Lech theorem, which asserts
that the zero set of any LRS is the union of a finite set and finitely many arithmetic progressions.
This paper focuses on a computational perspective of the Skolem-Mahler-Lech theorem: we show
that the problem of counting the zeros of a given LRS is #P-hard, and in fact #P-complete for the
instances generated in our reduction.
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1 Introduction

1.1 LRS and the Skolem Problem
Linear recurrence sequences (LRS), such as the Fibonacci numbers, are a fundamental class
of sequences ubiquitous across diverse domains within mathematics and computer science.

▶ Definition 1.1 (Linear Recurrence Sequence). An integer sequence u = ⟨un⟩∞n=0 is a linear
recurrence sequence (LRS) of order k if k is the least positive integer such that the nth term
un of the sequence u can be written as:

un = ak−1un−1 + · · ·+ a1un−k−1 + a0un−k , (1)

for every n ≥ k, where aj ∈ Z for 0 ≤ j ≤ k − 1 and a0 ̸= 0. The LRS u is then uniquely
determined by the initial values u0, u1, u2, . . . , uk−1.

The primary motivation of this paper comes from the following famous problem.

▶ Problem 1.1 (Skolem). Given an LRS u, decide if there exists n ∈ N such that un = 0.

This longstanding open problem, going back nearly a hundred years, has garnered
considerable attention in the literature. Currently, decidability of the Skolem Problem is
known only for LRS of orders up to 4 [22, 17], a result established some forty years ago and
unimproved since. A related question is the Positivity Problem, defined as follows:

▶ Problem 1.2 (Positivity). Given a LRS u, decide if there exists n ∈ N such that un < 0.
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It is relatively straightforward to show that the Skolem Problem reduces to the Positivity
Problem, by using the fact that LRS are closed under pointwise addition and multiplication.
Both Skolem and Positivity serve as flagship problems in various subfields of theoretical
computer science, such as program-termination analysis, see e.g. [4]. Decidability of the
Positivity Problem is known for LRS of order at most 5 [18]. Moreover, it is known that
decidability of the Positivity Problem for LRS of order 6 would entail major breakthroughs in
the field of Diophantine approximation [18]. On the complexity front, the only known lower
bounds are that the Skolem Problem (and consequently the Positivity Problem) is NP-hard
[9, 20].

When investigating the Skolem Problem, it is natural to consider the zero sets of LRS.
The well-known Skolem-Mahler-Lech theorem sheds light on the structure of the zero set
Z(u) of u defined as: Z(u) := {n ∈ N | un = 0}. This theorem asserts that the zero set
of any linear recurrence sequence is the union of a finite set and finitely many arithmetic
progressions. Formally:

▶ Theorem 1.2 (Skolem-Mahler-Lech theorem, [13, 14]). The zero set Z(u) of an LRS u

is the union of a finite set and a finite number of residue classes (arithmetic progressions)
{n ∈ N | n ≡ r mod m}.

For an LRS u of order k as in Definition 1.1, the characteristic polynomial χu of u is
defined as the following univariate polynomial:

χu(x) := xk − ak−1xk−1 − ak−2xk−2 − · · · − a1x− a0.

The roots of χu are known as the characteristic roots of u. Suppose that the characteristic
roots are {λ1, λ2, . . . , λd} with corresponding multiplicities {m1, m2, . . . , md}. These
characteristic roots give rise to an exponential-polynomial representation of un as [13]:

un =
d∑

j=1
Aj(n)λn

j ,

where Aj(x) are univariate polynomials with complex coefficients of degree at most mj − 1.
We say that u is a simple LRS if mj = 1 for all 0 ≤ j ≤ d, or equivalently if d = k. We say
that u is degenerate if there exist two distinct characteristic roots λi, λj such that λi

λj
is a

root of unity. An equivalent formulation of the Skolem-Mahler-Lech theorem is the assertion
that the zero set of a non-zero non-degenerate LRS is finite.

It is common to restrict oneself to non-degenerate LRS, since one can effectively decompose
any given LRS into finitely many non-degenerate sub-LRS, see e.g. [8]. Upper bounds on the
cardinality of the zero set of a given non-degenerate LRS are known; the sharpest such result
is due to Amoroso and Viada [5]:

▶ Theorem 1.3. Let u be a non-degenerate LRS having d distinct characteristic roots, each
with multiplicity at most m. Then u has at most (8dm)8d6m zeros.

Note that one can derive from Theorem 1.3 uniform bounds that depend only on the
order of LRS. Unfortunately, no such upper bounds are known on the magnitude of zeros of
LRS, which is of course why the Skolem Problem remains open to this day.

Taking a computational perspective on the Skolem-Mahler-Lech theorem, we now delve
into the counting variant of the Skolem Problem. Let us write |S| to denote the cardinality
of a given finite set S. We define:

▶ Problem 1.3 (#Skolem). Given an LRS u and a positive integer m in binary, compute
|{0 ≤ n ≤ m | un = 0}|.
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1.2 Our Results
We exploit some of the concepts presented in [20] to establish #P-hardness of the #Skolem
Problem:

▶ Theorem 1.4. #Skolem is #P-hard.

In fact, we investigate a restricted variant of the #Skolem Problem denoted by #Skolemω.
This is inspired by the problem Skolemω defined and explored in [20]. Skolemω is a special
case of the Skolem Problem for which the characteristic roots of the given LRS are restricted
to be roots of unity. The problem Skolemω was shown to be NP-complete in [20].

▶ Problem 1.4 (#Skolemω). Given an LRS u whose characteristic roots are roots of unity
together with a positive integer m represented in binary, compute |{0 ≤ n ≤ m | un = 0}|.

We establish that #Skolemω is #P-complete, which immediately entails Theorem 1.4.
One might have anticipated that the NP-completeness of Skolemω would automatically imply
the #P-completeness of #Skolemω, but this is not the case because the NP-hardness reduction
provided in [20] is not parsimonious.1 We modify the reduction of [20] so that primes used in
the reduction are chosen carefully, leading to #P-completeness of #Skolemω. More precisely,
we exploit and combine some of the ideas from [24, 20] to establish our results. Finally, we
investigate the following inclusion problem for LRS, which serves as a generalization of both
the Skolem and Positivity Problems.

▶ Problem 1.5 (LRSInclusion). Given two LRS u and v, determine whether {un | n ∈ N} ⊆
{vn | n ∈ N}.

By making use of some of the key tools from [20], we establish the following hardness
result for the LRSInclusion Problem.

▶ Theorem 1.5. LRSInclusion is ΠP
2 -hard.

1.3 Proof Idea
To demonstrate the #P-hardness of #Skolemω, we reduce the counting version of the Subset
Sum Problem (#SSP) to #Skolemω (see Section 2 for precise definitions). Given an instance
(S, b) of #SSP, we first construct a specific type of LRS, denoted uS,b, based on prime
numbers in certain arithmetic progressions. The proof establishes a correspondence between
solutions to the Subset Sum Problem and zeros of the constructed LRS. We demonstrate
that modulo a particular prime q (upon which the construction of uS,b is based), the number
of solutions of (S, b) and the number of zeros of uS,b are congruent (see Lemma 3.1). By
repeating this procedure for various primes q and using Chinese remaindering, we are able to
conclude that #SSP reduces to #Skolemω. To establish that #Skolemω belongs to #P, we
adapt the key ideas developed in [20]. For details, see Section 3.

2 Preliminaries

We recall relevant definitions and results related to counting complexity and linear recurrence
sequences. For a more detailed discussion, we refer the reader to [6] and [13].

1 There are more elaborate technical conditions on NP-completeness reductions which automatically
guarantee the #P-completeness of associated counting variants, see e.g. [16]. However, it is far from
clear whether the reductions proposed in [9, 20] satisfy such conditions.
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▶ Definition 2.1 (#P, [6]). A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time Turing machine M such that for every x ∈ {0, 1}∗ :

f(x) =
∣∣∣{y ∈ {0, 1}p(|x|) |M(x, y) = 1

}∣∣∣ .

We define FP to be the set of functions from {0, 1}∗ to N computable by a deterministic
polynomial-time Turing machine.

▶ Definition 2.2 ([6]). A function f : {0, 1}∗ → N is #P-hard if every g ∈ #P is also in
FPf . f is said to be #P-complete if it is #P-hard and it is also in #P.

An LRS u is said to be periodic with period p if un = un+p for all non-negative n. For
an LRS u of order k, we denote by ∥u∥ the size of the bit representation of the coefficients
of the corresponding recurrence relation (Equation (1)), namely a0, a1, a2, . . . , ak−1, and of
the initial values u0, u1, u2, . . . , uk−1. LRS are closed under addition; moreover, if u and v

are two given LRS, one can construct the LRS u + v = ⟨un + vn⟩∞n=0 efficiently:

▶ Theorem 2.3 (Lemma 2 in [20]). Suppose u(1), u(2), . . . , u(ℓ) are LRS of orders k1, k2,

. . . , kℓ respectively, then we have:
1. u := u(1) + u(2) + · · ·+ u(ℓ) is an LRS of order at most k1 + k2 + · · ·+ kℓ.
2. u can be constructed in poly

(
∥u(1)∥+∥u(2)∥+ · · ·+ ∥u(ℓ)∥

)
time.

3. The characteristic polynomial χu is a factor of
∏ℓ

i=1 χu(i) .

To show #P-hardness of #Skolemω, we reduce the Subset Sum Problem to #Skolemω.
Given a set T ⊆ Z, write

∑
(T ) to denote the sum of its elements. For a pair (S, b) with

S ⊆ Z and b ∈ Z, let W (S, b) denote the set of solutions of the subset sum set instance (S, b),
i.e.,

W (S, b) := {T ⊆ S |
∑

(T ) = b} .

▶ Problem 2.1 (Subset Sum Problem). Given an integer b and a set of integers S = {s1, s2,

. . . , sm}, we define the following problems:
1. Decision variant (SSP): Determine whether there exists a subset T ⊆ S such that the

sum of all the integers in T equals b, i.e., decide if W (S, b) ̸= ∅.
2. Counting variant (#SSP): Count the number of subsets T ⊆ S such that the sum of all

the integers in T equals b, i.e., compute |W (S, b)|.
It is known that SSP is NP-complete and this fact was used in [20] to show that Skolemω is
itself NP-complete. Moreover, it is also known that #SSP is #P-complete [12, 10], as stated
below.

▶ Theorem 2.4 ([12, 10]). #SSP is #P-complete.

3 #P-completeness of #Skolemω

In this section we show that #Skolemω is #P-complete.
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3.1 #Skolemω is #P-hard
Here we extend the ideas of [20] to prove that #Skolemω is #P-hard. To this end, we invoke
the #P-hardness of the #SSP Problem defined in Problem 2.1. Let us assume that we are
given a set S = {s1, s2, . . . , sm} ⊆ Z of integers together with b ∈ Z. Suppose q is an odd
prime. We now construct the desired LRS uS,b. Suppose p1, p2, . . . , pm are m distinct primes
in the arithmetic progression {aq + 2 | a ∈ N}. Then for each 1 ≤ i ≤ m, we define the LRS
u(i) whose nth term is given as:

u(i)
n :=


si if n = 0
0 if 1 ≤ n < pi

u
(i)
n−pi

otherwise .

So u(i) is a periodic LRS where every pth
i term is si and all the other terms are zero. We

can now define the LRS uS,b, as follows:

(uS,b)n =
m∑

i=1
u(i)

n − b .

Notice that the characteristic polynomial χu(i) of u(i) is xpi − 1 and that of the constant
LRS b is x− 1. Thus thanks to Theorem 2.3, the characteristic polynomial χuS,b

of uS,b is a
factor of (x− 1)

∏m
i=1(xpi − 1). Therefore all characteristic roots of uS,b are roots of unity,

and counting the number of zeros of uS,b is an instance of the #Skolemω Problem.
For an LRS u and positive integer B, let us write ZB(u) to denote the set {0 ≤ n < B |

un = 0} of zeros of u of magnitude less than B. The following result is key to showing that
#Skolem is #P-hard.

▶ Lemma 3.1. For any #SSP instance (S, b) and odd prime q, define B :=
∏m

i=1 pi. Then
we have:

|W (S, b)| ≡ |ZB(uS,b)| (mod q) .

Proof. Suppose T ∈W (S, b). Define NT :=
∏

si∈T pi. Now consider the set:

CT := {0 ≤ k < B | gcd (k, B) = NT } . (2)

It is clear that (uS,b)k = 0 for all k ∈ CT . By definition of CT , it is also clear that CT and
CT ′ are disjoint for distinct T, T ′ ∈W (S, b). In fact, CT is exactly the set of indices k less
than B corresponding to T such that (uS,b)k = 0. Moreover, Equation (2) implies:

CT = {mNT | 0 ≤ m < B/NT , gcd (m, B/NT ) = 1} . (3)

Equation (3) clearly entails that |CT | = φ (B/NT ) =
∏

si ̸∈T (pi − 1), where φ is Euler’s
totient function. Since the pi’s are in the set {aq + 2 | a ∈ N}, we have that pi = aiq + 2 for
some ai ∈ N. Hence:

pi − 1 = aiq + 1
pi − 1 ≡ 1 (mod q)

Therefore |CT | ≡ 1 (mod q). By summing over all T ∈W (S, b), we get:

|W (S, b)| ≡ |ZB(uS,b)| (mod q) ,

as required. ◀
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To complete the proof of #P-hardness of #Skolemω, we also need to show that the pi’s above
are not “too large” and also that uS,b can be constructed efficiently from a given instance
(S, b) of #SSP. To this end, we make use of the results established in Section 4.

▶ Theorem 3.2. #Skolemω is #P-hard.

Proof. As stated above, we reduce #SSP to #Skolemω. We are given a subset sum instance
(S = {s1, s2, . . . , sm}, b). By using Corollary 4.4, we find odd primes q1, q2, . . . , qm and
primes {pij | 1 ≤ i, j ≤ m} such that pij is in the arithmetic progression {aqi + 2 | a ∈ N}.
This is always possible as long as m ≥ m0, where m0 is some absolute effective constant. If
m < m0 then #SSP can be trivially solved in polynomial time by a brute-force algorithm,
hence we can assume that m ≥ m0. Corollary 4.4 implies that we can find such qi, pij in
poly(m) time and also that qi, pij are polynomially bounded in m.

Fix a prime q ∈ {q1, q2, . . . , qm}. Consider m primes p1, p2, . . . , pm in the arithmetic
progression {aq + 2 | a ∈ N}, generated by Corollary 4.4. Now construct the LRS uS,b as
above. By using Theorem 2.3 and bounds on the pi’s, uS,b can be constructed in poly(I)
time, where I is the length of the binary description of the input (S = {s1, s2, . . . , sm}, b).
We then use a #Skolemω oracle on the #Skolemω instance (uS,b, B), where B :=

∏m
i=1 pi.

By invoking Lemma 3.1, we obtain that

|W (S, b)| ≡ |ZB(uS,b)| (mod q) .

Now we repeat the above procedure for all q ∈ {q1, q2, . . . , qm}. Hence by invoking the
#Skolemω oracle m times, we can compute |W (S, b)| mod qi for all i ∈ {1, . . . , m}. Since
|W (S, b)| ≤ 2m and

∏m
i=1 qi > 2m, by using Chinese remaindering we can recover the exact

value of |W (S, b)|. It is moreover known that Chinese remaindering can be performed in
polynomial time, see e.g. [23, Chapter 5]. This implies that #SSP is in FP#Skolemω . By using
Theorem 2.4, we conclude that #Skolemω is #P-hard. ◀

3.2 #Skolemω is in #P
The proof of membership of #Skolemω in #P follows from the ideas developed in the proof
of Theorem 8 in [20]. Given an LRS u whose characteristic roots are roots of unity, in the
proof of Theorem 8 in [20], the following facts are proved:

If u has a zero at all then there exists an N ≤ 2poly(∥u∥) such that uN = 0.
For any N ≤ 2poly(∥u∥), the condition uN = 0 can be verified in deterministic polynomial
time.

We adapt the above ideas to show that #Skolemω ∈ #P. To this end, consider a given
#Skolemω instance (u, B). We define the function fu,B : {0, 1, . . . , B} → {0, 1} by:

fu,B(n) =
{

1 If un = 0
0 Otherwise .

We now show that fu,B can be computed in poly(∥u∥, log B) time, which in turn implies that
#Skolemω is in #P. Recall the exponential-polynomial representation of u, whereby we have

un =
d∑

j=1
Aj(n)λn

j ,

where λj are roots of unity and Aj(n) are polynomials. Since λj ’s are roots of unity, the
asymptotic behavior of un is controlled by the Aj polynomials. Hence the bit size of the
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absolute value of un should grow polynomially in ∥u∥ and log n. This intuition is made
precise in the proof of Theorem 8 in [20]. We now recall and adapt the key ideas of [20],
to show that fu,B can be computed in poly(∥u∥, log B) time. To this end, we recall the
following definitions from [20]: for m ∈ N, Pm(x) :=

∑d
j=1 Aj(x)λm

j and P = {Pm | m ∈ N}.

▶ Lemma 3.3 (Lemma 10 in [20]). The set P is finite. In fact P = {Pm | m ∈ {0, 1, . . . , k3k}},
where k is the order of u.

Moreover, it is also shown in [20] that the coefficients of all polynomials in P are rational
numbers which are also poly (∥u∥) bounded in bit size and can be computed in polynomial
time. Notice that for any n ∈ N, we have un = Pn(n). Since Pn ∈ P , the coefficients of Pn are
also bounded by poly (∥u∥) in bit size. This implies that un is bounded by poly (∥u∥, log n) in
bit size, and thus we can compute un in poly (∥u∥, log n) time (using iterated squaring of the
companion matrix, see e.g [11, 20]). One can then easily check whether un = 0. Therefore
the function fu,B can indeed be computed in poly(∥u∥, log B) time, whence:

▶ Theorem 3.4. #Skolemω is in #P.

▶ Remark 3.5. The above approach for deciding un = 0 given u and n (by iterated squaring of
the companion matrix) also applies for general LRS. However in such instances it can happen
that the binary representation of un has bit size poly (∥u∥, n) instead of poly (∥u∥, log n).
Checking zeroness of such huge un is not known to be feasible in deterministic polynomial
time. This is a special case of the well-known EquSLP Problem [3], which can be handled in
randomized polynomial time.

4 Finding Primes in Arithmetic Progression

This section presents an algorithm for finding primes in arithmetic progressions. This
algorithm is adapted from [24, Section 4] with only minor modifications, and is included here
for completeness. We use π(x) to denote the prime-counting function, i.e.,

π(x) := {n ∈ N, 2 ≤ n ≤ x | n is prime}.

For a, d ∈ N with gcd(a, d) = 1, we define π(x; d, a) to be the number of primes below x that
belong to the arithmetic progression {a + dt | t ∈ N}, i.e.,

π(x; d, a) := {n ∈ N, 2 ≤ n ≤ x, n ≡ a mod d | n is prime}.

With this notation we have π(x) = π(x; 1, 0). The prime number theorem for arithmetic
progressions states that

π(x; d, a) ∼ π(x)
φ(d) as x→∞ (4)

provided gcd(a, d) = 1, where φ is Euler’s totient function. For an effective version of
Equation (4), the following result was proven in [2]:

▶ Theorem 4.1 ([2], Fact 4.10 in [24]). There exist positive constants x0, η ∈ R, t ∈ N such
that for all x, y ∈ R with y ≥ x ≥ x0 there exists E ⊆ N with |E| < t, min(E) ≥ log x such
that

π(y; d, a) ≥ π(x)
2φ(d)
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whenever gcd(a, d) = 1, 1 ≤ d ≤ min{x 2
5 , yx− 3

5 }, and E contains no divisor of d. Further-
more, e ≥ xη for all but at most one e ∈ E. We can assume η ≤ 2

7 .

▶ Corollary 4.2. There exist positive constants x0, η ∈ R such that for all x ∈ R with
x ≥ max{5, x0} there exists E ⊆ N with min(E) ≥ log x and we have

π(x; q, 2) ≥ π(x)
2φ(q)

for any odd prime q with q ≤ x
2
5 and q ̸∈ E. Furthermore, we can assume η ≤ 2

7 and e ≥ xη

for all but at most one e ∈ E.

Proof. In Theorem 4.1, we choose y = x and hence min{x 2
5 , yx− 3

5 } can be replaced by x
2
5 .

Clearly the condition gcd(a, d) = 1 is satisfied because a = 2 and d = q is an odd prime.
First notice that 1 ̸∈ E, since min(E) ≥ log x. Hence the only way E can contain a divisor
of q = d is if q ∈ E. Hence the condition of E containing no divisor of d can be replaced
by q ̸∈ E. Observe that we can now just drop the parameter t from Theorem 4.1 to get
Corollary 4.2. ◀

Suppose x0, η are the constants defined in Corollary 4.2. We define:

N := max
{

2 · 1034,
2
5η

}
.

Algorithm 1 Primes in Arithmetic Progression
Input : n ∈ N in unary.
Output : n odd primes {qi | i ∈ [n]} and n2 odd primes {pij | i, j ∈ [n]} such that

pij ≡ 2 mod qi for all i, j ∈ [n].
1 B ← 3n log2 n.
2 By using the primality testing algorithm of [1], find first n + 1 primes q0, q1, q2, . . . , qn that

are at least B
2 .

3 foreach i ∈ {0, 1, 2, . . . , n} do
4 k ← 0. // k is the number of primes found in {2 + qit | t ∈ N}.
5 foreach j ∈ {2 + qit | t ∈ N} do
6 if j > max{B

1
η , x0} or k ≥ n then

// Found n primes in {2 + qiN} or j is “too large”.
7 break
8 end
9 Using the primality testing algorithm of [1], check if j is prime.

10 if j is prime then
11 k ← k + 1
12 pik ← j

13 end
14 end
15 end

▶ Theorem 4.3. Algorithm 1 uses poly(n) bit operations and if n ≥ N then its output has
the following properties for all i ∈ [n]:
1. n log2 qi ≤ B

2 ≤ qi ≤ B.
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2. pij ≤ max
{

B1/η, x0
}

and pij ∈ {2 + qit | t ∈ N} for all j ∈ [n].

Proof. We use the following fact from [19]:

B − π

(
B

2

)
≥ 3B

10 log
(

B
2

)
to obtain for n ≥ 11:

π(B)− π

(
B

2

)
≥ 3B

10 log
(

B
2

) = 9n log2 n

10 · 1
log

( 3
2 n log2 n

) ≥ n + 1.

Hence B
2 ≤ qi ≤ B. First notice that:

3
2 log2 n ≥ log2(3n log2 n) ≥ log2 B.

Hence:

qi ≥ q0 ≥
B

2 = 3
2n log2 n ≥ n log2 B ≥ n log2 qn ≥ qn log2 qi.

Hence the first condition n log2 qi ≤ B
2 ≤ qi ≤ B is proven now.

Suppose x := max{B1/η, x0}. It is clear that qi ≤ B ≤ xη for all i ∈ [n] . We first see:

(2− 5η)/2η ≥ 1,

ηB(2−5η)/2η ≥ ηn(2−5η)/2η ≥ 2
5 ,

ηB1/η ≥ 2
5 B5/2.

For convenience: Q := {qi | i ∈ [n]}. We first notice that |Q ∩ E| ≤ 1. This is because we
have qi ≤ xη for all i ∈ [n] and we have e ≥ xη for all but at most one e ∈ E. Suppose
qi ∈ Q \ E. We also have qi ≤ B ≤ xη < x

2
5 . Hence all the conditions on q in Corollary 4.2

are satisfied. We use the fact that π(x) ≥ x
log x . Now Corollary 4.2 implies that:

π(x; qi, 2) ≥ π(x)
2ϕ(qi) ≥

B1/η

2 log(B1/η)B

= ηB1/η−1

2 log B ≥
2
5 B

3
2

2 log B
= (3n log2 n) 3

2

5 log(n log2 n)
> n.

Since there can be at most one “bad prime” qi ∈ E, by renaming this prime to q0, we obtain
the desired claim. The polynomial running time of the algorithm is easy to verify. ◀

▶ Corollary 4.4. There exists m0 ∈ N such that for all m ≥ m0, in poly(m) bit operations
we can find m odd primes q1, q2, . . . , qm and m2 odd primes {pij | i, j ∈ [m]} such that:
1. qi ≤ 3m log2 m for all i ∈ [m].
2. For i, j ∈ [m], pij is in the arithmetic progression {2 + qit | t ∈ N}.
3. For all i, j ∈ [m], pij ≤

(
3m log2 m

)4.

Proof. We directly use Theorem 4.3 for m = n and N = m0. It is clear that primes qi, pij

satisfy the properties claimed in Item 1 and Item 2. The bound on pij claimed in Item 3
follows from the fact that x0 is an absolute constant in Corollary 4.2 and η can be chosen to
be anything smaller than 2/7; here we use η = 1/4. ◀
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5 Checking inclusion of LRS

In this section, we consider the problem LRSInclusion defined in Section 1.2. Recall, given
two LRS u and v as input, that we want to determine whether {un | n ∈ N} ⊆ {vn | n ∈ N}.
Observe that the Positivity Problem reduces to LRSInclusion, as can be seen by choosing u to
be the LRS of positive integers. Therefore both Skolem and Positivity reduce to LRSInclusion.
This section is now concerned with showing that LRSInclusion is hard for the second level of
the polynomial hierarchy, though only NP-hardness is known for Skolem and Positivity. For
a discussion of the polynomial hierarchy, we refer the reader to [6].

To establish hardness of LRSInclusion, we reduce from the known hardness of following
problem.

▶ Problem 5.1 (Generalized Subset Sum (GSSP)). Given two vectors a, b ∈ Zm and t ∈ Z,
determine whether ∃x∀y [ax + by ̸= t] holds, where x, y ∈ {0, 1}m.

▶ Theorem 5.1 ([7, 15, 21]). GSSP is ΣP
2 -complete.

Theorem 5.1 immediately implies the following:

▶ Corollary 5.2. Consider the problem: given two vectors a, b ∈ Zm and t ∈ Z, determine
whether ∀x∃y [ax + by = t] holds, where x, y ∈ {0, 1}m. This problem is ΠP

2 -complete.

▶ Theorem 5.3. LRSInclusion is ΠP
2 -hard.

Proof. Given two vectors a, b ∈ Zm and t ∈ Z, we want to decide if ∀x∃y [ax + by = t]
holds, with x, y ∈ {0, 1}m. This problem is ΠP

2 -complete by Corollary 5.2. We reduce this
problem to LRSInclusion. For every i ∈ {1, 2, . . . , m}, let pi be the ith prime. Then, for each
i ∈ {1, 2, . . . , m}, we have an LRS u(i), whose nth term is defined as:

u(i)
n =


ai if n = 0
0 if 1 ≤ n < pi

u
(i)
n−pi

otherwise .

So u(i) is a periodic LRS in which every pth
i term is ai and all the other terms are zero. We

now define the LRS u as:

u =
m∑

i=1
u(i) .

For each i ∈ {1, 2, . . . , m}, we define an LRS v(i), whose nth term is defined as:

v(i)
n =


bi if n = 0
0 if 1 ≤ n < pi

v
(i)
n−pi

otherwise .

So v(i) is a periodic LRS in which every pth
i term is bi and all the other terms are zero. We

now define the LRS v as:

v = t−
m∑

i=1
u(i) .
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By using Theorem 2.3 and the ideas in Section 3, it is easy to see that u and v can be
constructed in polynomial time (in terms of the input size). Let us write Su and Sv to
denote the sets of integers occurring in u and v respectively. Observe that:

Su = {ax | x ∈ {0, 1}m},
Sv = {t− by | y ∈ {0, 1}m} .

Thanks to the above, our LRS inclusion Su ⊆ Sv can be rewritten as ∀x∃y [ax + by = t].
Hence LRSInclusion is ΠP

2 -hard, as claimed. ◀

6 Conclusion and Open Problems

We have established that counting the zeros of a given linear recurrence sequence is #P-hard,
extending the known NP-hardness of the Skolem Problem. We have moreover shown that for
instances of the Skolem Problem generated in our reduction, counting zeros is #P-complete.
Finally, we have introduced the LRSInclusion Problem, which serves as a generalization of
both the Skolem and Positivity Problems, and established its ΠP

2 -hardness.
We conclude by listing a few important open problems for further research:

1. The Skolem Problem is not known to be decidable, yet our best lower bound for it is
NP-hardness; can this huge gap be narrowed?

2. The NP-hardness of Skolem is witnessed in LRS of high order; can one improve by showing
NP-hardness for LRS of constant order, as even decidability of Skolem at order 5 remains
open?

3. Given an LRS u and n ∈ N in binary, what is the complexity of determining whether
un = 0? This problem can be reduced to EquSLP, implying a polynomial-time randomized
algorithm for it. Can one obtain a deterministic alternative? This in turn would likely
lead to a better understanding of the EquSLP Problem.

4. We showed that #Skolemω is #P-complete. Is #Skolem also #P-complete?
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