A Deterministic PTAS for the Algebraic Rank of Bounded Degree Polynomials

Vishwas Bhargava¹, Markus Bläser², Gorav Jindal³, Anurag Pandey⁴

¹Rutgers University
²Department of Computer Science, Saarland University
³Department of Computer Science, Aalto University
⁴Max-Planck-Institut für Informatik

January 6, 2019 SODA 2019

Introduction

Problem

Given an $n \times n$ matrix Q with polynomials as entries, compute $\operatorname{rank}(Q)$. That is, given $Q \in \mathbb{F}[x_1, x_2, \dots, x_m]^{n \times n}$, compute $\operatorname{rank}(Q)$ over the rational function field $\mathbb{F}(x_1, x_2, \dots, x_m)$.

- If \mathbb{F} is large enough then substituting random values for x_i 's is enough (Schwartz-Zippel lemma).
- Goal: deterministic algorithms for computing rank(Q).

PIT of ABPs and Algebraic Rank

- Polynomial identity testing of algebraic branching programs reduces to it.
 - Thus exact deterministic algorithms are hard.
 - Computing a approximation of rank(Q)?
- Computing the Transcendence degree of a set of polynomials (Jacobian criterion).

Contribution

Problem

Given $Q \in \mathbb{F}[x_1, x_2, \dots, x_m]^{n \times n}$ with Q_{ij} homogeneous, $\deg(Q_{ij}) \leq d$ and $0 < \epsilon < 1$, find λ_i 's such that:

$$\operatorname{rank}(Q(\lambda_1, \lambda_2, \dots, \lambda_m)) \ge (1 - \epsilon) \operatorname{rank}(Q)$$

.

Theorem

There exists a deterministic algorithm which solves above problem in time $O\left(\left(nmd\right)^{O\left(\frac{d^2}{\epsilon}\right)}\cdot M(n)\right)$, M(n) is the time needed to compute the rank of an $n\times n$ matrix over \mathbb{F} .

History

- When d = 1, it is the problem of computing the commutative rank of matrix spaces.
- Computing the non-commutative rank of matrix spaces in deterministic polynomial time (Garg, Oliveira, Gurvits, Wigderson in FOCS 2016).
- commutative rank \leq non-commutative rank $\leq 2 \cdot (\text{commutative rank})$.

History

- Thus $\frac{1}{2}$ -approximation in deterministic polynomial time for d=1.
- For d=1, $(1-\epsilon)$ approximation in time $O\left((nm)^{O\left(\frac{1}{\epsilon}\right)}\cdot M(n)\right)$ (Bläser, Jindal, Pandey in CCC 2017).

Main Idea

• Suppose already found $(\lambda_1, \lambda_2, \dots, \lambda_m)$ such that

$$\operatorname{rank}(Q(\lambda_1,\lambda_2,\ldots,\lambda_m))=r.$$

• Want to find $(\mu_1, \mu_2, \dots, \mu_m)$ such that

$$rank(Q(\lambda_1 + \mu_1, \lambda_2 + \mu_2, \dots, \lambda_m + \mu_m)) > r.$$

• Assume $Q(\lambda_1, \lambda_2, \dots, \lambda_m) = \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$.

$$Q(\lambda_1 + x_1, \lambda_2 + x_2, \dots, \lambda_m + x_m) = Q(\lambda_1, \lambda_2, \dots, \lambda_m) + L(x_1, x_2, \dots, x_m) + Q(x_1, x_2, \dots, x_m)$$

- L has homogeneous degree 1 entries and Q has homogeneous degree 2 entries.
- Want to find an assignment $x_i = \mu_i$ such that there is a non-zero $(r+1) \times (r+1)$ minor of $Q(\lambda_1 + \mu_1, \lambda_2 + \mu_2, \dots, \lambda_m + \mu_m)$.

Special PIT

 If a polynomial has a non-zero monomials of low degree then we can do its PIT "easily."

Definition

$$F_{m,d,\ell} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ f \in \mathbb{F}[x_1, x_2, \dots, x_m] \mid \deg(F) \leq d \text{ and } f \text{ has a non-zero monomial of degree atmost } \ell \}.$$

Lemma

We can construct a hitting set $H_{m,d,\ell} \subseteq \mathbb{F}^m$ of size $O((m(d+1))^{\ell})$ for $F_{m,d,\ell}$.

$$Q(\lambda_1 + x_1, \lambda_2 + x_2, \dots, \lambda_m + x_m) = \begin{bmatrix} I_r + L_{11} + Q_{11} & L_{12} + Q_{12} \\ L_{21} + Q_{21} & L_{22} + Q_{22} \end{bmatrix}$$

- Here L_{ij} have homogeneous degree 1 entries and Q_{ij} have homogeneous degree 2 entries.
- If all the $(r+1) \times (r+1)$ minors do not have any degree zero, one and two monomials then $Q_{22} = L_{21}L_{12}$.
 - Implies that $\operatorname{rank}(Q) \leq 3r \Longrightarrow \operatorname{already} \frac{1}{3}$ -approximation for $\operatorname{rank}(Q)$.
 - Otherwise easy to find desired $x_i = \mu_i$.

- Analyze the higher degree monomials of all the $(r+1) \times (r+1)$ minors.
- If all the $(r+1) \times (r+1)$ minors do not have any $\leq k$ degree monomials.
 - Implies $\operatorname{rank}(Q) \leq r(1 + \frac{2}{k-1})$.
- Higher *k* gives better approximation.

General Idea

- Same idea work for general d as well.
- Adjoint helps in analyzing the higher degree monomials of relevant $(r + 1) \times (r + 1)$ minors.
- If all the $(r+1) \times (r+1)$ minors do not have any $\leq k$ degree monomials.
 - Implies $\operatorname{rank}(Q) \leq r(1 + \frac{d}{k-d+1}).s$
- Higher k gives better approximation.

Thanks

Thank you for your attention!

