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Introduction

Problem
Given an n× n matrix Q with polynomials as entries, compute
rank(Q). That is, given Q ∈ F[x1, x2, . . . , xm]n×n, compute
rank(Q) over the rational function field F(x1, x2, . . . , xm).

If F is large enough then substituting random values for xi ’s is
enough (Schwartz-Zippel lemma).
Goal: deterministic algorithms for computing rank(Q).
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PIT of ABPs and Algebraic Rank

Polynomial identity testing of algebraic branching programs
reduces to it.

Thus exact deterministic algorithms are hard.
Computing a approximation of rank(Q)?

Computing the Transcendence degree of a set of polynomials
(Jacobian criterion).
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Contribution

Problem
Given Q ∈ F[x1, x2, . . . , xm]n×n with Qij homogeneous,
deg(Qij) ≤ d and 0 < ε < 1, find λi ’s such that:

rank(Q(λ1,λ2, . . . ,λm)) ≥ (1− ε) rank(Q)

.

Theorem
There exists a deterministic algorithm which solves above problem

in time O
(
(nmd)O

(
d2
ε

)
·M(n)

)
, M(n) is the time needed to

compute the rank of an n× n matrix over F.
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History

When d = 1, it is the problem of computing the commutative
rank of matrix spaces.
Computing the non-commutative rank of matrix spaces in
deterministic polynomial time (Garg, Oliveira, Gurvits,
Wigderson in FOCS 2016).
commutative rank ≤ non-commutative rank
≤2·(commutative rank).
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History

Thus 1
2 -approximation in deterministic polynomial time for

d = 1.
For d = 1, (1− ε) approximation in time
O
(
(nm)O( 1

ε ) ·M(n)
)
(Bläser, Jindal, Pandey in CCC 2017).
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Main Idea

Suppose already found (λ1,λ2, . . . ,λm) such that

rank(Q(λ1,λ2, . . . ,λm)) = r .

Want to find (µ1, µ2, . . . , µm) such that

rank(Q(λ1 + µ1,λ2 + µ2, . . . ,λm + µm)) > r .

Assume Q(λ1,λ2, . . . ,λm) =

[
Ir 0
0 0

]
.
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d=2

Q(λ1 + x1,λ2 + x2, . . . ,λm + xm) = Q(λ1,λ2, . . . ,λm)

+ L(x1, x2, . . . , xm)

+ Q(x1, x2, . . . , xm)

L has homogeneous degree 1 entries and Q has homogeneous
degree 2 entries.
Want to find an assignment xi = µi such that there is a
non-zero (r + 1)× (r + 1) minor of
Q(λ1 + µ1,λ2 + µ2, . . . ,λm + µm).
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Special PIT

If a polynomial has a non-zero monomials of low degree then
we can do its PIT “easily.”

Definition

Fm,d ,`
def
=== {f ∈ F[x1, x2, . . . , xm] | deg(F ) ≤

d and f has a non-zero monomial of degree atmost `}.

Lemma
We can construct a hitting set Hm,d ,` ⊆ Fm of size
O((m(d + 1))`) for Fm,d ,`.
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d=2

Q(λ1 + x1,λ2 + x2, . . . ,λm + xm) =

[
Ir + L11 + Q11 L12 + Q12

L21 + Q21 L22 + Q22

]

Here Lij have homogeneous degree 1 entries and Qij have
homogeneous degree 2 entries.
If all the (r + 1)× (r + 1) minors do not have any degree
zero, one and two monomials then Q22 = L21L12.

Implies that rank(Q) ≤ 3r =⇒ already 1
3 -approximation for

rank(Q).
Otherwise easy to find desired xi = µi .
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d=2

Analyze the higher degree monomials of all the
(r + 1)× (r + 1) minors.
If all the (r + 1)× (r + 1) minors do not have any ≤ k
degree monomials.

Implies rank(Q) ≤ r (1+ 2
k−1 ).

Higher k gives better approximation.
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General Idea

Same idea work for general d as well.
Adjoint helps in analyzing the higher degree monomials of
relevant (r + 1)× (r + 1) minors.
If all the (r + 1)× (r + 1) minors do not have any ≤ k
degree monomials.

Implies rank(Q) ≤ r (1+ d
k−d+1 ).s

Higher k gives better approximation.
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Thanks

Thank you for your attention!
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