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Based on

I Joint work with Prof. Dr. Markus Bläser and Anurag Pandey.
I Publications:

B Greedy Strikes Again: A Deterministic PTAS for Commutative Rank
of Matrix Spaces Bläser, Markus, Jindal, Gorav, and Pandey, Anurag
In 32nd Computational Complexity Conference (CCC 2017).

B A Deterministic PTAS for the Commutative Rank of Matrix Spaces
Bläser, Markus, Jindal, Gorav, and Pandey, Anurag In Theory of
Computing 2018.
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Matrix Spaces

Definition (Matrix Space)
A vector space B ≤ Fn×n is called a matrix space:

B = 〈B1,B2, . . . ,Bm〉.

I Here B1,B2, . . . ,Bm linearly generate B.

Definition (Commutative rank)
For a matrix space B, maximum rank of any matrix in B is the
commutative rank of B, use crk(B) to denote it.
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Symbolic Matrices

Definition (Symbolic Matrix)
A matrix B ∈ (F[x1, x2, . . . , xm])n×n whose entries are homogeneous
linear forms is called a symbolic matrix.

I Use rank(B) to denote the rank of B over F(x1, x2, . . . , xm).
I Matrix space B = 〈B1,B2, . . . ,Bm〉, associate a symbolic matrix
B with B by:

B def
===

m

∑
i=1

xiBi .
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Rank Connection of Symbolic Matrices and Matrix
Spaces

Theorem (Folklore)
B = 〈B1,B2, . . . ,Bm〉 ≤ Fn×n a matrix space and

B(x1, x2, . . . , xm)
def
===

m

∑
i=1

xiBi

the corresponding symbolic matrix, then

rank(B) = crk(B).

(Assuming |F| > n).
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Maximum Matching to Commutative rank

I Tutte matrix AG of a simple undirected graph G = (V ,E ) with
V = [n] is an n× n symbolic matrix defined as:

I

(AG)i ,j =


xij If (i , j) ∈ E and i < j
−xji If (i , j) ∈ E and i > j
0 Otherwise

Theorem (Lovász 1979)
If r is the size of maximum matching in G then rank(AG) = 2r .
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Polynomial Identity Testing (PIT) Using
Commutative rank

Problem
(FORMULA PIT) A formula F computing f ∈ F[x1, x2, . . . , xm], is
f = 0?

Theorem (Valiant 1979)
If f ∈ F[x1, x2, . . . , xm] is computed by a formula of size s then one
can compute (in deterministic poly(m, s) time) an affine symbolic
matrix F of size (s + 2)× (s + 2) such that det(F ) = f .

I Checking the non-zeroness of f reduces to checking if the
symbolic matrix F has full rank.
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Computing the Commutative Rank

I To compute the commutative rank exactly, an easy randomized
algorithm exists.
B Substitute random field scalars for xi ’s and compute the rank of the

resulting scalar matrix.

I Deterministically computing the commutative rank leads to
deterministic PIT.

I Approximating the commutative rank deterministically?
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Approximating the Commutative Rank

I A related notion of the non-commutative rank ncrk(B) of a
matrix space B ≤ Fn×n.

Theorem (Fortin, Reutenauer 2004)
If F is an infinite field then:

crk(B) ≤ ncrk(B) ≤ 2 · crk(B).

I Above inequalities are tight.
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Approximating the Commutative Rank

Theorem (GGOW 2015, Ivanyos et al.,2015 )
There is a deterministic polynomial time algorithm to compute the
ncrk(B) for any matrix space B ≤ Fn×n.

I Implies a deterministic polynomial time algorithm computing a
1
2 -approximation of the commutative rank.

I Improve the approximation ratio?
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Main Contribution

I A deterministic PTAS for computing the Commutative rank.

Theorem
For any Matrix space B ≤ Fn×n , a deterministic polynomial time
algorithm which outputs a matrix A ∈ B with:

rank(A) ≥ (1− ε)crk(B).

Algorithm runs in time nO( 1
ε ).
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Main Idea

I Define the notion of Wong Index w(A,B) for any A ∈ B.
I If w(A,B) is “high” then rank(A) is already a good
approximation of crk(B).
B In fact, we showed this connection even for the non-commutative

rank.

I If w(A,B) is “low” then in deterministic nO( 1
ε ) time, find a

matrix A′ ∈ B such that rank(A′) > rank(A).
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A min-max characterization of ranks

Theorem
For all matrix spaces A = 〈A1,A2, . . . ,Am〉 ≤ Fn×n, we have:

ncrk(A) = min
B={b1,b2,...,bn} basis of Fn

max
C1,C2,...,Cn∈A

rank([Cibi ]).

crk(A) = max
C1,C2,...,Cn∈A

min
B={b1,b2,...,bn} basis of Fn

rank([Cibi ]).
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Based on

I Joint work with Prof. Dr. Michael Sagraloff.
I Publications:

B Efficiently Computing Real Roots of Sparse Polynomials Jindal,
Gorav, and Sagraloff, Michael In Proceedings of the 2017 ACM
on International Symposium on Symbolic and Algebraic
Computation 2017.
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Roots of Polynomials

I We have a degree n (real) polynomial:

f (x) =
n

∑
i=0

fix i .

I Want to compute its (real) roots.
I In practice, the polynomial f is often “sparse”.
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Sparse Polynomials

I A polynomial is k-sparse if it has only k non-zero terms.

Definition ((n, k , τ)-nomial)
A real polynomial f (x) ∈ R[x ] is an (n, k, τ)-nomial if:

f (x) =
k

∑
i=1

fix ei .

Here 0 ≤ e1 < e2 < · · · < ek ≤ n and 2−τ ≤ |fi | ≤ 2τ.
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Sparse Polynomials Real Roots

I If f (x) = ∑k
i=1 fix ei , then:

var(f ) def
=== Number of signs changes in the sequence (f1, f2, . . . , fk).

N+(f )
def
=== Number of positive real roots of f .

Theorem (Descartes’s rule of signs)
For all f (x) ∈ R[x ], var(f )−N+(f ) is a non-negative even integer.
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Computing Real Roots of Sparse Polynomials

I Descartes’s rule of signs implies that any (n, k, τ)-nomial has at
most 2k − 1 real roots.

I For integer (n, k, τ)-nomials, the input size is O(k(τ + log n)).

I We want to “compute” all the real roots of (n, k, τ)-nomials in
time poly(k, τ, log n) (# bit operations).

I “Compute” means to find disjoint and (small) real intervals such
that each interval contains exactly one real root (isolating the real
roots).
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Mignotte Polynomials

I Mignotte polynomial f (x) = xn − (22τx2 − 1)2 is a
(n, 4, 4τ)-nomial.

I It can be shown that f has two real roots in (a− r , a+ r ) for
a = 2−τ and r = (21−τ)

n
2 .

B Two very close real roots and hence hard to isolate them for any
efficient algorithm.

Theorem
Any algorithm which isolates the real roots of
f (x) = xn − (22τx2 − 1)2 requires Ω(nτ) bit operations.
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Computing Real Roots of Polynomials

I For k = n (dense case), poly(n, τ) time algorithms exist.
B Pan (2001), Sagraloff, Mehlhorn (2015), Eigenwillig (2006) and

many others.

I Integer (n, k, τ)-nomials.
B Poly time algorithms for isolating integer and rational roots (Cucker

et.al, Lenstra, 99).
B Algorithm to isolate real roots using poly(k · (log n+ τ)) arithmetic

operations. Bit operations still Õ (nτ) (Sagraloff (2014)).
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Covering

Definition ((L, I)-covering)
f ∈ R[x ], L ∈N, I ⊆ R.

µ1
roots
of f

µ2
roots
of f

µ3
roots
of f

µ4
roots
of f

All these disks
"cover" all the real
roots of f in I

Information about the number of
roots of f in each disk

Each disk has radius at
most 2−L
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Main Result

Theorem
For any (n, k, τ)-nomial, we can compute an L-covering L of size at
most 2k in time Õ(poly(k, log n) · (τ + L)).

Corollary
If f is an (n, k, τ)-nomial with only simple real roots, and σ is the
minimal distance between any two (complex) distinct roots of f ,
then we can “compute” all the real roots of f in
Õ
(
poly(k, log n)(τ + log

( 1
σ

)
)
)
bit operations.
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Trinomial Root Separation

Theorem (Also proved independently by Koiran)
f (x) = a1x e1 + a2x e2 + a3 an integer trinomial with:
logmax(e1, e2, |a1| , |a2| , |a3|) ≤ τ. If z1 and z2 are two distinct
roots of f (x) then |z1 − z2| ≥ 2−cτ3for some c < 268.

Corollary
We can isolate all the real roots of trinomials in
Õ
(
poly(k, log n) · τ3) bit operations.
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Weak Covering

Definition
A weak (L, I)-covering for f is a list (I1, I2, . . . , It) of disjoint and
sorted real intervals:

Each interval has
length at most 2−L

All these intervals
"cover" all the real
roots of f in I
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T`-Test
Polynomial F ∈ C[x ], a disk ∆ = ∆r (m) ⊂ C, and K ≥ 1, define
T`-Test:

T`(∆,K ,F ) :

∣∣∣∣∣F (`)(m)r `
`!

∣∣∣∣∣−K ·∑
i 6=`

∣∣∣∣∣F (i)(m)r i

i !

∣∣∣∣∣ > 0.

If T`-Test succeeds for any K ≥ 1, then ∆ contains exactly ` roots of
F counted with multiplicity.

Theorem (Becker, Sagraloff, Sharma, Yap 2018)
If both ∆ and ∆′ contain ` roots with ∆ ⊆ ∆′ and ∆′ being
sufficiently large, then T`-Test succeeds on some disk D with
∆ ⊆ D ⊆ ∆′.

33 of 47

Gorav Jindal - Commutative Rank, Real Roots and Arithmetic Complexity



Rank of Symbolic Matrices and Matrix Spaces
Computing Real Roots of Sparse Polynomials
Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution
Overview of the Algorithm

T`-Test
Polynomial F ∈ C[x ], a disk ∆ = ∆r (m) ⊂ C, and K ≥ 1, define
T`-Test:

T`(∆,K ,F ) :

∣∣∣∣∣F (`)(m)r `
`!

∣∣∣∣∣−K ·∑
i 6=`

∣∣∣∣∣F (i)(m)r i

i !

∣∣∣∣∣ > 0.

If T`-Test succeeds for any K ≥ 1, then ∆ contains exactly ` roots of
F counted with multiplicity.

Theorem (Becker, Sagraloff, Sharma, Yap 2018)
If both ∆ and ∆′ contain ` roots with ∆ ⊆ ∆′ and ∆′ being
sufficiently large, then T`-Test succeeds on some disk D with
∆ ⊆ D ⊆ ∆′.

33 of 47

Gorav Jindal - Commutative Rank, Real Roots and Arithmetic Complexity



Rank of Symbolic Matrices and Matrix Spaces
Computing Real Roots of Sparse Polynomials
Complexity of Symmetric Polynomials

Introduction
Previous Work
Our Contribution
Overview of the Algorithm

Main Algorithm

1: Compute a weak (L′, [0, 1])-covering L for f that is
“well-separated”.

2: for each interval I ∈ L do
3: ∆ ← Disk whose diameter is I

4: Using T`-Test, count number of roots µ∆′ in a super disk ∆′

of ∆.
5: Output (∆′, µ∆′).
6: end for
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Computing a Weak Covering

I Suppose we already have a covering W ′ for f ′.
1: for each consecutive intervals (a, b) and (c, d) in W ′ do
2: Compute signs of f (b) and f (c).
3: if f (b)f (c) < 0 then

4: Refine the isolating interval (b, c) to a new interval
(b′, c ′) of desired length.

5: Add (b′, c ′)
6: end if
7: end for
8: Also add intervals of W ′.
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Challenges

I Computing the sign of f at end points.

I Refining an interval to a small length.
I T`-Test

B How to make sure it succeeds?
B Adapting it to the sparse case.
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Based on

I Joint work with Prof. Dr. Markus Bläser.
I Publications:

B On the Complexity of Symmetric Polynomials Bläser, Markus, and
Jindal, Gorav In 10th Innovations in Theoretical Computer
Science Conference (ITCS) 2019.
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Symmetric Polynomial Complexity

I Any symmetric Boolean function f : {0, 1}n → {0, 1} is “easy” to
compute.

I Lipton and Regan (Gödel’s Lost Letter and P = NP, 2009) ask:
B Are symmetric polynomials (families) also “easy” to compute?
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Polynomials and Arithmetic Circuits

I Every arithmetic circuit computes a polynomial and vice versa.

+

+

+

×

10

×

x2

x3

x1x4
I Above circuit computes the polynomial F ∈ C[x1, x2, x3, x4] where
F = 10x3(x1 + x2) + x1 + x2 + x4.
B Size and depth have same definitions as in the Boolean case.
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Arithmetic Complexity

Definition
The arithmetic complexity L(f ) of a polynomial f ∈ C[x1, x2, . . . , xn]
is defined as the minimum size of any arithmetic circuit computing
F .
I Thus L(F ) ≤ 10, where F = 10x3(x1 + x2) + x1 + x2 + x4.
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Fundamental Theorem

Theorem (Fundamental Theorem of Symmetric Polynomials)
If g ∈ C[x1, x2, . . . , xn] is a symmetric polynomial, then there is a
unique f ∈ C[y1, y2, . . . , yn] such that g = f (e1, e2, . . . , en). Here
ei ’s elementary symmetric polynomials.

I Write symmetric polynomials always with fSym. Hence the
bijection f (e1, e2, . . . , en) = fSym:

f ⇐⇒ fSym.

Idea
Study the connection between L(f ) and L(fSym).
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Relation between L(f ) and L(fSym)

Lemma
For all f ∈ C[x1, x2, . . . , xn], L(fSym) ≤ L(f ) +O(n2).

Proof.
Replace xi by ei , ei ’s can be computed a circuit of size O(n2).

I Can we also bound L(f ) polynomially in terms of L(fSym)?
B Lipton and Regan (Gödel’s Lost Letter and P = NP, 2009) ask this

question.
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Main Theorem

Theorem
For any polynomial f ∈ C[x1, x2, . . . , xn] of degree d,
L(f ) ≤ Õ

(
d2L(fSym) + d2n2

)
.

I Previous best bound: L(f ) ≤ 4n(n!)2(L(fSym) + 2).

Corollary
Assuming VP 6= VNP, symmetric polynomial family (qn)n∈N defined
by qn

def
=== (pern)Sym has super polynomial arithmetic complexity.

45 of 47

Gorav Jindal - Commutative Rank, Real Roots and Arithmetic Complexity



Rank of Symbolic Matrices and Matrix Spaces
Computing Real Roots of Sparse Polynomials
Complexity of Symmetric Polynomials

Introduction and Motivation
Main Results

Main Theorem

Theorem
For any polynomial f ∈ C[x1, x2, . . . , xn] of degree d,
L(f ) ≤ Õ
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Checking Symmetries

Theorem
Checking if a given Boolean function is symmetric is as hard as
CSAT.

Theorem
Checking if a given polynomial is symmetric is as hard as PIT.
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Thanks

Thank you for your attention!
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Alternative Proof of PTAS
Complex Analysis
Complexity of Symmetric Polynomials
Symmetric Polynomials

Additional Material

I Non-commutative rank definition

I Alternative Proof of PTAS
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Additional Material

I Rouché’s Theorem

I Pellet’s Theorem
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Alternative Proof of PTAS
Complex Analysis
Complexity of Symmetric Polynomials
Symmetric Polynomials

Additional Material

I Symmetric Boolean functions

I Algebraic Complexity Theory

I Symmetric and elementary symmetric polynomials

I Idea for proof of L(f ) ≤ Õ
(
d2L(fSym) + d2n2

)
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Non-commutative rank

I (c-shrunk subspace) V ≤ Fn is a c-shrunk subspace of B ≤ Fn×n

, if dim(BV ) ≤ dim(V )− c.

Definition (Non-commutative rank)
For any matrix space B ≤ Fn×n , if
r = max{c | ∃ c-shrunk subspaceof B} then
Non-commutaive rank of B = ncrk(B) = n− r . Go Back
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Outline

4 Appendix
4.1 Alternative Proof of PTAS
4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials
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Complexity of Symmetric Polynomials
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Main Idea

I B = 〈B1,B2, . . . ,Bm〉 ≤ Fn×n.
B B = x1B1 + x2B2 + . . . + xmBm over the field F(x1, x2, . . . , xm).

I We have some A ∈ B with some rank r .
B Want to find A′ ∈ B with rank(A′) > r .

I WLOG assume A =


Ir 0 . . . 0
0 0 . . . 0
...

... . . . ...
0 . . . 0 0

.
I Consider the matrix A+ B ∈ F(x1, x2, . . . , xm)n×n. Go Back
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Main idea (Continued)

I A+ B =

[
Ir + B11 B12
B21 B22

]
.

I Suppose B22 = 0 then rank(A+ B) = rank(B) ≤ 2r .
B rank(A) is already 1

2 -approximation of rank(B).
I Otherwise B22 6= 0, c(x1, x2, . . . , xm) be a non-zero entry of
B22. Go Back
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Main idea (Continued)

I Consider the Minor M of A+ B which has c(x1, x2, . . . , xm) as
the last entry.

B M =


1+ `11 `12 . . . a1
`21 1+ `22 . . . a2
...

...
. . .

...
b1 b2 . . . c(x1, x2, . . . , xm)


(r+1)×(r+1)

I det(M(x1, x2, . . . , xm)) =
c(x1, x2, . . . , xm) + terms of degree at least 2.
B Thus easy PIT for det(M(x1, x2, . . . , xm)) and hence rank

increase. Go Back
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Rouché’s Theorem

Theorem (Rouché’s Theorem)
Let f and g be holomorphic inside some region ∆ with boundary ∂∆.
If |f (z)| > |f (z)− g(z)| on ∂∆, then f and g have the same
number of zeros inside ∆. Go Back
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Pellet’s Theorem

Theorem (Pellet’s Theorem)
Given the polynomial

f (z) = f0 + f1x + · · ·+ fpxp + · · ·+ fnxn with fp 6= 0.

If the polynomial Fp(x) defined by

Fp(x)
def
=== |f0|+ |f1| x + · · ·+ |fp−1| xp

− |fp | xp + |fp+1| xp + · · ·+ |fn| xn

has two positive zeros r and R, r < R, then f (x) has exactly p zeros
in or on the circle |x | < r and no zeros in the ring
r < |x | < R. Go Back

11 of 20

Gorav Jindal - Commutative Rank, Real Roots and Arithmetic Complexity



Appendix

Alternative Proof of PTAS
Complex Analysis
Complexity of Symmetric Polynomials
Symmetric Polynomials

Outline

4 Appendix
4.1 Alternative Proof of PTAS
4.2 Complex Analysis
4.3 Complexity of Symmetric Polynomials
4.4 Symmetric Polynomials

12 of 20

Gorav Jindal - Commutative Rank, Real Roots and Arithmetic Complexity



Appendix

Alternative Proof of PTAS
Complex Analysis
Complexity of Symmetric Polynomials
Symmetric Polynomials

Symmetric Boolean Functions

Definition
A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric if it
is invariant under any permutation of its inputs.

I Can a symmetric Boolean function be hard to compute?

Fact
A symmetric Boolean function only depends on the number of 1’s in
the input and thus can be computed by constant depth threshold
circuits (complexity class TC0). Therefore “easy” to compute. Go Back
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Hard Polynomial families

Goal
Find polynomial families {f1, f2, . . . , fn, . . . , } such that L(fn) is a
super polynomial function of n.
I The permanent family defined by pern

def
=== ∑π∈Sn ∏n

i=1 xi ,π(i) is
believed to be “hard”.
B Known as VP vs VNP conjecture. Go Back
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Symmetric Polynomials

Definition
A polynomial f ∈ C[x1, x2, . . . , xn] is said to be symmetric if it is
invariant under any permutation of its inputs.

Example
x21 + x22 + x1x2 ∈ C[x1, x2] is symmetric whereas x21 + x2 is not.

Question
Lipton and Regan (Gödel’s Lost Letter and P = NP, 2009) ask
whether we can find hard (families of) symmetric polynomials?

Go Back
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Elementary Symmetric Polynomials

Definition
The i th elementary symmetric polynomial ei in n variables x1, x2, . . . ,
xn is defined as:

ei
def
=== ∑

1≤j1<j2<···<ji≤n
xj1 · xj2 · · · · · xji .

I ei ’s are obviously symmetric.
I Sum and product of symmetric polynomials is also symmetric.
I Thus the polynomials in the algebra generated by ei ’s are also
symmetric. Lipton and Regan (Gödel’s Lost Letter and P = NP,
2009) ask whether we can find hard (families of) symmetric
polynomials? Go Back
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Main idea

Example
Suppose fSym = x21 + x22 + x1x2 = e21 − e2. Given an arithmetic
circuit for fSym, we want to get a circuit for f = e21 − e2.

Idea
x1, x2 are the roots of polynomial:
B(y) def

=== y2 − (x1 + x2)y + x1x2 = y2 − e1y + e2. Thus:

x1 =
e1 +

√
e21 − 4e2
2 . (1)

x2 =
e1 −

√
e21 − 4e2
2 . (2)

Go Back
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Main idea (Continued)

I If we substitute:

x1 =
e1 +

√
e21 − 4e2
2 . (3)

x2 =
e1 −

√
e21 − 4e2
2 . (4)

in the circuit for fSym, we obtain a circuit for f . How to compute
the above radical expressions?

I These are not even polynomials. Go Back
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Main idea (Continued)

I Use the substitution e2 ← e2 − 1 and then substitute x1 and x2 in
fSym(x1, x2) to obtain f (e1, e2 − 1).
B But even after this e2 ← e2 − 1, radical expressions for x1, x2 are not

polynomials.
I But they are power series (use Taylor expansion).

B We can not compute power series using arithmetic circuits.

Idea
Only need to compute degree two truncations of these power series,
because f is of degree two. Go Back
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