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Motivation Arithmetic circuits and SLPs

Decision problems on Integers

Given an integer N as input, how to decide if:
I N is zero?
I N is positive?

Of course, N is not given as input in its bit string representation.

Example
Given a, b, c, n ∈ N, N := an + bn − cn. Decide if:

N is zero (Fermat’s Last Theorem) ?
N is positive?
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Motivation Arithmetic circuits and SLPs

Arithmetic circuits and SLPs

Definition (Arithmetic circuit)
An arithmetic circuit is a directed acyclic graph whose inputs are constants
0, 1 or indeterminates x1, x2, . . . , xn. Internal nodes are operations +,−,×.

Each arithmetic circuit computes a polynomial f ∈ Z[x1, x2, . . . , xn].
Size = Number of nodes.

Definition (SLP)
A straight-line program (SLP) is a sequence of instructions for evaluation
of an arithmetic circuit.

SLPs and arithmetic circuits are used interchangeably.
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Motivation Arithmetic circuits and SLPs

Example

×

+

x1 1 x2 x3

−

This circuit computes the polynomial (x1 − 1) + x2x3.
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PosSLP PosSLP and Motivation

PosSLP

Definition (PosSLP)
Given a SLP P without indeterminates, decide if the integer N computed
by P is positive.

Such a SLP P is sequence of integers (b0, b1, b2, . . . , b`) with
I b0 = 1.
I for all 1 ≤ i ≤ `, bi = bj ◦i bk , with ◦i ∈ {+,−, ∗} and j, k < i .

Integer computed by P is b`, size of P is `.
Remark
We cannot simply compute b`.
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PosSLP PosSLP and Motivation

Sum of Square Roots Problem

Problem (SSR)
Given S =

∑n
i=1 δi

√ai , with δi ∈ {+1,−1} and ai ∈ N, decide if S > 0.

Posed by (Garey, Graham, and Johnson 1976) in connection with the
Euclidean Traveling Salesman Problem (ETSP).

ETSP is in NP relative to SSR.
Theorem ((Tiwari 1992))
SSR ≤P PosSLP.
Proof.
A lower bound on |S|. Newton iteration: If x0 = a, xi+1 = 1

2

(
xi +

a
xi

)
then xi →

√
a.
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PosSLP Complexity of PosSLP

Complexity landscape of PosSLP

EquSLP PIT DegSLP

PosSLP BitSLPSSR

Folklore Folklore

Allenderetal.2006

Allender et al. 2006Tiwari 1992

coRP

CH #P-hard

←→ = Polynomial time Turing equivalence

CH = Counting hierarchy

EquSLP: Given a SLP computing N ∈ Z, decide if N = 0.

PIT: Given an arithmetic circuit computing a polynomial
f ∈ Z[x1, x2, . . . , xn], decide if f = 0.

DegSLP: Given a arithmetic circuit computing a polynomial f ∈ Z[x ]
and d ∈ N, decide if deg(f ) ≤ d .

BitSLP: Given a SLP computing N ∈ Z and i ∈ N, decide if ith bit of
N is 1.
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PosSLP Complexity of PosSLP

Lower bounds for PosSLP

Best upper bounds for PosSLP is CH.

Unfortunately, nontrivial lower bounds for PosSLP remain unknown.

Theorem ((Bürgisser and Jindal 2024))
If a constructive variant of the radical conjecture of (Dutta, Saxena, and
Sinhababu 2018) is true and PosSLP ∈ BPP then NP ⊆ BPP.
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Certificates for Positivity Certificates for Positivity

Monotone Complexity

For N > 0, how do we certify the positivity of N?

τ(N) := size of the smallest SLP which computes N.
τ+(N) := size of the smallest subtraction free SLP which computes N.

If N > 0 then there exists a subtraction free SLP which computes N.

Lemma ((Jindal and Saranurak 2012))
If τ+(N) ≤ poly(τ(N)) then PosSLP ∈ PH.

There exist integer sequences where τ+(n) > τ(n) (Jindal and
Saranurak 2012).
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Certificates for Positivity Sum of Squares

Lagrange’s four-square theorem

Theorem (Lagrange 1770)
Every non-negative integer can be written as a sum of four non-negative
integer squares.

So PosSLP is same as:
I First check if N = 0 using EquSLP.
I Given non-zero N (as SLP) decide if ∃a, b, c, d ∈ N such that

N = a2 + b2 + c2 + d2.

How about shorter Sum of Squares certificates?
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Certificates for Positivity Sum of Squares

Sum of fewer Squares

n ∈ N is 3SoS if it can be expressed as the sum of three squares (of
integers).
n ∈ N is 2SoS if it can be expressed as the sum of two squares (of
integers).

Problem (3SoSSLP)
Given a SLP computing N ∈ Z, decide whether N is a 3SoS.

Problem (2SoSSLP)
Given a SLP computing N ∈ Z, decide whether N is a 2SoS.
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Certificates for Positivity Sum of Squares

3SoSSLP

Theorem ((Legendre 1798))
An integer is 3SoS if and only if it is not of the form 4a(8b + 7), with
a, b ∈ N.

Lemma
EquSLP ≤P 3SoSSLP.

Proof.
Suppose M = N2. If M ∈ Z+ then 7M4 not a 3SoS.
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3SoS integers are “dense” in N and occur very “frequently”.

Theorem ((Landau 1908))
Asymptotic density of 3SoS integers in N is 5/6.

Lemma
∀n ∈ N at least one element in the set {n, n + 2} is 3SoS.

Theorem
PosSLP ∈ P3SoSSLP.
Proof.
Given SLP for N, first check if N ∈ {0,−1,−2}. Assume
N 6∈ {0,−1,−2}. Check if N is a 3SoS. Check if N + 2 is a 3SoS.
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Certificates for Positivity Sum of Squares

3SoSSLP and Div2SLP

Problem (Div2SLP)
Given N ∈ Z by SLP, and ` ∈ N, decide if 2` divides |N|.

Lemma
DegSLP ≤P Div2SLP.

It is natural that Div2SLP is useful for deciding 3SoSSLP.
Theorem
3SoSSLP ∈ P{Div2SLP,PosSLP}.
Proof.
To decide if N is 3SoS, first check if N > 0. Then use Div2SLP oracle to
check the 3SoS condition.
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Certificates for Positivity Sum of Squares

2SoSSLP

Theorem (Gauss 1801; Jacobi 1829)
An integer n > 1 is not 2SoS if and only if the prime-power decomposition
of n contains a prime of the form 4k + 3 with an odd power.

Lemma
EquSLP ≤P 2SoSSLP.

Proof.
Suppose M = N2. If M ∈ Z+ then 3M2 not a 2SoS.

Theorem
If Generalized Cramér conjecture is true then PosSLP ∈ NP2SoSSLP.

Markus Bläser, Julian Dörfler, Gorav Jindal PosSLP and Sum of Squares FSTTCS 2024, December 16 18 / 26



Certificates for Positivity Sum of Squares

2SoSSLP

Theorem (Gauss 1801; Jacobi 1829)
An integer n > 1 is not 2SoS if and only if the prime-power decomposition
of n contains a prime of the form 4k + 3 with an odd power.

Lemma
EquSLP ≤P 2SoSSLP.

Proof.
Suppose M = N2. If M ∈ Z+ then 3M2 not a 2SoS.

Theorem
If Generalized Cramér conjecture is true then PosSLP ∈ NP2SoSSLP.

Markus Bläser, Julian Dörfler, Gorav Jindal PosSLP and Sum of Squares FSTTCS 2024, December 16 18 / 26



Certificates for Positivity Sum of Squares

2SoSSLP

Theorem (Gauss 1801; Jacobi 1829)
An integer n > 1 is not 2SoS if and only if the prime-power decomposition
of n contains a prime of the form 4k + 3 with an odd power.

Lemma
EquSLP ≤P 2SoSSLP.

Proof.
Suppose M = N2. If M ∈ Z+ then 3M2 not a 2SoS.

Theorem
If Generalized Cramér conjecture is true then PosSLP ∈ NP2SoSSLP.

Markus Bläser, Julian Dörfler, Gorav Jindal PosSLP and Sum of Squares FSTTCS 2024, December 16 18 / 26



Certificates for Positivity Sum of Squares

2SoSSLP

Theorem (Gauss 1801; Jacobi 1829)
An integer n > 1 is not 2SoS if and only if the prime-power decomposition
of n contains a prime of the form 4k + 3 with an odd power.

Lemma
EquSLP ≤P 2SoSSLP.

Proof.
Suppose M = N2. If M ∈ Z+ then 3M2 not a 2SoS.

Theorem
If Generalized Cramér conjecture is true then PosSLP ∈ NP2SoSSLP.

Markus Bläser, Julian Dörfler, Gorav Jindal PosSLP and Sum of Squares FSTTCS 2024, December 16 18 / 26



Certificates for Positivity Sum of Squares

SquSLP

Problem (SquSLP)
Given a SLP representing N ∈ Z, decide whether N = a2 for some a ∈ Z.

Lemma
EquSLP ≤P SquSLP.

Proof.
Suppose M = N2 + 1. M is a square iff N is zero.

Theorem ((Jindal and Gaillard 2023))
SquSLP can be decided in randomized polynomial time, assuming GRH.

Proof.
To decide if N = a2, choose a random prime p and decide if N mod p is a
square in Fp .
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Positivity of Polynomials Sum of Squares of Polynomials

Positivity of Polynomials

Given a polynomial f ∈ Z[x ], decide if f is positive.

What does it even mean?
Definition
f ∈ R[x ] is positive if f (x) ≥ 0 for all x ∈ R.

Theorem (Folklore)
For every positive polynomial f ∈ R[x ], there exist g , h ∈ R[x ] such that
f = g2 + h2.

Theorem ((Pourchet 1971))
For every positive polynomial f ∈ Q[x ], there exist g1, g2, . . . , g5 ∈ Q[x ]
such that f =

∑5
i=1 g2

i .
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Positivity of Polynomials Sum of Squares of Polynomials

Positivity of Polynomials

Problem (PosPolySLP)
Given a straight-line program computing a univariate polynomial f ∈ Z[x ],
decide if f is positive.

Theorem
PosPolySLP is coNP-hard .

Problem (SquPolySLP)
Given a straight-line program representing a univariate polynomial
f ∈ Z[x ], decide if ∃g ∈ Z[x ] such that f = g2.
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Positivity of Polynomials Sum of Squares of Polynomials

SquPolySLP

Can we use SquSLP to solve SquPolySLP?

Theorem ((Murty 2008))
For f ∈ Z[x ], ∃g ∈ Z[x ] with f = g2 iff ∀t ∈ Z, f (t) is a perfect square.

Lemma
SquPolySLP ∈ coRP.

Proof.
Pick a random t ∈ Z and decide if f (t) is a square using algorithm for
SquSLP. This works by using an effective variant of Hilbert’s irreducibility
theorem.
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Positivity of Polynomials Conclusion

Summary of Complexity reductions

Problem (OrdSLP)
Given a SLP representing a polynomial f ∈ Z[x ] and ` ∈ N, decide if x `

divides f .

Div2SLP

OrdSLP DegSLP

PosSLP

EquSLP

3SoSSLP 2SoSSLP

Div2SLP∪PosSLP

≡

NP, cond.
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Positivity of Polynomials Conclusion

Future research directions

Complexity of Div2SLP:
I Div2SLP is at least as hard as DegSLP.
I Is it NP-hard as well?
I How does Div2SLP relate to PosSLP?

SLP and Sum of Squares for Polynomials:
I Complexity of polynomial analogues for 2SoSSLP, 3SoSSLP .

Unconditional hardness results for the PosSLP problem?

Efficient algorithms for special cases of PosSLP.
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Positivity of Polynomials Conclusion

Thanks for your attention! Any questions?
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