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Motivation Arithmetic circuits and SLPs

Motivation: Numerical stable algorithms

An algorithm (represented as function f ) with f : Rn → R
On an input x = (x1, x2, . . . , xn) ∈ Rn, compute f (x)

Exact computation of f (x) may not be possible because:
▶ f may evaluate to irrational numbers

▶ Only an approximation x̃ of x might be known in practice

▶ Exact computation f (x) may be computationally expensive

Can we efficiently approximate f (x)?

It is reasonable to assume that f can be approximated using
polynomials
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Motivation Arithmetic circuits and SLPs

Arithmetic circuits and SLPs

Definition (Arithmetic circuit)

An arithmetic circuit is a directed acyclic graph whose inputs are constants
0, 1 or indeterminates x1, x2, . . . , xn. Internal nodes are operations
+,−,×,÷.

Each arithmetic circuit computes a rational function f
g with

f , g ∈ Z[x1, x2, . . . , xn]
Size = Number of nodes

Definition (SLP)

A straight-line program (SLP) is a sequence of instructions for evaluation
of an arithmetic circuit.

SLPs and arithmetic circuits are used interchangeably.
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Motivation Arithmetic circuits and SLPs

Example

×

+

x1 1 x2 x3

−

This circuit computes the polynomial (x1 − 1) + x2x3
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Motivation Arithmetic circuits and SLPs

Floating point representations

For any non-zero u ∈ R, there exists unique u′ ∈ R,m ∈ Z with
1
2 ≤ |u

′| < 1 such that u = u′2m

For k ∈ N, approximate u′ by a v such that |v − u′| ≤ 2−(k+1)

This pair (v ,m) is a floating point approximation of u with k
significant bits

Peter Bürgisser, Gorav Jindal How hard is PosSLP? SODA 2024, January 8 6 / 22
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Motivation Arithmetic circuits and SLPs

Task of a numerical analyst

Given a function f : Rn → R and x = (x1, x2, . . . , xn) ∈ Rn as inputs,
approximate f (x)

There is a method to compute or approximate f

Assume f can be computed using an SLP

Problem (Generic task of numerical computation (GTNC))

Given a SLP P with indeterminates x1, x2, . . . , xn, floating point numbers
a1, a2, . . . , an and an integer k in unary, compute a floating point
approximation of P(a1, a2, . . . , an) with k significant bits.
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PosSLP PosSLP and Numerical Analysis

PosSLP

Motivation: To characterize the complexity of numerical analysis
(GTNC)

Definition (PosSLP)

Given a division-free SLP P without indeterminates, decide if the integer
N computed by P is positive.

Such an SLP P is sequence of integers (b0, b1, b2, . . . , bℓ) with b0 = 1
and for all 1 ≤ i ≤ ℓ, bi = bj ◦i bk , where ◦i ∈ {+,−, ∗} and j , k < i

Integer computed by P is bℓ, Size of P is ℓ
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PosSLP PosSLP and Numerical Analysis

Connection to numerical analysis

Theorem ((Allender et al. 2006))

GTNC is polynomial time Turing equivalent to PosSLP.
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PosSLP Complexity of PosSLP

Complexity landscape of PosSLP

EquSLP PIT

DegSLP
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SSR
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∃R

coRP

CH

#P-hard

←→ = Polynomial time Turing equivalence

EquSLP: Given a division-free SLP computing N ∈ Z, decide if N = 0

PIT: Given a division-free arithmetic circuit computing a polynomial
f ∈ Z[x1, x2, . . . , xn ], decide if f = 0

DegSLP: Given a division-free arithmetic circuit computing a polynomial
f ∈ Z[x1, x2, . . . , xn ] and d ∈ N, decide if deg(f ) ≤ d

BitSLP: Given a division-free SLP computing N ∈ Z and i ∈ N, decide if

ith bit of N is 1

Semidefinite feasibility problem (SDFP): Given an affine subspace of
matrices, decide if it contains a positive semidefinite matrix

BSS: Blum, Shub, and Smale model

SSR: Sum of Square roots problem

KTP: Koiran’s trinomial sign problem (Koiran 2019)

CH: Counting hierarchy

∃R: decide if a given semialgebraic set is non empty
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PosSLP Complexity of PosSLP

Upper bounds for PosSLP

Theorem ((Allender et al. 2006))

PosSLP ∈ CH, here CH is the counting hierarchy.

Another approach: for n ∈ N,
▶ τ(n) := size of the smallest SLP which computes n
▶ τ+(n) := size of the smallest subtraction free SLP which computes n

If τ+(n) ≤ poly(τ(n)) then PosSLP ∈ PH (Jindal and Saranurak
2012)

There exist integer sequences where τ+(n) > τ(n) (Jindal and
Saranurak 2012)
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PosSLP Complexity of PosSLP

Lower bounds for PosSLP

Unfortunately, nontrivial lower bounds for PosSLP remain unknown

Theorem (This paper)

If a constructive variant of the radical conjecture is true and
PosSLP ∈ BPP then NP ⊆ BPP.
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Conditional Hardness of PosSLP Main idea

Existence of real roots

RealRootSLP: Given an arithmetic circuit computing a univariate
polynomial f ∈ Z[x ], decide if f has a real root

3SAT≤P RealRootSLP, hence RealRootSLP is NP-hard (Perrucci and
Sabia 2007)

▶ 3SAT formula ϕ −→ An arithmetic circuit computing a polynomial fϕ
such that ϕ is satisfiable iff fϕ has a real root

▶ All the real roots (if any) of fϕ are in (−1, 1)
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Conditional Hardness of PosSLP Main idea

Idea for NP-hardness of PosSLP

If ϕ is satisfiable then fϕ “should” look like:

If ϕ is not satisfiable then fϕ “should” look like:

Pick a random rational q in (−1, 1), check if fϕ(1) and fϕ(q) have
different signs, i.e, (−1)fϕ(1)fϕ(q) > 0
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Conditional Hardness of PosSLP Radical conjecture

Challenges

fϕ only changes sign on real roots of odd multiplicity

What if fϕ has roots only of even multiplicity? ⇝ Radical conjecture

Even if fϕ has roots only of odd multiplicity, how likely is it that fϕ(1)
and fϕ(q) have different signs? ⇝ UniqueSAT
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Conditional Hardness of PosSLP Radical conjecture

Radical conjecture

τ(f ) = size of the smallest arithmetic circuit computing f

rad(f ) = Radical of f , i.e, the square free part of f

rad(f ) has only simple roots and has all the roots of f

Conjecture ((Dutta, Saxena, and Sinhababu 2022), Radical
conjecture)

For univariate f ∈ Z[x ], τ(rad(f )) ≤ poly(τ(f )).

It implies τ(rad(fϕ)) ≤ poly(n), n = number of literals in ϕ
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Conditional Hardness of PosSLP Radical conjecture

UniqueSAT

Under randomized polynomial time reductions, ϕ can be assumed to
have a unique satisfying assignment (Valiant and Vazirani 1986)

Theorem (This paper)

If ϕ has a unique satisfying assignment then rad(fϕ)(1) and rad(fϕ)(q)
have different signs with probability at least 1

4π , where q is a random
rational in (−1, 1).
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Conditional Hardness of PosSLP Radical conjecture

Lower Bound

Theorem (This paper)

If a constructive variant of the radical conjecture is true and
PosSLP ∈ BPP then NP ⊆ BPP.
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Conditional Hardness of PosSLP Conclusion

Future research directions

Radical conjecture is a strong assumption, can we do without it?

Special cases of PosSLP:
▶ Koiran’s trinomial sign problem (Koiran 2019)
▶ Sum of square roots problem
▶ Decide if an + bn − cn > 0
▶ Many more.....
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Conditional Hardness of PosSLP Conclusion

Thanks for your attention! Any questions?
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