## On the Complexity of Symmetric Polynomials

Markus Bläser<sup>1</sup> <sup>2</sup>Gorav Jindal



Department of Computer Science, Saarland University

<sup>2</sup>Department of Computer Science, Aalto University

January 12, 2019 ITCS 2019



## Symmetric Boolean Functions

### Definition

A Boolean function  $f:\{0,1\}^n \to \{0,1\}$  is said to be symmetric if it is invariant under any permutation of its inputs.

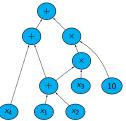
• Can a symmetric Boolean function be hard to compute?

#### **Fact**

A symmetric Boolean function only depends on the number of 1's in the input and thus can be computed by constant depth threshold circuits (complexity class TC<sup>0</sup>). Therefore "easy" to compute.

## Polynomials and Arithmetic Circuits

• Every arithmetic circuit computes a polynomial and vice versa.



- This circuit computes the polynomial  $F \in \mathbb{C}[x_1, x_2, x_3, x_4]$  where  $F = 10x_3(x_1 + x_2) + x_1 + x_2 + x_4$ .
  - Size and depth have same definitions as in the Boolean case.

## Arithmetic Complexity

#### Definition

The arithmetic complexity L(f) of a polynomial  $f \in \mathbb{C}[x_1, x_2, ..., x_n]$  is defined as the minimum size of any arithmetic circuit computing F.

• Thus  $L(F) \le 10$ , where  $F = 10x_3(x_1 + x_2) + x_1 + x_2 + x_4$ .

## Hard Polynomial families

#### Goal

Find polynomial families  $\{f_1, f_2, \dots, f_n, \dots, \}$  such that  $L(f_n)$  is a super polynomial function of n.

- The permanent family defined by  $\operatorname{per}_n \stackrel{\operatorname{def}}{=\!\!\!=\!\!\!=} \sum_{\pi \in \mathfrak{S}_n} \prod_{i=1}^n x_{i,\pi(i)}$  is believed to be "hard".
  - Known as VP vs VNP conjecture.

## Symmetric Polynomials

### Definition

A polynomial  $f \in \mathbb{C}[x_1, x_2, ..., x_n]$  is said to be symmetric if it is invariant under any permutation of its inputs.

### Example

 $x_1^2+x_2^2+x_1x_2\in\mathbb{C}[x_1,x_2]$  is symmetric whereas  $x_1^2+x_2$  is not.

### Question

Lipton and Regan (Gödel's Lost Letter and P = NP, 2009) ask whether we can find hard (families of) symmetric polynomials?

## **Elementary Symmetric Polynomials**

### Definition

The  $i^{th}$  elementary symmetric polynomial  $e_i$  in n variables  $x_1, x_2, \ldots, x_n$  is defined as:

$$e_i \stackrel{\text{def}}{=} \sum_{1 \leq j_1 < j_2 < \dots < j_i \leq n} x_{j_1} \cdot x_{j_2} \cdot \dots \cdot x_{j_i}.$$

- e<sub>i</sub>'s are obviously symmetric.
- Sum and product of symmetric polynomials is also symmetric.
- Thus the polynomials in the algebra generated by  $e_i$ 's are also symmetric.

## Fundamental Theorem

## Theorem (Fundamental Theorem of Symmetric Polynomials)

If  $g \in \mathbb{C}[x_1, x_2, ..., x_n]$  is a symmetric polynomial, then there exists a unique polynomial  $f \in \mathbb{C}[y_1, y_2, ..., y_n]$  such that  $g = f(e_1, e_2, ..., e_n)$ .

• Write symmetric polynomials always with  $f_{Sym}$ . Thus we have the isomorphism  $f(e_1, e_2, ..., e_n) = f_{Sym}$ :

$$f \iff f_{Sym}$$
.

### Idea

Study the connection between L(f) and  $L(f_{Sym})$ .

## Relation between L(f) and $L(f_{Sym})$

#### Lemma

For all  $f \in \mathbb{C}[x_1, x_2, \dots, x_n]$ ,  $L(f_{\mathsf{Sym}}) \leq L(f) + O(n^2)$ .

### Proof.

Replace  $x_i$  by  $e_i$ ,  $e_i$ 's can be computed a circuit of size  $O(n^2)$ .

- Can we also bound L(f) polynomially in terms of  $L(f_{Sym})$ ? This is what Lipton and Regan (Gödel's Lost Letter and P = NP, 2009) ask.
- If we can bound L(f) polynomially in terms of  $L(f_{Sym})$ , then we get that for a "hard" polynomial f,  $f_{Sym}$  is also hard.

## Main Theorem

### Theorem

For any polynomial  $f \in \mathbb{C}[x_1, x_2, ..., x_n]$  of degree d,  $L(f) \leq \tilde{O}(d^2L(f_{\mathsf{Sym}}) + d^2n^2)$ .

• Previous best bound:  $L(f) \le 4^n (n!)^2 (L(f_{Sym}) + 2)$ .

### Corollary

Assuming VP  $\neq$  VNP, symmetric polynomial family  $(q_n)_{n \in \mathbb{N}}$  defined by  $q_n \stackrel{def}{=} (\operatorname{per}_n)_{\operatorname{Sym}}$  has super polynomial arithmetic complexity.

## Main idea

### Example

Suppose  $f_{\text{Sym}} = x_1^2 + x_2^2 + x_1x_2 = e_1^2 - e_2$ . Given an arithmetic circuit for  $f_{\text{Sym}}$ , we want to get a circuit for  $f = e_1^2 - e_2$ .

#### Idea

 $x_1, x_2$  are the roots of polynomial

$$B(y) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} y^2 - (x_1 + x_2)y + x_1x_2 = y^2 - e_1y + e_2$$
. Thus:

$$x_1 = \frac{e_1 + \sqrt{e_1^2 - 4e_2}}{2}. (1)$$

$$x_2 = \frac{e_1 - \sqrt{e_1^2 - 4e_2}}{2}. (2)$$

## Main idea(Continued)

• If we substitute:

$$x_1 = \frac{e_1 + \sqrt{e_1^2 - 4e_2}}{2}. (3)$$

$$x_2 = \frac{e_1 - \sqrt{e_1^2 - 4e_2}}{2}. (4)$$

in the circuit for  $f_{Sym}$ , we obtain a circuit for f. How to compute the above radical expressions?

These are not even polynomials.

## Main idea(Continued)

- Use the substitution  $e_2 \leftarrow e_2 1$  and then substitute  $x_1$  and  $x_2$  in  $f_{\text{Sym}}(x_1, x_2)$  to obtain  $f(e_1, e_2 1)$ .
  - But even after this  $e_2 \leftarrow e_2 1$ , radical expressions for  $x_1, x_2$  are not polynomials.
- But they are power series (use Taylor expansion).
  - We can not compute power series using arithmetic circuits.

### Idea

Only need to compute degree two truncations of these power series, because f is of degree two.

## Example

- $x_1 = \frac{e_1}{2} + \sqrt{1+E}$ , where  $E = \frac{e_1^2}{4} e_2$ .
- $\sqrt{1+E} = 1 + \frac{E}{2} \frac{E^2}{8} + \dots + = 1 + \frac{1}{2} \left(\frac{e_1^2}{4} e_2\right) \frac{1}{8} \left(\frac{e_1^2}{4} e_2\right)^2 + \dots + .$
- The degree  $\leq 2$  part of  $\sqrt{1+E}$  is  $1+\frac{1}{2}\left(\frac{e_1^2}{4}-e_2\right)-\frac{1}{8}e_2^2$ .

## Example (Continued)

- Substitute  $x_1 = \frac{e_1}{2} + 1 + \frac{1}{2} \left( \frac{e_1^2}{4} e_2 \right) \frac{1}{8} e_2^2$  and  $x_2 = -\frac{e_1}{2} + 1 + \frac{1}{2} \left( \frac{e_1^2}{4} e_2 \right) \frac{1}{8} e_2^2$  in  $f_{\text{Sym}} = x_1^2 + x_2^2 + x_1 x_2$ .
- After substitution,  $f = e_1^2 (e_2 1) + \text{terms of degree at least } 3.$
- Junk terms can be removed efficiently.
- Now use the substitution  $e_2 \leftarrow e_2 + 1$  to obtain  $f = e_1^2 e_2$ .

## General idea

- Consider  $B(y, e_1, e_2, ..., e_n) = y^n e_1 y^{n-1} + ... + (-1)^n e_n$ .
- $x_1, x_2, \ldots, x_n$  are the roots of B(y).
- Use the substitution  $e_n \leftarrow e_n + (-1)^{n-1}$  as in the case of n=2.

### Problem

Abel-Ruffini theorem states that for n > 4, roots of B(y) are not radicals in  $e_1, e_2, \ldots, e_n$  ( $\mathfrak{S}_n$  is not solvable for n > 4).

## Computing Roots of B(y)

• Roots of B(y) are not radicals in  $e_1, e_2, \ldots, e_n$ .

#### **Fact**

Roots of B(y) are power series in  $e_1, e_2, \ldots, e_n$  as in the case of n = 2.

- Low degree truncation of these roots can be computed by using the Newton iteration.
- Again, junk terms can be removed efficiently.

## Final algorithm

### Problem

Given a circuit  $C_{\text{Sym}}$  computing a symmetric polynomial  $f_{\text{Sym}}$ , find a circuit computing f with  $\deg(f)=d$ .

Consider:

$$B(y, e_1, e_2, ..., e_n) = y^n - e_1 y^{n-1} + ... + (-1)^n (e_n + (-1)^{n-1}).$$

- Compute roots of B(y) up-till degree d by using the Newton iteration.
- Remove Junk terms (terms of degree > d). Use the substitution  $e_n \leftarrow e_n (-1)^{n-1}$  to obtain a circuit for f.

### **Thanks**

# Thank you for your attention!