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Symmetric Boolean Functions

Definition
A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric if
it is invariant under any permutation of its inputs.

Can a symmetric Boolean function be hard to compute?

Fact
A symmetric Boolean function only depends on the number of 1’s
in the input and thus can be computed by constant depth threshold
circuits (complexity class TC0). Therefore “easy” to compute.
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Polynomials and Arithmetic Circuits

Every arithmetic circuit computes a polynomial and vice versa.
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This circuit computes the polynomial F ∈ C[x1, x2, x3, x4]
where F = 10x3(x1 + x2) + x1 + x2 + x4.

Size and depth have same definitions as in the Boolean case.
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Arithmetic Complexity

Definition
The arithmetic complexity L(f ) of a polynomial f ∈ C[x1, x2, . . . ,
xn] is defined as the minimum size of any arithmetic circuit
computing F .

Thus L(F ) ≤ 10, where F = 10x3(x1 + x2) + x1 + x2 + x4.
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Hard Polynomial families

Goal
Find polynomial families {f1, f2, . . . , fn, . . . , } such that L(fn) is a
super polynomial function of n.

The permanent family defined by pern
def
=== ∑π∈Sn ∏n

i=1 xi ,π(i)
is believed to be “hard”.

Known as VP vs VNP conjecture.
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Symmetric Polynomials

Definition
A polynomial f ∈ C[x1, x2, . . . , xn] is said to be symmetric if it is
invariant under any permutation of its inputs.

Example
x2

1 + x2
2 + x1x2 ∈ C[x1, x2] is symmetric whereas x2

1 + x2 is not.

Question
Lipton and Regan (Gödel’s Lost Letter and P = NP, 2009) ask
whether we can find hard (families of) symmetric polynomials?
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Elementary Symmetric Polynomials

Definition
The i th elementary symmetric polynomial ei in n variables x1, x2,
. . . , xn is defined as:

ei
def
=== ∑

1≤j1<j2<···<ji≤n
xj1 · xj2 · · · · · xji .

ei ’s are obviously symmetric.
Sum and product of symmetric polynomials is also symmetric.
Thus the polynomials in the algebra generated by ei ’s are also
symmetric.

Markus Bläser, Gorav Jindal Complexity of Symmetric Polynomials



Motivation and Introduction
Our Results

Boolean Function Complexity
Algebraic Complexity Theory
Symmetric Polynomials

Fundamental Theorem
Theorem (Fundamental Theorem of Symmetric Polynomials)
If g ∈ C[x1, x2, . . . , xn] is a symmetric polynomial, then there
exists a unique polynomial f ∈ C[y1, y2, . . . , yn] such that
g = f (e1, e2, . . . , en).

Write symmetric polynomials always with fSym. Thus we have
the isomorphism f (e1, e2, . . . , en) = fSym:

f ⇐⇒ fSym.

Idea
Study the connection between L(f ) and L(fSym).
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Relation between L(f ) and L(fSym)
Lemma
For all f ∈ C[x1, x2, . . . , xn], L(fSym) ≤ L(f ) +O(n2).

Proof.
Replace xi by ei , ei ’s can be computed a circuit of size O(n2).

Can we also bound L(f ) polynomially in terms of L(fSym)?
This is what Lipton and Regan (Gödel’s Lost Letter and
P = NP, 2009) ask.
If we can bound L(f ) polynomially in terms of L(fSym), then
we get that for a “hard” polynomial f , fSym is also hard.
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Main Theorem

Theorem
For any polynomial f ∈ C[x1, x2, . . . , xn] of degree d,
L(f ) ≤ Õ

(
d2L(fSym) + d2n2) .

Previous best bound: L(f ) ≤ 4n(n!)2(L(fSym) + 2).

Corollary
Assuming VP 6= VNP, symmetric polynomial family (qn)n∈N

defined by qn
def
=== (pern)Sym has super polynomial arithmetic

complexity.
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Main idea
Example
Suppose fSym = x2

1 + x2
2 + x1x2 = e2

1 − e2. Given an arithmetic
circuit for fSym, we want to get a circuit for f = e2

1 − e2.

Idea
x1, x2 are the roots of polynomial
B(y) def

=== y2 − (x1 + x2)y + x1x2 = y2 − e1y + e2. Thus:

x1 =
e1 +

√
e2

1 − 4e2

2 . (1)

x2 =
e1 −

√
e2

1 − 4e2

2 . (2)
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Main idea(Continued)

If we substitute:

x1 =
e1 +

√
e2

1 − 4e2

2 . (3)

x2 =
e1 −

√
e2

1 − 4e2

2 . (4)

in the circuit for fSym, we obtain a circuit for f . How to
compute the above radical expressions?
These are not even polynomials.
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Main idea(Continued)

Use the substitution e2 ← e2 − 1 and then substitute x1 and
x2 in fSym(x1, x2) to obtain f (e1, e2 − 1).

But even after this e2 ← e2 − 1, radical expressions for x1, x2
are not polynomials.

But they are power series (use Taylor expansion).
We can not compute power series using arithmetic circuits.

Idea
Only need to compute degree two truncations of these power
series, because f is of degree two.
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Example

x1 = e1
2 +
√
1+ E , where E =

e2
1
4 − e2.

√
1+ E = 1+ E

2 −
E2

8 + · · ·+ =

1+ 1
2

(
e2

1
4 − e2

)
− 1

8

(
e2

1
4 − e2

)2
+ · · ·+.

The degree ≤ 2 part of
√
1+ E is 1+ 1

2

(
e2

1
4 − e2

)
− 1

8e
2
2 .
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Example (Continued)

Substitute x1 = e1
2 + 1+ 1

2

(
e2

1
4 − e2

)
− 1

8e
2
2 and

x2 = − e1
2 + 1+ 1

2

(
e2

1
4 − e2

)
− 1

8e
2
2 in fSym = x2

1 + x2
2 + x1x2.

After substitution,
f = e2

1 − (e2 − 1) + terms of degree atleast 3.
Junk terms can be removed efficiently.
Now use the substitution e2 ← e2 + 1 to obtain f = e2

1 − e2.
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General idea

Consider B(y , e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)nen.

x1, x2, . . . , xn are the roots of B(y).
Use the substitution en ← en + (−1)n−1 as in the case of
n = 2.

Problem
Abel-Ruffini theorem states that for n > 4, roots of B(y) are not
radicals in e1, e2, . . . , en (Sn is not solvable for n > 4).
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Computing Roots of B(y)

Roots of B(y) are not radicals in e1, e2, . . . , en.

Fact
Roots of B(y) are power series in e1, e2, . . . , en as in the case of
n = 2.

Low degree truncation of these roots can be computed by
using the Newton iteration.
Again, junk terms can be removed efficiently.
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Final algorithm
Problem
Given a circuit CSym computing a symmetric polynomial fSym, find
a circuit computing f with deg(f ) = d .

Consider:

B(y , e1, e2, . . . , en) = yn− e1yn−1 + . . .+(−1)n(en +(−1)n−1).

Compute roots of B(y) up-till degree d by using the Newton
iteration.
Remove Junk terms (terms of degree > d). Use the
substitution en ← en − (−1)n−1 to obtain a circuit for f .
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Thanks

Thank you for your attention!

Markus Bläser, Gorav Jindal Complexity of Symmetric Polynomials


	Motivation and Introduction
	Complexity of Boolean Functions
	Algebraic Complexity Theory
	Symmetric Polynomials

	Our Results
	Main Result
	Making it work for General n


