
Managing Secured Documents Over
Long Periods

A thesis submitted in partial ful�lment of the requirements for the degree of

Bachelor of Technology
in

Computer Science & Engineering
by

Gorav Jindal (2004CS10163)

Vikrant Kumar (2004CS10223)

Under the guidance of

Prof. B.N. Jain
Dr. Vinay Joseph Ribeiro

Department of Computer Science & Engineering

Indian Institute of Technology, Delhi

May 2008

Certi�cate

This is to certify that the thesis entitled Managing Secured Documents Over Long

Periods submitted by Gorav Jindal and Vikrant Kumar to the Indian Institute of

Technology, Delhi for the award of the degree of Bachelor of Technology in Computer

Science and Engineering, is a bona�de record of work carried out by them under our joint

supervision. The contents of this thesis, in full or in parts, have not been submitted to

any other Institute or University for the award of any degree or diploma.

May 12, 2008.

IIT Delhi.

Vinay Joseph Ribeiro B.N. Jain

Assistant Professor Professor

Dept. of Comp. Science and Engg. Dept. of Comp. Science and Engg.

IIT Delhi. IIT Delhi.

i

Acknowledgements

We express our deepest gratitude towards Prof. B.N. Jain and Dr. Vinay Ribeiro,

our project supervisors, who have been a tremendous source of inspiration and support

throughout the project. We are also very thankful to Mr. Saurabh Kaura and Ms. Binda

from NISG who have guided us with their knowledge in management and law.

ii

Abstract

Certi�cates and other legal documents play a very important role in our lives. However,

currently there exists no such framework within which we can construct systems that

can handle digitally secured documents over a period of say a couple of decades. This

project is an attempt at analyzing the situation and then providing a suitable solution

to the aforementioned problem. In this paper we present the high level initial design

with signi�cant details of implementation of the system which can be used to address

the problem. Our design and implementation is focused around creating an online degree

certi�cate maintenance system for IIT Delhi. We will more speci�cally focus on on-�y

generation of degree document and its veri�cation on client side.

Contents

1 Introduction 1

1.1 Objective and Need . 1

1.2 Basic Approach . 2

1.3 Brief Outline . 2

2 Background 4

2.1 Public Key Cryptography . 4

2.2 RSA . 5

2.2.1 Breaking RSA . 5

2.3 Elliptic Curve Cryptography . 5

2.4 Hash Functions . 6

2.5 Digital Signatures . 7

2.6 Performance Analysis of various Technologies 8

2.6.1 RSA . 8

2.6.2 ECC . 8

2.6.3 Hash Functions(SHA) . 9

2.7 Technologies and their comparison . 10

2.7.1 RSA . 11

2.7.2 ECC . 12

2.7.3 RSA and ECC equivalent key size 13

2.8 Manaul System for Degree management at IIT Delhi 13

2.8.1 Getting the Passing list . 13

2.8.2 Veri�cation and Final List . 13

2.8.3 Generating the degrees . 14

2.8.4 Signing . 14

2.8.5 Publishing . 14

2.8.6 Veri�cation . 14

i

3 Initial Design and Problems 16

3.1 Phase I . 16

3.1.1 Managing documents . 17

3.1.2 Signing and veri�cation . 17

3.1.3 Re-encryption . 17

3.2 Phase II . 19

3.2.1 Master Document . 19

3.2.2 Client Requests . 19

3.2.3 Degrees Addition . 20

3.2.4 Re-encryption . 20

3.2.5 Hand-O� . 20

3.2.6 Document Invalidation/Deletion . 21

3.2.7 Mail and Log Events . 21

4 Final Design 22

4.1 List upload . 22

4.2 Generating Master Document . 22

4.3 Signing . 23

4.4 ID generation . 24

4.5 On-�y generation . 24

4.6 Veri�cation . 25

4.7 Resigning . 25

4.7.1 Lock . 25

5 Implementation 27

5.1 Master Document Management . 27

5.2 Private keys . 28

5.3 On-�y generation . 28

5.4 Veri�cation on client side . 29

5.4.1 IITD Public Key Veri�cation . 30

5.4.2 Student Degree Veri�cation . 32

6 Issues and Assumptions 35

6.1 Document Format . 35

6.2 Long enough stay/ Consecutive Authority Collusion 35

6.3 Corrupted Root . 36

6.4 Con�dentiality . 36

6.5 Client Side Signing . 36

ii

7 Conclusion 38

A Code Documentation for on-�y generation 39

A.1 Signature.pm . 39

A.2 VerifyMasterDoc.pm . 39

A.3 getdegree.cgi . 39

B Code Documentation for Client Side Veri�cation 41

B.1 sp_sign_verifcation_applet.java . 42

B.2 convert.java . 42

B.3 certi�cate_read.java . 42

B.4 certi�cate_validate.java . 43

B.5 �leVeri�cationFrame.java . 43

B.5.1 Show IITD Certi�cate Button . 43

B.5.2 Public Certi�cate Browse Button 43

B.5.3 HTML Degree File Browse Button 43

B.5.4 Degree �le signature . 44

B.5.5 Verify Button . 44

B.6 certi�cateChainFrame.java . 44

B.6.1 Chain Veri�cation Result Panel . 44

B.6.2 Certi�cate Chain . 44

B.6.3 Certi�cate Fields . 44

B.6.4 Field Value . 44

B.7 sign_verify.java . 44

B.7.1 signFile . 45

B.7.2 verifyFileSignature . 45

B.7.3 VerifyFileStreamSignature . 45

B.7.4 signString . 45

B.7.5 verifyStringSignature . 45

B.8 windowVPanel.java . 45

B.9 WindowUtilities.java . 45

B.9.1 setNativeLookAndFeel() . 45

B.9.2 setJavaLookAndFeel() . 46

B.9.3 setMotifLookAndFeel() . 46

B.10 Compile.bat . 46

iii

List of Figures

2.1 RSA Encryption performance . 9

2.2 RSA Decryption performance . 9

2.3 ECC performance . 10

2.4 ECC performance . 10

2.5 RSA Factoring Records Since 1970 . 12

4.1 Master Document . 23

4.2 Generation and Signing of Master Document 24

4.3 On-�y generation and Client Side Veri�cation 25

5.1 A sample degree document generated on-�y 29

5.2 Certifciate Chain not veri�ed by MS windows trusted root store 31

5.3 Certi�cate Chain is veri�ed by MS windows trusted root store 32

5.4 Degree Document Veri�cation . 33

5.5 Degree Document Veri�cation . 34

iv

List of Tables

2.1 Comparitive key-lengths(no fo bits) of RSA and ECC 13

v

Chapter 1
Introduction

1.1 Objective and Need

The documents pervade everybody's life, consuming a substantial amount of e�ort that is

spent to manage them. A natural solution to this problem would be a system that manages

documents automatically. This paper analyzes the requirements and describes a system

designed for retaining records and ensuring their legibility, interpretability, availability,

and provable authenticity over long periods of time. In general, information preservation

is accomplished not by any one single technique, but by avoiding all of the many possible

events that might cause loss. The focus of the system is on preservation in the 10 to 100

year time span-a long enough period such that many di�cult problems are known and can

be addressed, but not unimaginable in terms of the longevity of computer systems and

technology. The general approach focuses on eliminating single points of failure - single

elements whose failure would cause information loss - combined with active detection and

repair in the event of failure. Any solution however should conform to the speci�cations

that come with a manual system like authenticating the source of the document, non

repudiation etc. It is here that advanced cryptographic techniques developed by scienti�c

community over the last 30 years come handy. The solution that we present in this paper

is based on many of such techniques.

To conceptualize a system that would act as a dual to all the existing document

management systems would be a humongous task and too di�cult to start with, hence

the focus of the work done so far has been to develop a scalable system that can be used

to handle degree certi�cates, issued to the students by a university, such as IIT Delhi.

The following principles have been used as guideline for preparing the design.

• The integrity of degree certi�cate document is of supreme importance

• The system should be able to authenticate the proper right of the o�ce holders

1

• The con�dentiality of the document is also important but less than the other two

In what follows we systematically introduce the subject �rst and then describe the design

and implementaion details of the system that can be used to manage degree documents.

This is followed by an analysis of the issues that could arise over time and possible ways

to handle them.

1.2 Basic Approach

The approach we took to solve the above mentioned problem was a very usual one. First

we started with comprehensive study of usual stu� that is pre-requisite to build any

security related application. We started with study of famous public key cryptography

algorithmic schemes like RSA and ECC and also studied DSA and ECDSA brie�y. We

studied the concept of digital signatures as they are essential for building any integrity

preserving application. For digital signatures, we went through some of the popular hash

algorithms like MD5, SHA-family which are pre-dominantly used in digital signatures. We

went through some popular papers that tried to address the issue of long term security

of documents by above mentioned techniques. Then we tried to judge the performance

of above competing technologies on the basis of their e�ciency. Finally we decided to go

with RSA for encryption and SHA-1 for hashing as they are the most dominant techniques

used for digital signatures in commercial and academic applications, so there will not be

any compatibility issues. Then we started to work on the basic design of the system

that can be used to address the problem of long term security and speci�cally a degree

management system for IIT Delhi. First we suggested that we can keep every degree in

single �le and sign it. There were a lot of issues with this design as will be explained in

coming chapters. Then we proposed the idea of a single master document for managing

degrees of a single year. This idea was much better than the �rst one, as we will see

in coming chapters. After nearly �nalizing this 2nd design, we went for implementation

of the prototype for IITD degree management system. We have tried to explain all the

relevant details in coming sections.

1.3 Brief Outline

If we analyze the main problems which can occur in implementation of such a system,

they can be

• The Expiration of private keys of signing authorities

• Document Format becomes obsolete after certain time.

2

The obvious solution to these problems can be re-signing and keeping Document in text.

But there are lot of issues in the process of re-signing and we will see that re-signing

alone is not the sure shot solution of our problem, there are many issues in the process

of re-signing itself. In what follows we will explain these solutions in detail along with

background study needed to understand these solutions fully.

3

Chapter 2
Background

The document in paper format has many interesting and self securing properties since any

attempt to compromise the integrity of the document will either be self evident or easily

veri�able, digital documents however do not enjoy the same luxury. Even the millionth

copy of a digital document would be exactly similar to the initial one. This is where

beautiful mathematical techniques developed under the aegis of cryptography come to our

rescue. Since any document security project must involve one of these techniques we �nd

it useful to give a brief overview of the tool and techniques involved in cryptography which

we present in the following subsection. The information presented here is not in the least

sense comprehensive and it is highly recommended that one should go through reference

1 to fully appreciate the subject matter. However for the purpose of understanding this

document the information given below should su�ce.

2.1 Public Key Cryptography

Public key cryptography is a form of cryptography in which encryption and decryption

are performed using the di�erent keysone a public key and one a private key. Unlike

symmetric key encryption, it is free from the problem of key distribution and key sharing.

Each user of public key cryptosystem has two keys(public and private key). Public key

is known to all the other users of public key cryptosystem(can be veri�ed by contacting

a trusted third party called Certi�cate Authority) while private key is known only to

corresponding user. As it will be explained in coming sections, calculation of private

key from known public key is a very di�cult problem and strength of any public key

cryptosystem directly depends entirely upon level of di�culty of this problem.

4

2.2 RSA

RSA is the most popular algorithm used in public key cryptography. It was the �rst

algorithm known to be suitable for signing as well as encryption. It's di�culty depends

upon factoring a large number into 2 primes. Following are the steps for RSA.

1. Choose p, q, two prime numbers. (private)

2. Calculate n = pq. (public)

3. Choose an integer e(1 < e < φ(n)) such that (e, φ(n)) = 1. (public)

4. Calculate d ≡ e−1(mod φ(n))

Here pair e, n is the public key of user known to all and d, n is the private key known only

to the user. Now if a message has to be encrypted, �rst it is represented as a number

less than n. Let it be M . Then C ≡ M e(mod n) is the number corresponding to cipher.

For decryption we perfrom M ′ ≡ Cd(mod n). As it can be seen, M ′ ≡ (M e)d(mod n),

and ed ≡ 1(mod φ(n)) meaning that ed = 1 + kφ(n) for some k. So M ′ ≡M1+kφ(n)(mod

n). As by euler's theorm Mφ(n) ≡ 1(mod n). We get M ′ ≡ M(mod n). So this way we

can recover the original message. Note that, a message here can also be encrypted with

private key and decrypted using public key (Used in digital signtaures).

2.2.1 Breaking RSA

Suppose an adversary A wants to get the private key of a user U , what should he/she

do?. Everyone knows the public key of U i.e. pair e, n. Private key of U is pair d, n, now

to know that private key of U , A has to somehow calculate d from knowledge of e and n.

As we de�ned above d ≡ e−1(mod φ(n)). Inverse calculation mod φ(n) is not di�cult (we

can use extended euclidean algorithm), problem lies in calcualting φ(n) itself from n. For

calcualting φ(n), A has to know factors p, q of n. So calculating private key is as di�cult

as factoring a number. As of know there are not any e�ceint algorithms for factoring.

Thats why a RSA private key is safe until a fast factoring algorithm is found or there are

enough computing resources to factor a number by brute force.

2.3 Elliptic Curve Cryptography

In elliptic curve cryptography, we operate on points of a elliptic curve. Here we will

explain elliptic curves only on �eld Zp, where p is a prine number. Every elliptic curve

5

cryptosystem has a curve of the follwing form

y2mod p = (x3 + ax+ b)mod p (2.1)

Ep(a, b) is the set of all points (x, y) where x , y belong to Zp. We operate on all points of

Ep(a, b). Follwing equations de�ne, how to perform addition on two points P = (xp, yp)

and Q = (xq, yq) to a point R = (xr, yr). And also, how to calculate R = 2P from P .

∆ =

(
yq − yp
xq − xp

)
(mod p) (2.2)

xr = ∆2 − xp − xq(mod p) (2.3)

yr = −yp + ∆(xp − xr)(mod p) (2.4)

And for calculating 2P from P

xr =

(
3x2

p + a

2yp

)2

− 2xp(mod p) (2.5)

yr =

(
3x2

p + a

2yp

)2

(xp − xr)− yp(mod p) (2.6)

Now for any elliptic curve cryptosystem, there are some parameters called domain pa-

rameters represented as (q, FR, a, b, G, n, h) where G is some point of feeliptic curve and

n is its order. FR is the feild representation. Every user has a private key npr < n amd

corresponding public key is nprG. Message is represented as a point on elliptic curve(Pm)

and then follwing encryption and decryption steps are performed if A wants to send Pm
in encrypted form. PB is public key of B and nB is private key of B.

Cm = {kG, Pm + kPB} (2.7)

B receives a pair of points P1, P2. To decrypt, he/she does following

Pm′ = P2 − nBP1 = Pm + knBG− nBkG = Pm (2.8)

2.4 Hash Functions

A hash function is mathematical function or method to map data into a small domain

that is used as �ngerprint of data.These �ngerprints are called digest or hash values. This

�ngerprints are coincise represention of larger message(data).Hash function are widely

used to check message integrity and during digital signature. MD-5,SHA-1,SHA-224,SHA-

6

256 and SHA-512 are some most commonly used hash function in applications and various

standards.

A cryptographic hash function should work as a random function while still being

deterministic and computationally feasable. As hash function maps messages to a smaller

domain, then it is possible that two message have same digest.this situation is called

collison. A cryptographic hash function is said to be insecure

• If given a digest,one can easily determine the message that have same digest.

• If hash function have high collison rate, if probability that two message have same

digest is high.

Cryptographic hash properties

• Given h it should be hard to �nd any m such that h = hash(m)

• It should be hard to �nd any 2 input m1 and m2 such that hash(m1) = hash(m2)

• Given an input m1, it should be hard to �nd another input, m2 (not equal to m1)

such that hash(m1) = hash(m2)

Cryptographic hash function are very sensitive to any change in message. Any small

change in message changes the message digest completely.

2.5 Digital Signatures

Digital signatures are used to provide authentication and integrity of a message. Following

are the steps for creating and verifying digital signatures.

1. Hash the message using any standrad hash function.

2. Encrypt the hash using signing person's private key, send the message with en-

crypted hash to receiver.

3. At veri�er end, compute hash of the message, decrypt the encrypted hash using

sender's public key and match it with computed hash.

Here we explain how to ECC for digital signatures by a algorithm called ECDSA. Following

are the steps for ECDSA.

1. Caculate hash of message m, let it be e.

2. Calculate (x, y) = kG, where k is a random integer with 0 < k < n− 1.

7

3. Calculate r ≡ x(mod n), if r = 0 , then go to step 2.

4. Calcualte s ≡ k−1(e+ rdA)(mod n). if s = 0, then go to step 2.

5. Signature is (r, s).

At the veri�er's end, following steps are performed

1. Caculate hash of message m, let it be e.

2. Calculate w = s−1(mos n).

3. Calcualte u1 = ew(mod n).

4. Calculate u2 = rw(mod n).

5. Calculate (x′, y′) = u1G+ u2QA.

6. Verify r = x′(mod n).

2.6 Performance Analysis of various Technologies

We now present the results of the test runs for RSA, ECC and SHA respectively. We used

standard libraries for the algorithms and the code was run on Intel-DualCore(2.0 GHz)

machines with 2Gb RAM

2.6.1 RSA

The RSA algorithm was found to have almost linear variation in time with �le size during

both encryption and decryption. The results of the experiments are given below. The

library used was GMP. Interestingly decryption time was found to be greater than the

decryption time

2.6.2 ECC

The ECC algorithm was also found to have almost linear variation in time with �le

size during both encryption and decryption. The results of the experiments are given

below. The library used was openSSL. Encryption time was found to be greater than the

decryption time as in case of RSA.

8

Figure 2.1: RSA Encryption performance

Figure 2.2: RSA Decryption performance

2.6.3 Hash Functions(SHA)

Hash functions were coded and analyzed the performance of SHA-2 functions viz. SHA224,

SHA256, SHA384, SHA512. The performance of SHA224 was found to be nearly same as

that of SHA256, similar was the case with SHA384 and SHA512.

9

Figure 2.3: ECC performance

Figure 2.4: ECC performance

2.7 Technologies and their comparison

Past has shown that the computing technology has been developing at an exponential

pace over the last 30 years since �rst microchips appeared on the horizon. Since then the

10

technology has not looked back and the computers have been growing smaller and faster.

If we assume that the past trend continues to grow at almost the past pace we should be

in a position to predict when the next change of key pairs should take place. Precisely

what we intend to do in this section. Before we begin it would be bene�cial to state the

assumptions on which all our extrapolations are based.

It should be clear that the size of a key must be tied to the value of the data being

protected by the key and also tied to the expected lifetime of that data. It makes no

sense for an adversary to spend (say) $10 million breaking a key if the recovering key will

only be worth (net) $10 thousand. But as the certi�cates which we target to replace by

our system will naturally be worth more than that we would assume that there would

be enough incentive for one to accrue enough computing power and break the code. But

since there are technical di�culties we would assume as a standard that a $10 million

machine would su�ce to represent the standard code breaking computation device that

could possibly be used by our adversary and base our calculations on that.

All extrapolations that follow shall be based upon extrapolating speed and mem-

ory enhancements of existing hardware and improvements in existing algorithms. While

breakthroughs in both algorithm and hardware technology may occur, such events are

inherently unpredictable and we do not consider them.

2.7.1 RSA

RSA cryptanalysis is based on factorizing numbers. Number Field Sieve(NFS) algorithm

is the recent one and it is highly in use for prime factorization. On the basis of the

heuristic complexity formula, time required to factor a prime number(N) using NFS is :

L(N) = e((c+o(1))((logN)
1
3 (loglogN)

2
3)) (2.9)

Once we have a benchmark for a particular N, Then it can predict the di�culty of factoring

a larger number M relative to the di�culty of factoring N by computing L(M)/L(N) to get

a time estimate. As a basis of comparison we could use data from the break of RSA-512.

This e�ort required a total of 8400 MIPS-Years, represented by about 300 PCs averaging

400 MHz and with at least 64 Mbytes of RAM, running for 2 months, and 10 days and

2.3 Gbytes of memory on a Cray C90 to solve the matrix. Using following data we can

predict how much harder it is to factor a number of 576, 640, 704, 768, 1024 or 2048 bits:

L(2576)/L(2512) ∼ 10.9

L(2640)/L(2512) ∼ 101

L(2704)/L(2512) ∼ 835

L(2768)/L(2512) ∼ 6 x 103

11

L(21024)/L(2512) ∼ 7 x 106

L(22048)/L(2512) ∼ 9 x 1015

Thus,

1. 576 bits will take 10.9 times as long as RSA-512.

2. 768 bits will take 6100 times as long as RSA-512.

3. 1024 bits will take 7 million times as long as RSA-512.

Figure 2.5: RSA Factoring Records Since 1970

If the computing power doubles every year it can be inferred from the above graph that

the year Y in which D bit key would be broken is given by

Y = 13.24D
1
3 + 1928.6 (2.10)

The correlation coe�cient is about 0.955. According to this formula, a general 768-

bit number (D=231) will be factored by the year 2010, and a general 1024-bit number

(D=309) by the year 2018.

2.7.2 ECC

The best known attack against an Elliptic Curve Discrete Log system is based upon a

collision attack and the birthday paradox. One expects that after computing approxi-

mately sqrt(order of the curve) points, that one can �nd two points that have equivalent

algebraic relationship. From this collision, the key can be found. Thus, the best known

attack is purely exponential in the size of the key. The time complexity is:

T (k) =

√
π

2
∗ 2

k
2 (2.11)

where k is the bitsize of the order of the basepoint.

In 1996, a special purpose hardware design was proposed that for $10 million could break

a 155-bit Elliptic Curve key over a 120-bit sub-�eld in 32 days. The time to do a k-bit

12

Elliptic Curve is then 32 ∗
√

2k−120 days with one of these machines. Today same cost

machine that is 50 times faster can break the given key(155 bit) in about 12 hours rather

than 32 days.

2.7.3 RSA and ECC equivalent key size

Having done individual analysis of ECC and RSA we now present the relative strengths

of same bit keys of the two technologies in the following table assuming that $10 million

is available for computer hardware at all points of time.

ECC RSA
112 430
160 760
192 1020
256 1620

Table 2.1: Comparitive key-lengths(no fo bits) of RSA and ECC

2.8 Manaul System for Degree management at IIT Delhi

An institute like IIT Delhi issues a lot of degrees every year. Managing them in such a

manner that no fraudulent/incorrect degree is generated, requires a whole lot of e�ort. In

manual system, IITD tries to ensure these things by distribution of trust and rigorousness

of the method followed to generate the degrees. In the coming text, we will explain the

manual system of management of degrees at IITD, so that we can build the digital system

as close as well as at least that much secure.

2.8.1 Getting the Passing list

IIT Delhi maintains a database of courses undertaken by all the students and the grades

they have obtained in all these courses. Each year at the time of degree generation, UG

section receives a list of students which have completed degree requirements that year

and are eligible for getting degree that year. This list is passed to the chairman of grades

section for veri�cation.

2.8.2 Veri�cation and Final List

Chairman veri�es the above generated list manually by grade and course database of the

students. After veri�cation, this list is uploaded on standalone computer (used only for

13

publishing the degrees). Then again to add another layer of trust, this list is veri�ed by

some senior o�cials of IIT Delhi, and by common consent this list is approved.

2.8.3 Generating the degrees

On the standalone computer on which the list which uploaded in step 2, now the process

of typing every degree manually is started. Each degree is typed manually by reference

of list that was generated in 2nd step. These set of degrees then are veri�ed by UGS

sta� manually to remove any minor discrepancy that may have arrived during typing of

degrees.

2.8.4 Signing

After generation of authentic list and set of degrees in 3rd step, set of degrees along

with the list is sent to Registrar for signing. Registrar signs every degree after verifying

with the list. Then the same set of degrees and list is passed to Director. Director also

signs every degree after verifying it with list and also Registrar Signature. Same signing

process is repeated for Chairman, Board of Governance also.

2.8.5 Publishing

At this stage, all the degrees have been prepared, signed and are ready to be released.

Now every degree is distributed to corresponding students. To maintain the con�dential-

ity, every degree is either handed out to the corresponding student or a person who has

a letter signed by student to take his degree.

As we can see that in the manual system, IITD is ensuring that no fraudulent/faulty

data is generated by exhaustive veri�cation of the generated degree data several times.

Also, they are ensuring that even if a fraudulent degree is generated then they can catch

the responsible person for generating that degree.

2.8.6 Veri�cation

The last but probably the most important part of IITD degree management is the veri�-

cation. Veri�cation of degrees is really important because an employer/university cannot

trust every degree certi�cate that just looks like a degree certi�cate issued by IITD. So

what they do is that after receiving the degree from student, they send it to IITD for

14

veri�cation. The veri�cation is again done manually, checking all the details of degree

against the grades data of the student.

As numbers of degrees issued by IITD are increasing every year, the numbers of requests

they are going to receive for degree veri�cation are also going to increase at the same

rate. It is also a worthy fact that you cannot give a job of verifying the degrees to an

non-authentic person, the person should be an authentic person of IITD. In near future,

it will require more time and more man-power if IITD has to serve all the veri�cation

requests. That is the main reason that the electronic system is necessary and should be

considered for total replacement of manual system rather than just a supporting system.

15

Chapter 3
Initial Design and Problems

Cryptography is a �eld where �nding a new method for encryption and decryption is

very di�cult and may take many years of many researchers.The complexity lies in the

mathematical functions for cryptology having strong requirements. So in this paper, we

will present the design which we have thought of, to work with existing technologies but

handling most of the drawbacks of them.

Now lets delve into the design of the system for our speci�c application of issuing and

managing degree certi�cates in IIT. The application is required to issue degree certi�cates

for IIT students and the concerned authorities will digitally sign the document. The issued

certi�cates will be used by clients like employers from various organisations to verify the

GPA of IIT students. They will typically use Public Key Infrastructure (PKI) to verify

the digitally signed document provided by IIT for that particular student.

The original design proposed for the problem had many drawbacks and it took several

iterations to modify the design further. Here, we will go step by step by �rst discussing,

in brief, the original design and its drawbacks, then the modi�cations leading to the

current design �nally. This approach will helpfully develop a good thinking process and

will elaborate the problems and issues speci�cally.

3.1 Phase I

Initially we proposed a design to keep all degree documents in some format like jpeg or

pdf and use re-encryption for multiple signatures on technology up-gradation or change.

Here are the key features.

All documents will be signed by the current concerned authority e.g. director, registrar

etc. and maintained on our internal machines which would be then accessed by web-server

accessed by our clients e.g. potential employers. The design can be described into three

parts:

16

1. Managing documents securely to avoid single point of failure in case of data theft

or loss.

2. Signing and veri�cation of the documents.

3. Re-encryption after some time to avoid breaking of keys because of increasing com-

putation power and better algorithmic approach with time.

Let's discuss each of the points brie�y as to �nd out what are the main considerations for

each point:

3.1.1 Managing documents

All the documents on the server and machine have to be maintained securely, for that we

take following steps:

1. All documents will be stored on internal duplicate machines so that an outsider

can't hack to feed duplicate documents.

2. For uploading a document (in unsigned form also), we will use biometric access to

the machines.

3. All access to signed documents (read-only) will be through a web server which will

use login information from the required authorities.

3.1.2 Signing and veri�cation

The degree issuing person will get his private-public key pair from a certifying authority.

The signed degree will be posted on the IIT side with a unique ID given to the document

so that the student can give the corresponding URL to his employer or anyone who wants

to verify the document. The veri�er will use PKI to verify the authentication of the

signing person. If there are multiple people signing the document, veri�cation can be

done serially.

3.1.3 Re-encryption

All keys become insecure after a period of time because of the increase in computation

power and improvements in algorithms to break down the public key to get corresponding

private key, so re-encryption is required:

17

1. Each signed document will have a time-stamp that it is signed at this time so that

during re-encryption, you can't create fake document stating that it was also created

earlier.

2. After validation date expires, the authority will sign the signed document without

decryption i.e. it will add extra layer with higher bits which will enclose the earlier

smaller key. It will say that these documents are valid further. So the veri�cation

is complete only with both the signatures and with the time-stamp of the issuing

date.

3. For re-encryption, we will use API plug-in which can be used to completely change

the algorithm for encryption, so even if RSA fails tomorrow, we can use another

algorithm and plug-in the corresponding API and re-encrypt.

This design was able to handle many of the issues like handling the issue of re-

encryption but there were some serious drawbacks like:

• Digital Time-stamping has to be outsourced to some external certifying agency

which may or may not exist later. So we want only standard permanent things to

be used which will exist forever.

• Cost of re-encryption operation would be large after a while when total number

of documents issued by system will be large because every document has to be

over-encrypted at each re-encryption and with each over-encryption, size of each

document will increase. So scalability concerns were there.

• Issue of hand-o� was not solved because when one director changes, the new director

can have his private key in future (when the ex-director's public key would be

broken) and then can possible fake documents in name of previous director.

• Existence of document format of documents like jpeg or pdf may not be relied upon

i.e. these formats may not exist after a period.

• Deletion or invalidation of documents was not taken care of.

So with all these issues, it is not feasible to make system secure which will manage

documents of utter importance. This led to certain changes in design and each iteration

has something important to say.

18

3.2 Phase II

Instead of handling multiple documents for re-encryption, a single master document is

proposed which will keep information of all documents in it and it will be simple text

document with ASCII characters maintaining all the information which can be later used

by our server program to create proper degree document on the �y and show it to the

client. Now lets discuss the design in detail as this will lay the foundation for our �nal

design.

3.2.1 Master Document

The master document keeps the records for all the documents issued by the organisation

in a tabular form with the corresponding signatures of issuing authorities. Each record

will keep the basic information of the student with the signature of his contemporary

authority like:

- Student Name

- Entry Number

- GPA records

- Department and Batch

- Unique ID

After signing the individual records, the authority will sign the whole batch of degree

documents issued at that time. Because degrees are issued in batches only once a year,

the whole batch signing by the same issuing authority provides extra layer of security.

Now, there will be no case of single degree addition (probably fake) to the master docu-

ment. The master document will be signed, other than individual record signing, by the

current director of the organisation approving its validity.

3.2.2 Client Requests

Now whenever a client requests for a student's degree certi�cate, the server program will

access the data from the master document on internal machines and generate a repre-

sentable degree document with all the required information and digital signature of the

concerned authority who issued that record (this key may or may not be broken today)

and then the server program will use IIT's private key to sign the document which will be

in accordance with the current technology and will be renewed by CA whenever the need

is there. Now IIT stamped certi�cate (i.e. signed using IIT's private key) will be passed

19

on to the client using some secured protocol which will ensure secured transmission of

document to client over insecure network.

3.2.3 Degrees Addition

Whenever a new batch of degrees are added to the master document, they are �rst indi-

vidually signed record by record by the concerned authorities and then the whole batch

of records is hashed and signed by the authorities again. This batch is now appended into

the master document and again signed by the current director of the institution approving

the new batch of degrees released. Now we have one automatic constraint here that only

current authority can issue new documents and hence the added documents' authority

should match with the current authority.

3.2.4 Re-encryption

Once we know that the present key size or the technology has become vulnerable, we need

to re-encrypt the whole master document with the new technology.

1. One way to �nd this re-encryption time is to �rst calculate the expected time of cur-

rent technology failure using empirical predictions, as we'll discuss in a later section,

and re-encrypt the document in the middle of that time period. So, for example,if

we're encrypting in 2020 and predicted time of the failure of this technology is 2040,

i.e. 20 years span, then we will re-encrypt the whole document in 2030.

2. Create the document hash again with the current technology, i.e. the hash size can

be di�erent from the earlier one and then sign the document using the new keys.

Over-encrypt the document with the new hash and new signature.

3. The document information as such won't change during re-encryption, just the hash

and the signature of the document are added onto the document. So, it should be

checked while re-encryption that the information in the document is preserved.

4. As we are re-encrypting before the technology is broken, so nobody can create fake

records at the time of re-encryption.

3.2.5 Hand-O�

Another change in master document occurs when the authorities change, i.e. director of

the institution changes. In that case, only the main signature on the master document

20

will change. The full document is hashed again and digitally signed with the key of new

director but here also the information in the document is preserved. Just the concerned

authority has changed, so encrypting the already existing document with new director's

private key will su�ce.

3.2.6 Document Invalidation/Deletion

Now there may be case where we want to invalidate some record or delete some record.

Here, we don't want to play with the master documents because it will change all the

hashes created and also creates a possibility of interference by the current director into the

documents issued by the previous directors. So, we will keep a separate document similar

to master document one, which will keep the invalidated or deleted records. Hence, there

will be two documents maintained, one the master document containing information for

all records issued by the organisation and the other containing the information for the

invalidated records. So at the time of a query, we'll �rst look into the invalidated records

document if the asked record has been invalidated and if yes, then we can simply provide

the information to client else we'll �nd the information from the master document and

create document to pass on to the client as usual.

3.2.7 Mail and Log Events

Also we will register any changes to master document as events and mail these events to

certain multiple authorities so that any mishandling with the document can be traced.

We can keep a hash of the document in multiple places and any change in the document

will lead to change in the hash and then this hash can be used so as to ensure the integrity

of the document.

We can note in this design that re-encryption and hand-o� is much easier, convenient

and robust than the previous design. Re-encryption requires just a hash creation and

then encryption to get the digital signature. Just two operations of constant time make

it really simple and fast. Similarly, hand-o� is also very simple. Also since we keep the

data in text format only, it is never going to die. This is the simplest form of data to

keep for long periods with just ASCII characters. This feature of this design makes it far

convenient and robust which can be scaled to any number of documents.

21

Chapter 4
Final Design

We have tried to make digital system for degree management as close as possible to the

currents manual system. But digital system does not enjoy the same privileges as manual

system. In manual system if you ensure that no fraudulent degree was not generated

initially then you pretty much done. And manual system also enjoys the validity of

manual signatures �or very long periods but digital system signature become invalid after

sometime. In what follows, we explain the �nal design of our system in detail. The whole

design has below mentioned as major components.

4.1 List upload

In the same manner as in the manual system, we upload the list of passing students and

their details to the document server. This list is again uploaded by Chairman, Grades

section as done in manual system. It is responsibility of the Chairman that this list is

correct in all the manners.

4.2 Generating Master Document

After getting the student details in the 1st step, next step is to generate the corresponding

Master Document in XML. All the details of student may not be ASCII text format,

some of the data may be regional language name of student, image of student etc. As

we promised that we would keep all the data in ASCII text format, we use UTF-8 and

Base-64 encoding to store such data along with their encoding information. At the time

of access of all this information, we have to decode all this information to their original

format to generate a formatted degree certi�cate. Our �nal master document looks like

a table as shown in the �gure.

22

Figure 4.1: Master Document

4.3 Signing

After generating the master document, now its the turn of all signing authorities that

they sign in same hierarchical order as done in manual system. As a resemblance to the

manual system, each signing authority has to verify the master document and sign of

the previous signing authority. So we have made our system constrained in such a way

that it will only allow signing in the same order as in the manual system. When any

authority signs the document, we publish the information and now the higher authority

in the hierarchy is allowed to sign the master document after verifying the whole data

and sign of previous authority. We also publish the public key of every signing authority

after each signing.

23

Figure 4.2: Generation and Signing of Master Document

4.4 ID generation

After every signing authority has signed the document, now we generate the student

IDs which are used to maintain the con�dentiality of the degree documents. We provide

every student with some ID which will be unique for every student and will point to the

information of corresponding student. This ID should be non-guessable and a random

looking string. For generating this ID, we follow a very simple process. Foe each student,

we append a randomly generated 64-Bit string to entry number of the student to get

a complex unique string for every student. Then we hash this string using MD-5 hash

function. This hash is the ID by which student can access his/her degree.

4.5 On-�y generation

In this component, we generate the degree document on the �y on the basis of ID provided

by student. For every ID, we have the corresponding entry number and year in our

database which was populated after publishing the Master Document. We get entry

number and year from database, and then we get the Master Document for that speci�c

year and verify it with public keys of authorities and system generated public keys. If

veri�cation of the Master Document turns out to be �ne, we make a hash of the master

document on the basis of entry number and we get the information of student from that

hash by using the entry number we got earlier. Now this information is used to generate

a formatted degree document on the �y. We sign it with the IITD private keys and send

this degree along with signature and public key certi�cate of IITD to client for veri�cation

purposes.

24

Figure 4.3: On-�y generation and Client Side Veri�cation

4.6 Veri�cation

Client is provided with degree document, signature data and public key certi�cate of

IITD. First he veri�es the public key certi�cate of IITD using PKI scheme and also the

MS windows trusted root store. Then he veri�es the integrity of the degree document

which he is accessing by using already veri�ed IITD public key certi�cate and the signature

data we provided him at the time of On-�y generation.

4.7 Resigning

In the manual system, we are pretty much done after the signing part because manual

signatures are valid forever and their validity never gets expired. But we are not that

fortunate in case of digital signatures; digital signatures do not enjoy the luxury of being

valid forever. They become invalid after some years of their generation. So we have to

re-sign the document to ensure the integrity of document. For our application and many

other applications of this kind, the record needs to be signed for years, decades and may

be centuries. So for the purpose, we will resign the document with a fresh upgraded key

before its original digital signature is vulnerable.

4.7.1 Lock

At the time of re-signing the documents, which would be every year whenever we are

changing our database, the document would be signed by a "RESIGNING LOCK" public

key certi�cate which will be used to sign the previous year documents with its private key

and thereafter, this private key will be destroyed. This is analogous to lock something

and then throwing away the key so that no one can ever change this data, only it can be

25

read and veri�ed. We also timestamp this system generated public/private key pair so

that no problem of forgery of this key arises.

26

Chapter 5
Implementation

We have implemented the prototype for IIT degree management system. Our main con-

cern was to generate degree document on-�y and make client able to verify it without

much hassle. We have used Perl/CGI for extracting the student information from the

master document, generating a nicely formatted degree certi�cate and signing it. On

the client side we have used Java applet technology to verify the degree with its corre-

sponding signature. There are 4 main components of the whole prototype that we have

implemented; now we will look at all these components in detail.

5.1 Master Document Management

The generation of the master document involves uploading a schema which de�nes the

�elds in each entry of the master document as well as their corresponding encoding. Both

of things are needed for successfully decoding the document at later point of time. A

variable number of entries can be added to the schema at this stage, which is taking care

of the fact that any arbitrary document can have any number of �elds and any type of

encoding for them. Next stage involves uploading a data �le which contains the student

particulars in CSV format, one row per student. Once the �le is successfully uploaded,

the data in the �le is displayed in tabular form and user is provided with an option to

generate the master document in XML format. Once the document has been successfully

generated, the other concerned authorities can login into the system for viewing the

master document and signing it. They can sign only when the authority which is lower

in hierarchy has signed. The singing algorithm that we have used is RSA with SHA1,

standard implementation from the CPAN PERL package repository has been used. Once

all the authorities have signed the document the document is published. The mechanism

of publication is simple. As mentioned in the chapter on design, for each entry in the

master document a non guessable id is generated and stored in the database. After all

27

the signings, we do the locking. Locking is done by generating a private key inside the

system and then using them to sign all the existing documents from starting till the last

year, and destroy after that. When everything is completed the public key can be time

stamped to resolve to testify its existence at the time of signing.

5.2 Private keys

We got 4 pairs of experimental keys from (n)code solutions which is the Indian govt.

certi�ed Certi�cate Authority. We were provided these keys in the native private key

format called .pfx format. For our purpose, we used openssl utilities to convert these into

.pem format and also setting pass phrase on these private keys. Then we used standard

Perl libraries to use these .pem �les for signing.

5.3 On-�y generation

The students are given separate ids to them at time of convocation, in the form of a link

of the form

https://xxx.xxx.xxx/getdegree.cgi?Student_ID=xxxxxxxxxxxxxxxxxxxxxxxx

Here this ID is the same ID that we generated at the time of publishing of Master Docu-

ment. When an employer/university supplies the server with this link, we perform below

mentioned steps to generate a nicely formatted and sign it.

(i). We take this ID by POST method of CGI and we �nd out Entry Number and

Year corresponding to this ID by querying the database that we populated with such IDs

at the time of publishing of Master Document.

(ii). Every year will be having its separate master document. We will verify the validity

of this document using the stored public certi�cates of all the signing authorities and

destroyed keys.

(iii). After veri�cation (If it turns out to be �ne), we will load whole of the XML tree

of that year into out program using Perl modules and generate an Entry Number based

hash by the parsing the XML Master Document. Then we get all the information cor-

responding to the entry number obtained in 1st step. Then we will create a jpeg/html

document by the information obtained. We will sign it with private key IITD assigned to

the current root. We send out the generated degree document, signature data and IITD

public key certi�cate to client.

28

Figure 5.1: A sample degree document generated on-�y

5.4 Veri�cation on client side

Degree veri�cation on client side may be the most useful component of our system. It

gives client an extra assurance that degree document that he is accessing is authentic.

For veri�cation purpose, we have used the PKI scheme. In this part of design where we

implement the client side veri�cation modules for verifying the degree document gener-

ated on-�y and signed with private key of IITD.

On the client side, client will get following 3 �les:

(i). Public Key certi�cate of IITD: This is the Public key certi�cate corresponding to

private key that is used to sign the degree document on-�y.

(ii). Student degree �le: This �le contains nicely formatted student degree data.

(iii). Signature data �le: This �le contains the signature data that is obtained during

on-�y signing of Student degree �le by private key of IITD.

29

Client side veri�cation has following two stages:

5.4.1 IITD Public Key Veri�cation

A public key (or identity) certi�cate is a binding of a public key to an identity, which is

digitally signed by the private key of another entity, often called a Certi�cation Author-

ity (CA). Users of public key applications and systems must be con�dent that a signer's

public key is genuine, i.e., that the associated private key is owned by the subject. Public

key certi�cates are used to establish this trust.

If someone wants to verify the public key of subject, he must have the public key of CA

that signed the subject's public key certi�cate. If the user does not have a trusted copy

of the public key of the CA that signed the subject public key certi�cate, then another

public key certi�cate vouching for the signing CA is required. This logic can be applied

recursively, until a chain of certi�cates (or a certi�cation path) is discovered from a trust

anchor or a root CA to the target subject (commonly referred to as the end-entity). The

root CA is usually speci�ed by a certi�cate issued to a CA that the user directly trusts. To

verify the IITD public certi�cate at clients end, we supplies the complete certi�cate chain

(certi�cates list containing certi�cates subject public certi�cate, Intermediary authoritys

public certi�cates and root CA public certi�cate) and using the Window Trusted Root

store, we veri�es the supplied certi�cate chain. If certi�cate chain got veri�ed then IITD

public certi�cate that client is using is a genuine IITD certi�cate otherwise not.

For chain veri�cation functionality, we have used java standard veri�cation function pro-

vided for PKI scheme.

30

For our example, initially public certifciate of root CA corresponding to certi�cate

chain of the IITD certi�cate is not installed in MS windows trusted root store, so It

refuses to verify the chain. Thats why its is showing that Not able to verify following

Certi�cate Chain.

Figure 5.2: Certifciate Chain not veri�ed by MS windows trusted root store

31

Now we installed the public certi�cate of root CA of corresponding certi�cate chain

in MS windows trusted root store and now certi�cate chain is veri�ed. Thats why it

shows Certi�cate Chain is OK.

Figure 5.3: Certi�cate Chain is veri�ed by MS windows trusted root store

5.4.2 Student Degree Veri�cation

On hitting the verify button, Student Degree data �le that client will be seeing in browser

is veri�ed using the signature data and automatically downloaded IITD public key cer-

32

ti�cate. If client wants to use self downloaded IITD public certi�cate instead of using

automatically downloaded IITD certi�cate then he can browse to that certi�cate and it

will be used for veri�cation.We have provided client with an option of verifying the degree,

by default it veri�es the degree certi�cate which it automatically downloads from IITD

server. User can also input self downloaded degree documemnt and can verify it.

.

Figure 5.4: Degree Document Veri�cation

33

As we can see in the following �gure that degree is not veri�ed if we try to change the

signature value.

Figure 5.5: Degree Document Veri�cation

34

Chapter 6
Issues and Assumptions

During the whole process of study of the technologies used for managing secure documents

over long periods and also during the design of system, we came across some issues which

will be inherent in any such system which tries to manage these documents in somewhat

similar ways as we do. Some of these issues may be speci�c to IITD degree management

system while some are general issues which will be inherent in any such system. Now we

are going to explore these issues in detail.

6.1 Document Format

We do not have the privilege of storing these documents in any fancy format like PDF,

jpeg, MS word etc. The reason is that we cannot be sure about the life of these formats. It

is highly probable that these formats will become obsolete after some years. For example,

Microsoft has already replaced .doc format with .docx. So we will have to store all the

information in plain text format and at the time of access, we can generate any fancy

format document which is being globally used at that point of time. This issue is not

IITD degree management speci�c, it is a very general issue that will be found in any

system that manages documents over long periods.

6.2 Long enough stay/ Consecutive Authority Collu-

sion

This problem arises when some signing authority occupies that position for long enough

time. Lets say current authority is C who has occupied this position for long enough

period. Lets say previous authority was P. As in this scenario, C has stayed long enough

to break the private key of P. Now C has access to all the private keys which have been

35

used so far because he knows all his private keys and he has private key of P and also

the private keys of all the authorities before P. So now C can create any document from

scratch on behalf of P and all the authorities before P.

In the 2nd scenario, it is possible that C colludes with previous authority P to create

any fraudulent document on behalf of authorities who occupied that position before P.It

is a very improbable event though, as at any time we have 3 signing authorities and

probability of all 3 staying for long time and colluding with 3 previous signing authorities

looks very small. So we can assume that it will not happen.

6.3 Corrupted Root

There are some problems in managing the security of server which is managing the Master

Document and also of server which is serving degree requests on the �y. The problem

which is of most concern is that we don't have the luxury of blindly trusting the root

of these servers. Root of the master document server can do anything with the master

document as he can create a master document from the scratch with his own set of keys

and that way front end server will keep serving the fraudulent degree documents without

knowing the fact that master document itself has been compromised. Root of the front end

server can also serve any fraudulent degree document without even contacting the master

document server and even without extracting any information from master document. So

either we have to tust these roots or we have to use special hardware boxes on which even

root does not have full control.

6.4 Con�dentiality

The documents which we are managing, our main concern is integrity of the document

and we are not much concerned about the con�dentiality of the document. But in some

cases like degree certi�cates, con�dentiality is a signi�cant issue and we cannot ignore it.

So we keep provide each student an ID which will map to his degree data. Only student

will know his/her ID, and he/she can pass it to the employer/university. This ID has to

be permanent for enough time and an option to change it on student's request can be

provided.

6.5 Client Side Signing

Any signing anuthority will not want to upload their private keys to the signing server

because it may led to stealing of their private key. So rather than signing takng place on

36

master document server, signing authority would like to sign master document on client

side. Signing on client side will remove the risk of private key being compromised. So

signing authority should verify the master document (verify signature of authority which

is lower in hierachy) and then download the document from master document server and

then upload it again on master document server after signing it on their side.

37

Chapter 7
Conclusion

Secure Document Management is a widely used protocol. Although it has obvious solution

for short term documents, the solution for long term documents is not that obvious and

it requires a lot of e�ort to fully conceptualize and realize such a system. We have tried

to conceptualize and realize a prototype of such a system. It reduces a whole lot of e�ort

which is needed to verify the degree certi�cates of IITD. In this system, we have not

tried to use any new idea in cryptographic sense because it is too di�cult to come with

a new encryption scheme. We are using the usual asymmetric key encryption techniques

to build a secure system with the help of techniques like locking, re-signing and time

stamping. Most of the time, the stress is only laid on the integrity part of the document

and people tend to forget the importance of storage format, we have also taken that into

account. Although it is sure that if someone builds a quantum computer or discovers a

faster algorithm to factor the numbers, then the whole infrastructure of PKI and RSA will

become a failure along with our system. In the end, we can conclude that if computing

infrastructure continues to increase at the same rate as it is today, our system will keep

working securely for years to come.

38

Appendix A
Code Documentation for on-�y generation

In this section, we are mainly dealing with the main degree generating script gerde-

gree.cgi. This �le does all the degree generation and signing operations with the help of

2 Perl packages. Brief details of all these 3 �les are provided below:

A.1 Signature.pm

This Perl package contains the Perl functions for signing, veri�cation, reading private key

from .pem �le and decrypting the .pem �le. Input and output parameters of these are

self understood and can be understood by looking at de�nition of these functions.

A.2 VerifyMasterDoc.pm

This �le contains 1 important function which can be used to verify the signatures of the

Master Document and it veri�es the master document on the basis of access level you

want to verify.

A.3 getdegree.cgi

This script is responsible for generating and showing signed degree to the user. It ex-

tracts the student ID from the link user has provided. Then it contacts the database

for corresponding entry number and year. The master document corresponding to that

year is veri�ed using the function in VerifyMasterDoc.pm. Then a hash is generated

by XML document, Entry Number of the student being the key. Then corresponding to

the information obtained by this hash, we generate the HTML degree. And then HTML

39

degree is signed using IIT private key (using the function in Signature.pm) and then

degree, signature and IIT public certi�cate are send to client for veri�cation.

40

Appendix B
Code Documentation for Client Side

Veri�cation

JAVA provides Applet Technology to implement functionality on client side of web ser-

vices. Applet technology is widely used and is a great success. So we also have used the

same to provide client side veri�cation of degree documents.

1. sp_sign_verifcation_applet.java

2. convert.java

3. certi�cate_read.java

4. certi�cate_validate.java

5. �leVeri�cationFrame.java

6. certi�cateChainFrame.java

7. sign_verify.java

8. windowVPanel.java

9. WindowUtilities.java

10. compile.bat

Above code �les will be discussed in detail below:

41

B.1 sp_sign_verifcation_applet.java

This �le is the main and starting point of whole code. This class de�nes a applet that

shows "Verify Signature" button on the web page. it also initializes two Frames titled

"Certi�cate Chain" and "Signature Veri�cation" using classes certi�cateChainFrame and

�leVeri�cationFrame respectively. Initially both Frames Certi�cate Chain and Signature

Veri�cation are invisible but when we press Verify Signature button on webpage Signature

Veri�cation frame becomes visible. Frame titled Certi�cate Chain becomes visible when

Show IITD Certi�cate(available on frame, Signature Veri�cation frame) button is pressed.

In this �le, actions of various buttons lying on Signature Veri�cation and Certi�cate Chain

frames are also de�ned. For more technical detail, see the comments in �le.

B.2 convert.java

This class contains methods to convert one data type to another datatype. Following are

the main conversion methods de�ned in this class:

1. bytesToHex: It is used to convert byte array to hex string.

2. hexToBytes: It is used to convert hex string to byte array.

3. BytesToBase64: It is used to convert byte array to Base64 encoded string.

4. Base64ToBytes: It is used to convert Base64 encoded string to byte array.

B.3 certi�cate_read.java

This �le contains class to read public certi�cates from server and forms a certi�cate chain

(JAVA CertPath Object) containing subject public certi�cate, intermediary CA public

certi�cate and root CA public certi�cate. Order of arguments passed to constructor

method certi�cate_read is very important. First argument must be name of subject�s

Public Certi�cate �le name (i.e. IITD public certi�cate �le name), second argument

must be intermediary CA public certi�cate �le name (i.e. (n)Code public certi�cate �le

name) and third argument must be Root CA public certi�cate �le name (i.e. CCA public

certi�cate). Using above passed certi�cate, if forms the certi�cate chain (CertPath object)

which is stored as a certi�cate_read class variable named cp which will be used later

for veri�cation.

42

B.4 certi�cate_validate.java

This �le de�nes class to verify a provided certi�cate chain (CertPath Object) using Root

CA public certi�cates installed in MS windows Trusted Root Store. JAVA's SUNMSCAPI

provider is used to access MS windows Trusted Root Store. SUNMSCAPI provides tuto-

rial is available on following link:

http://java.sun.com/javase/6/docs/technotes/guides/security/SunProviders.html#SunMSCAPI

Reader also must go through following tutorial to understand java crypto API.

http://java.sun.com/javase/6/docs/technotes/guides/security/certpath/CertPathProgGuide.html

Certi�cate chain (CertPath Object) generated using certi�cate_read class and stored in its

variable named cp is passed to certi�cate_validate class method certi�cate_valid and re-

sult of veri�cation is stored as CertPathValidatorResult Object cpvResult(variable name).

B.5 �leVeri�cationFrame.java

This �le contains code that initializes a Frame which is used for Degree �le veri�cation.

It is the frame with title "Signature Veri�cation". Code was generated using Netbeans

Form generator. Function of various components on this form is described below:

B.5.1 Show IITD Certi�cate Button

This button makes frame titled Certi�cate Chain visible. It also calls certi�cate_valid

method of class certi�cate_validate to verify the certi�cate chain.

B.5.2 Public Certi�cate Browse Button

If user wants to use self downloaded IITD public certi�cate instead of using automatically

downloaded IITD public certi�cate for degree �le veri�cation. Then using this button he

can browse for his self downloaded IITD certi�cate and then browsed IITD certi�cate will

be used for veri�cation.

B.5.3 HTML Degree File Browse Button

If user saved the Degree �le and corresponding signature value and at later time he wants

to verify that degree �le. In that case, user can browse to save degree document using

this button.

43

B.5.4 Degree �le signature

It shows the degree �le signature value in hex string format. This signature value is used

to verify the degree �le.

B.5.5 Verify Button

This button veri�es the signature on Degree �le. Automatically downloaded IITD public

certi�cate will be used if user did not supply self downloaded certi�cate.

B.6 certi�cateChainFrame.java

This �le's code initializes a Frame with title Certi�cate Chain that shows the public

certi�cates in certi�cate chain (read from server) and shows various �elds and their cor-

responding values of a selected public certi�cate. Also shows whether or not certi�cate

chain got veri�ed using MS windows Trusted Root store.

B.6.1 Chain Veri�cation Result Panel

This panel shows the result of veri�cation of certi�cate chain.

B.6.2 Certi�cate Chain

This panel shows the tree whose root node is correspond to Root CA of certi�cate

chain(stored as certi�cate_read object variablecp) , node at second level is correspond to

intermediary CA and leaf node is correspond to subject certi�cate.

B.6.3 Certi�cate Fields

It shows tree correspond to the various �elds of certi�cate selected in Certi�cate Chain

panel.

B.6.4 Field Value

It shows the value of �eld selected in certi�cate Fields panel.

B.7 sign_verify.java

This class provides methods to sign and verify signatures. There are two versions of

signing and verifying, one where data is passed as String and another data is passed as

44

File.

B.7.1 signFile

This method signs data passed as �le using provided private key.

B.7.2 verifyFileSignature

This method veri�es signature using provided public key and signature data as string

where data is passed as �le.

B.7.3 VerifyFileStreamSignature

Veri�es signature using signature data and public key certi�cate and data �le is chosen

depending on condition.

B.7.4 signString

This function signs the data passed as string with provided private key.

B.7.5 verifyStringSignature

Veri�es signature on data passed in String format.

B.8 windowVPanel.java

It de�nes the structure of top panel (Chain Veri�cation Result) of frame Certi�cate Chain.

Code for this was generated using Netbeans Frame generator.

B.9 WindowUtilities.java

This class provides few utilities that simplify using windows in Swing. It has following

methods available:

B.9.1 setNativeLookAndFeel()

Tell system to use native look and feel.

45

B.9.2 setJavaLookAndFeel()

Tell System to use JAVA look and feel. It is default one.

B.9.3 setMotifLookAndFeel()

Tell System to use Motif look and feel.

Look refers to the appearance of GUI widgets (more formally, JComponents) and feel

refers to the way the widgets behave

B.10 Compile.bat

Applet runs with limited privileges on client side machine. With these privileges they can

not read and write and local machine. But we need to read from local machine (browsing

self downloaded IITD certi�cate, using MS window Trusted Root store). So we need to

provide extra permissions to our Applets. So for this we make the jar of all class �les

and then sign jar �le using self generated Private Key. On the client side, a Dialog box

appears asking whether client trusts the signer of jar. If clients trusts then applet gets

extra privileges on local machine and it is able to read and write on local machine. This

is a script �le to create jar and then signs it. You need to have public private key pair to

sign jar. If you did not have them then generate pair using JAVA keytool utility.

We hope that We have provided enough information about each �le (class) that is part

of this client side veri�cation project. Source code in these �les is also widely documented

and you should go through these comments for more technical details. Reader should

also go through JAVA PKI guide for basis knowledge of JAVA Crypto API and how they

work.

46

References

[1] Information Security, Mark Stamp John Wiley and Sons, Edition 2006.

[2] Cryptography and Network Security Principles and Practices by William Stallings,

Prentice Hall, Fourth Edition 2005.

[3] Openssl toolkit FAQ http://www.madboa.com/geek/openssl/.

[4] JavaTM PKI Programmer's Guide http://java.sun.com/javase/6/docs/technotes

/guides/security/certpath/CertPathProgGuide.html

[5] Crypt::OpenSSL::RSA - RSA encoding and decoding, using the openSSL libraries

http://cpan.uwinnipeg.ca/htdocs/Crypt-OpenSSL-RSA/Crypt/OpenSSL/RSA.html.

[6] RSA Labs http://www.rsa.com/.

[7] Public key infrastructure http://en.wikipedia.org/wiki/Public_key_infrastructure.

[8] Elliptic Curve Cryptography http://www.certicom.com/.

[9] SHA hash functions http://en.wikipedia.org/wiki/SHA-1.

[10] Crypt::OpenSSL::X509 http://search.cpan.org/∼daniel/Crypt-OpenSSL-X509-
0.6/X509.pm.

[11] XML::Simple - Easy API to maintain XML http://search.cpan.org/ grantm/XML-

Simple-2.18/lib/XML/Simple.pm.

47

