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Abstract
The fundamental theorem of symmetric polynomials states that for a symmetric polynomial
fSym ∈ C[x1, x2, . . . , xn], there exists a unique “witness” f ∈ C[y1, y2, . . . , yn] such that fSym =
f(e1, e2, . . . , en), where the ei’s are the elementary symmetric polynomials.

In this paper, we study the arithmetic complexity L(f) of the witness f as a function of
the arithmetic complexity L(fSym) of fSym. We show that the arithmetic complexity L(f) of
f is bounded by poly(L(fSym), deg(f), n). To the best of our knowledge, prior to this work
only exponential upper bounds were known for L(f). The main ingredient in our result is an
algebraic analogue of Newton’s iteration on power series. As a corollary of this result, we show
that if VP 6= VNP then there exist symmetric polynomial families which have super-polynomial
arithmetic complexity.

Furthermore, we study the complexity of testing whether a function is symmetric. For poly-
nomials, this question is equivalent to arithmetic circuit identity testing. In contrast to this, we
show that it is hard for Boolean functions.
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1 Introduction

Lipton and Regan [10] ask the question whether understanding the arithmetic complexity of
symmetric polynomials is enough to understand the arithmetic complexity of all polynomials.
We here answer this question in the affirmative. The fundamental theorem of symmetric
polynomials establishes a bijection between symmetric polynomials and arbitrary polynomials.
It states that for every symmetric polynomial fSym ∈ C[x1, x2, . . . , xn], there exists a unique
polynomial f ∈ C[y1, y2, . . . , yn] such that fSym = f(e1, e2, . . . , en), where the ei’s are the
elementary symmetric polynomials. We prove that the arithmetic circuit complexity of f
and fSym are polynomially related.

An arithmetic circuit C is a directed acyclic graph with the following kind of nodes
(gates):

Nodes with in-degree zero labeled by variables or scalars, these are called input gates.
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Nodes labeled by addition (+), subtraction (−) or multiplication (×) gates, these gates
have in-degree two and unbounded out-degree.
Nodes with out-degree zero (it can be an input, +,− or × gate), these are called output
gates.

Each gate of such a circuit computes a multivariate polynomial in the following way:
Input gates compute the polynomial by which they are labeled.
A ◦ gate g computes the polynomial g1 ◦ g2, if the children gates of g compute the
polynomials g1 and g2, here ◦ ∈ {+,−,×}.

If the output gates of C compute the polynomials g1, g2, . . . , gt then we say that C computes
the set {g1, g2, . . . , gt} of polynomials. In the literature, it is usually assumed that any
arithmetic circuit C has a unique output gate and thus C computes a single multivariate
polynomial. The size of an arithmetic circuit C is defined as the number of gates in C.

We can naturally model computations over a field by arithmetic circuits and thus the
study of arithmetic circuits is essential in studying the computational complexity in algebraic
models of computation. Valiant [15] defined the complexity classes VP and VNP as algebraic
analogues of the classes P and NP. In algebraic complexity theory, complexity classes such
as VP and VNP are defined as sets of polynomial families. For the precise definitions of VP
and VNP, see section A in the appendix. For a polynomial f , L(f) is defined as the size of
the smallest circuit computing f . We use the same notation L(S) to denote the size of the
smallest circuit computing a set of polynomials S. There is also a notion of oracle complexity
Lg(f) of a polynomial f with respect to some polynomial g, see Definition 9.

LetSn be the symmetric group defined as the set of all permutations of the set {1, 2, . . . , n}.
A Boolean function f : {0, 1}n → {0, 1} is said to be symmetric if f(x1, x2, . . . , xn) =
f(xσ(1), xσ(2), . . . , xσ(n)) for all (x1, x2, . . . , xn) ∈ {0, 1}n, σ ∈ Sn. It is easy to see that all
symmetric Boolean functions can be computed by constant depth threshold circuits, that is,
are contained in the class TC0. The notion of symmetric polynomials can also be defined
similarly. It is natural to ask whether symmetric polynomials can also be computed efficiently,
i.e., whether the arithmetic complexity of symmetric polynomials is also small? This is the
question we study in this paper.

1.1 Previous Work
It is well known that for every symmetric polynomial g ∈ C[x1, x2, . . . , xn], there exists a
unique polynomial f ∈ C[x1, x2, . . . , xn] such that g = f(e1, e2, . . . , en). Here, e1, e2, . . . , en
denote the elementary symmetric polynomials in x1, x2, . . . , xn. For an arbitrary polynomial
f ∈ C[x1, x2, . . . , xn], let fSym defined by fSym

def==== f(e1, e2, . . . , en) be the symmetric
polynomial corresponding to f (see Section 2). We want to study the relation between the
complexities L(f) and L(fSym). The question was studied and partially solved in [7, 6, 10].
More specifically, the following theorems were proved in [7, 6, 10].

I Theorem 1 (Theorem 1 in [7]). For any polynomial f ∈ C[x1, x2, . . . , xn], L(f) ≤
∆(n)L(fSym) + 2, where ∆(n) ≤ 4n(n!)2.

Whereas [7] showed the bound on L(f) for exact computation, [10] investigated a related
problem of approximating the value of f at a given point by using an arithmetic circuit
computing fSym.

I Theorem 2 ([10]). For any polynomial f ∈ Q[x1, x2, . . . , xn], there is an algorithm that
computes the value f(a) within ε in time L(fSym) + poly(log ||a|| , n, log 1

ε ) for any a ∈ Qn.
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Note that Theorem 2 does not compute a circuit for f but only gives an algorithm to
approximate the value of f at a given point. The results in [6] were in a much more general
setting. [6] studied the in-variance under general finite matrix groups, not just under Sn as
we do in this paper. By specializing the theorems in [6] for the finite matrix group Sn, we
get the following result.

I Theorem 3 ([6]). For any polynomial f ∈ C[x1, x2, . . . , xn], we have L(f) ≤ ((n +
1)!)6L(fSym).

The upper bound in [6] (Theorem 3) is worse than that of [7] (Theorem 1) but this is to
be expected because [6] solves a more general problem.

1.2 Our results
It is easy to see that L(fSym) ≤ L(f)+nO(1) (see [10]). All the exact bounds (with respect to
L(fSym)) on L(f) above are exponential. It was left as an open question in [10] whether L(f)
can be bounded polynomially with respect to L(fSym). In this paper, we demonstrate that
L(f) can be polynomially bounded in terms of L(fSym). In whatever follows, the complexity
notation Õ hides poly-logarithmic factors. The following Theorem 4 is the main contribution
of this paper.

I Theorem 4. For any polynomial f ∈ C[x1, x2, . . . , xn] of degree d with dSym
def=== deg(fSym),

we have the following upper bounds on LfSym(f) and L(f):

LfSym(f) ≤ Õ
(
n3 · d2 · dSym

)
,

L(f) ≤ Õ
(
d2L(fSym) + d2n2) .

I Remark. It can be shown that dSym ≤ dn and d ≤ dSym. Thus Theorem 4 implies that
LfSym(f) ≤ Õ

(
n4 · d3).

From Theorem 4, it easily follows that there exist families of symmetric polynomials of
super-polynomial arithmetic complexity (assuming VP 6= VNP).

In addition, we also consider the following problems:
1. SFT (symmetric function testing)
2. SPT (symmetric polynomial testing)

I Problem 5 (SFT). Given a Boolean circuit C computing the Boolean function f(x1, x2,

. . . , xn), check if f is symmetric, that is, is f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n))) for
all σ ∈ Sn?

I Problem 6 (SPT). Given an arithmetic circuit C computing the polynomial f(x1, x2, . . . ,

xn), check if f is a symmetric polynomial?

Let CSAT be the problem of deciding whether a given Boolean circuit has a satisfying
assignment, that is, computes a non-zero function (see [8]). ACIT is the problem of deciding
whether the polynomial computed by a given arithmetic circuit is zero (see [1]). We prove
the following results on the complexity of SPT and SFT.

I Lemma 7. SFT and CSAT are polynomial time Turing reducible to each other, i.e.,
SFT ≤T

P CSAT and CSAT ≤T
P SFT.

I Lemma 8. SPT and ACIT are polynomial time many one reducible to each other, i.e.,
SPT ≤P ACIT and ACIT ≤P SPT.

ITCS 2019
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In light of above results, we notice the following contrasting situations in Boolean and
algebraic models of computation:

All symmetric Boolean functions are easy to compute but the problem of deciding the
symmetry of a Boolean function is hard.
There exist families of symmetric polynomials which are hard to compute (assuming
VP 6= VNP) but deciding the symmetry of a polynomial is easy.

1.3 Proof ideas
The main proof idea is much easier to demonstrate in the case of n = 2. Let B(y) be the
following uni-variate polynomial in y with coefficients in C[x1, x2]:

B(y) def==== y2 − (x1 + x2)y + x1x2.

Note that the roots of B(y) are x1, x2. Hence we have the following equalities:

x1 =
x1 + x2 +

√
(x1 + x2)2 − 4x1x2

2 ,

x2 =
x1 + x2 −

√
(x1 + x2)2 − 4x1x2

2 .

We use the symbols e1, e2 for the elementary symmetric polynomials: e1
def==== (x1 + x2) and

e2
def==== x1x2. Thus we have the following equalities:

x1 = e1 +
√
e2

1 − 4e2

2 , (1)

x2 = e1 −
√
e2

1 − 4e2

2 . (2)

Let fSym ∈ C[x1, x2] be a symmetric polynomial and deg(f) = d.
If we substitute the above radical expressions (in Equation 1 and Equation 2) for x1

and x2 in fSym(x1, x2), then we obtain f(e1, e2). But unfortunately, we can not perform
these kind of substitutions in our model of computation. This is because we cannot compute
expressions of the form

√
e2

1 − 4e2 with arithmetic circuits.
If we use the substitution e2 ← e2 − 1 in Equation 1 and Equation 2 and thereafter

substitute x1 and x2 in fSym(x1, x2), we shall obtain f(e1, e2− 1). The degree of f(e1, e2− 1)
is also bounded by d. Even by using this substitution, the expressions in Equation 1 and
Equation 2 cannot be computed by arithmetic circuits. But this substitution allows us to use
Taylor expansion on

√
e2

1 − 4(e2 − 1) to obtain a power series in e1, e2. Since f(e1, e2 − 1)
has degree at most d, we only need to substitute truncations of degree d of these Taylor series
to obtain f(e1, e2 − 1) (also some additional junk terms which can be removed efficiently)
and subsequently use the substitution e2 ← e2 + 1 to obtain f(e1, e2).

This method works for two variables. It can be extended to work for at most four variables
because it is well known that polynomials of degree more than four are not solvable by
radicals (see e.g. Section 15.9 in [2]). To make this idea work in general, we shall substitute
en by en + (−1)n−1 and then compute degree d truncation of roots of B(y) using Newton’s
iteration.

1.4 Organization
Section 2 introduces elementary symmetric polynomials and also formally states the funda-
mental theorem of symmetric polynomials. We also state a folklore result about computing



M. Bläser and G. Jindal 45:5

the homogeneous components of a polynomial. Section 3 describes the complexity of the
problems SFT and SPT. Section 4 describes the main contribution of this paper, we use the
classical Newton’s iteration to prove Theorem 4 in this section. As an easy consequence of
Theorem 4, Section 5 proves that there exist hard symmetric polynomial families (assuming
VP 6= VNP).

2 Preliminaries

2.1 Notation and background
For a positive integer n, we use the notation [n] to denote the set {1, 2, . . . , n}. Similarly,
[[n]] is used to denote the set {0, 1, 2, . . . , n}. Now we formally define the notion of oracle
computations [5].

I Definition 9 ([5]). The oracle complexity Lg(f) of a polynomial f ∈ F[x1, x2, . . . , xn] with
respect to the oracle polynomial g is the minimum number of arithmetic operations +,−,×
and evaluations of g (at previously computed values) that are sufficient to compute f from
the indeterminates xi and constants in F.

I Definition 10. The ith elementary symmetric polynomial eni in n variables x1, x2, . . . , xn
is defined as the following polynomial:

eni
def====

∑
1≤j1<j2<···<ji≤n

xj1 · xj2 · · · · · xji
.

For an arbitrary polynomial f ∈ F[x1, x2, . . . , xn], we define the polynomial fSym as:

fSym
def==== f(en1 , en2 , . . . , enn). (3)

Whenever n is clear from the context, we use the notation ei to denote the ith elementary
symmetric polynomial eni . Note that fSym is a symmetric polynomial. So Equation 3
is a method to create symmetric polynomials. The fundamental theorem of symmetric
polynomials states that Equation 3 is the only way to create symmetric polynomials.

I Theorem 11 (see [3]). If g ∈ C[x1, x2, . . . , xn] is a symmetric polynomial, then there exists
a unique polynomial f ∈ C[y1, y2, . . . , yn] such that g = f(en1 , en2 , . . . , enn).

Theorem 11 states that every symmetric polynomial g can be uniquely written as fSym
for some f . Thus in whatever follows, we always use the notation of the kind fSym to denote
a symmetric polynomial.

2.2 Basic tools
Suppose we have a circuit C computing a polynomial f ∈ C[x1, x2, . . . , xn] of degree d. It
might be the case that f is not homogeneous. For some applications, it might be better to
work with homogeneous polynomials. So we want to know if there exist “small” circuits also
for the homogeneous components of f . For a polynomial f , f [m] is used to denote the degree
m homogeneous component of f . The following Lemma 12 proves that the homogeneous
components of f also have “small” arithmetic circuits.

I Lemma 12 (Folklore). Let f ∈ C[x1, x2, . . . , xn] be a polynomial with d = deg(f). For any
0 ≤ m ≤ d, we have: Lf (f [m]) ≤ O(nd).

ITCS 2019
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Proof. For a fresh indeterminate y, consider the polynomial f(yx1, yx2, . . . , yxn). We
consider f(yx1, yx2, . . . , yxn) as a uni-variate polynomial in y of degree d, with coeffi-
cients in C[x1, x2, . . . , xn]. We observe that for any 0 ≤ m ≤ d, the coefficient of ym in
f(yx1, yx2, . . . , yxn) is f [m]. Let α1, α2, . . . , αd+1 be d+1 distinct constants in C. By interpol-
ation, we know that for any 0 ≤ m ≤ d, the coefficient f [m] of ym is a C-linear combination of
d+ 1 evaluations f(αix1, αix2, . . . , αixn) of f(yx1, yx2, . . . , yxn) at αi ∈ {α1, α2, . . . , αd+1}.
Formally, for any 0 ≤ m ≤ d we have:

f [m] ∈ 〈{f(αix1, αix2, . . . , αixn) | αi ∈ {α1, α2, . . . , αd+1}}〉. (4)

It is easy to observe that Lf (f(αix1, αix2, . . . , αixn)) = O(n). Equation 4 implies that
Lf (f [m]) ≤ O(nd). J

Lemma 12 implies that L(f [m]) ≤ O(L(f) · n · d), this bound depends on the degree d of
f . But if we do not care about the oracle complexity, the following bound (independent of
degree of f) on L(f [m]) is known.

I Lemma 13 ([13, 14]). Let f ∈ C[x1, x2, . . . , xn] be a polynomial and m be a non-negative
integer. Then we have:

L({f [0], f [1], . . . , f [m]}) ≤ O(m2L(f)).

3 Complexity of SFT and SPT

Here we prove Lemma 7 and Lemma 8.

Proof of Lemma 7. Given a Boolean circuit C, we want to check if the function f(x1, x2,

. . . , xn) computed by C is symmetric. As the permutation group Sn is generated by two
permutations σ def==== (1, 2) and π def==== (1, 2, . . . , n) [4], it is necessary and sufficient to check
if the given function f is invariant under these two permutations of variables. Thus we define
the following Boolean functions:

g(x1, x2, . . . , xn) def==== f(xσ(1), xσ(2), . . . , xσ(n)),

h(x1, x2, . . . , xn) def==== f(xπ(1), xπ(2), . . . , xπ(n)).

Now note that the equality of two Boolean variables x, y can be checked by the following
equality gadget:

(x ?= y) = (¬x ∨ y) ∧ (x ∨ ¬y).

Thus we only need to check if both (¬f ∨ g)∧ (f ∨¬g) and (¬f ∨h)∧ (f ∨¬h) are tautologies
(always equal to 1). This can be checked by two oracles calls to CSAT. Thus SFT ≤T

P CSAT.
Now we prove the other direction. Given a Boolean circuit C, we want to check if the

function f(x1, x2, . . . , xn) computed by C is always zero. First we make an oracle call to
SFT to check if f is symmetric. If f is not symmetric then obviously f is a non-zero function
because the zero function is trivially symmetric. Thus we can assume f to be symmetric.
Now we ask the SFT oracle if the function h def==== f ∧ x1 is symmetric? If f was the zero
function then so is h, therefore SFT oracle will answer that h is symmetric. So if SFT oracle
answers h to be non-symmetric then obviously f was non-zero. If h also turns out to be
symmetric then we know that:

∀(a1, a2, . . . , an) ∈ {0, 1}n : f ∧ a1 = f ∧ a2 = · · · = f ∧ an. (5)
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Suppose f evaluated to 1 on a point (a1, a2, . . . , an) 6∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. This
means that there exists (a1, a2, . . . , an) ∈ {0, 1}n such that f(a1, a2, . . . , an) = 1 with
ai = 1, aj = 0 for some i, j ∈ [n]. Then obviously we have f(a1, a2, . . . , an) ∧ ai = 1 and
f(a1, a2, . . . , an)∧aj = 0. Hence Equation 5 can not to be true. Thus f can only be non-zero
on the set {(0, 0, . . . , 0), (1, 1, . . . , 1)}. The value of f at both these points can be checked
manually to check whether f is the zero function or not. Therefore CSAT ≤T

P SFT. J

Proof of Lemma 8. Given an arithmetic circuit C, we want to check if the polynomial
f(x1, x2, . . . , xn) computed by C is symmetric.

As in the proof of the Lemma 7, we use the fact that permutation group Sn is generated
by two permutations σ def==== (1, 2) and π

def==== (1, 2, . . . , n). It is necessary and sufficient
to check if the given polynomial f is invariant under these two permutations of variables.
Analogous to the proof of the Lemma 7, we define the following polynomials:

g(x1, x2, . . . , xn) def==== f(xσ(1), xσ(2), . . . , xσ(n)),

h(x1, x2, . . . , xn) def==== f(xπ(1), xπ(2), . . . , xπ(n)).

Thus f is symmetric iff f − g = f − h = 0. Consider the polynomial F = y(f − g) + z(f − h),
here y, z are fresh variables. Thus f is symmetric iff F is the zero polynomial. Hence
SPT ≤P ACIT.

Now we prove the reverse direction. Given an arithmetic circuit C, we want to check if
the polynomial f(x1, x2, . . . , xn) computed by C is the zero polynomial or not. Consider
the polynomial G def==== f(x2

1, x
2
2, . . . , x

2
n) · x1. We know that f is non-zero iff G is non-zero.

Suppose that G 6= 0. Now observe that in every monomialM of G, the degree of x1 inM
is odd and the degrees of the other variables x2, . . . , xn inM are even. Now consider the
polynomial H def==== G(xσ(1), xσ(2), . . . , xσ(n)) where σ def==== (1, 2). In every monomialM′ of
H, the degree of x2 in M′ is odd and the degrees of the other variables x1, x3, . . . , xn in
M′ are even. Thus H 6= G. Hence if G is non-zero then G is not symmetric because it is
not invariant under the permutation σ def==== (1, 2). Thus G is symmetric iff f = 0. Hence
ACIT ≤P SPT. J

4 Main algorithm

4.1 Roots as power series
Let F (y) = F (y, u1, u2, . . . , un) = yn + f1(u1, u2, . . . , un)yn−1 + . . .+ fn(u1, u2, . . . , un) be a
monic square-free polynomial in variables y and u1, u2, . . . , un, here fi ∈ C[u1, u2, . . . , un].
Let A(u1, u2, . . . , un) be a root of F with respect to y. The root is usually an algebraic
function in u1, u2, . . . , un but not a power series. The following Lemma 14 formalizes a
sufficient condition when roots of F (y) can be expressed as power series in u1, u2, . . . , un.

I Lemma 14 (Condition A in [12]). Let F (y, u1, u2, . . . , un) be square free and monic with
respect to y. If F (y, 0, 0, . . . , 0) has no multiple root (as a uni-variate polynomial in y)
then the roots Ai(u1, u2, . . . , un) of F (y, u1, u2, . . . , un) can be expanded into power series in
u1, u2, . . . , un.

As stated above, we are interested in the following special case:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)nen.

ITCS 2019
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This F is being considered as a uni-variate polynomial in y over the power series ring
C[[e1, e2, . . . , en]]. In this case, the roots of F (y, e1, e2, . . . , en) are x1, x2, . . . , xn. We want
to express roots of this F as power series in e1, e2, . . . , en. For this purpose, we consider a
slightly modified version of F . More specifically, consider:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1). (6)

Notice that F (y, 0, 0, . . . , 0) has n distinct roots, namely the nth roots of unity. Thus the
roots of this F (y) (Equation 6) can be expressed as power series in e1, e2, . . . , en, this follows
from Lemma 14. Let us record this as corollary 15.

I Corollary 15. If F is as in Equation 6, then there exist n power series A1, A2, . . . , An ∈
C[[e1, e2, . . . , en]] such that F (Ai) = 0 for all i ∈ [n].

Now we show how to compute the degree d truncations of such roots A1, A2, . . . , An.
This already follows from [9]. For the reader’s convenience, we describe the algorithm here
and a proof of correctness can be found in Appendix A.

4.2 Newton’s Method

Algorithm 1 Newton’s Method
Input: A square free monic polynomial F (y) = F (y, u1, u2, . . . , un) ∈ C[u1, u2, . . . , un][y]

with respect to y of degree n such that F (y, 0, 0, . . . , 0) has n simple roots. A positive
integer d with d = 2` for some ` ∈ N. We assume that A1, A2, . . . , An ∈ C[[u1, u2, . . . , un]]
are the roots of F (y).

Output: Degree d truncations A(`)
1 , A

(`)
2 , . . . , A

(`)
n of the n roots (A1, A2, . . . , An) of F (y),

that is, A(`)
i ≡ Ai mod Id with I def==== (u1, u2, . . . , un) for all i ∈ [n].

1: {α1, α2, . . . , αn} ← Roots of F (y, 0, 0, . . . , 0).
2: for 1 ≤ i ≤ n do
3: A

(0)
i ← αi.

4: for 0 ≤ k ≤ `− 1 do
5: A

(k+1)
i ← A

(k)
i −

F (A(k)
i

)
F ′(A(k)

i
)
.

6: end for
7: end for
8: return A

(`)
1 , A

(`)
2 , . . . , A

(`)
n .

For the analysis of Algorithm 1, define the ideal I as:

I
def==== (u1, u2, . . . , un).

I Theorem 16. In Algorithm 1, A(k)
i ≡ Ai mod I2k for all 0 ≤ k ≤ ` and for all i ∈ [n].

In Algorithm 1, we need to compute the inverse of F ′(A(k)), since we want to compute
A(k+1), it is enough to compute the inverse of F ′(A(k)) mod I2k+1 . This also follows from
[9]. We explicitly describe this in Algorithm 2.

I Lemma 17. Algorithm 2 computes a polynomial p such that p ≡ g−1 mod Id.

We can also prove that there is a “small” circuit for p in Lemma 17.
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Algorithm 2 Inverse computation
Input: A circuit C computing the polynomial g(u1, u2, . . . , un) such that g(0, 0, . . . , 0) 6= 0

and a positive integer d with d = 2` for some ` ∈ N.
Output: A circuitD for computing a polynomial p(u1, u2, . . . , un) such that p ≡ g−1 mod Id,

here I = (u1, u2, . . . , un) and g−1 is the inverse of g in C[[u1, u2, . . . , un]].
1: p0 ← 1

g(0,0,...,0) .
2: for 0 ≤ k ≤ `− 1 do
3: pk+1 ← pk · (2− g · pk).
4: end for
5: return p`.

I Lemma 18. Let g(u1, u2, . . . , un) be a polynomial such that g(0, 0, . . . , 0) 6= 0. For any
positive integer d with d = 2` for some ` ∈ N, there is a polynomial p ∈ C[u1, u2, . . . , un]
such that p ≡ g−1 mod Id. Moreover, L(p) ≤ L(g) +O(`).

Proof. In Algorithm 2, we need three arithmetic operations to compute pk+1 from pk.
It follows from Lemma 17 that p` = g−1 mod Id. Thus there exists a circuit of size
L(g) + 3 · ` = L(g) +O(`) computing p ≡ g−1 mod Id. J

Now the following Theorem 19 follows by applying Lemma 18 and Theorem 16.

I Theorem 19. Let F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1) and let

A1, A2, . . . , An ∈ C[[e1, e2, . . . , en]] such that F (Ai, e1, e2, . . . , en) = 0 for all i ∈ [n]. Let d
be a positive integer with d = 2` for some ` ∈ N and let I = (e1, e2, . . . , en) be the ideal
generated by e1, e2, . . . , en in the polynomial ring C[e1, e2, . . . , en]. Let polynomials Di be
such that Di ≡ Ai mod Id. Then L({D1, D2, . . . , Dn}) ≤ O(n2`+ n`2).

Proof. We construct a circuit D whose outputs are D1, D2, . . . , Dn. We construct the desired
circuit D by using Algorithm 1 on F (y, e1, e2, . . . , en) and s = (0, 0, . . . , 0). It is enough to
describe a circuit computing each Di such that Di ≡ Ai mod Id. The circuit for A(0)

i in
Algorithm 1 is trivially of size one. By Step 5 of Algorithm 1, a circuit for A(k+1)

i can be
constructed given any circuits for A(k)

i , F (A(k)
i ) and F ′(A(k)

i ). Note that there are circuits of
size O(n) computing F (y, e1, e2, . . . , en) and F ′(y, e1, e2, . . . , en) def==== ∂F (y,e1,e2,...,en)

∂y . Thus
if A(k)

i has a circuit of size s, then there exists a size s+O(n+log d) circuit computing A(k+1)
i ,

this follows from Lemma 18. In particular, there exists a circuit computing Di
def==== A

(dlog de)
i

of size O(n log d+ log2 d). By Theorem 16, it follows that Di ≡ Ai mod Id. We combine the
circuits computing Di’s to construct the desired circuit D of size O(n · n log d+ n log2 d) =
O(n2 log d+ n log2 d). J

Now we are ready to prove Theorem 4.

Proof of Theorem 4. The main idea is what we have hinted above. Namely, let F (y, e1, e2,

. . . , en) be the following polynomial:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en). (7)

Here ei = eni is the ith elementary symmetric polynomial. We know that the roots (as a
uni-variate polynomial in y) of F are x1, x2, . . . , xn. Therefore, x1, x2, . . . , xn are algebraic
functions in e1, e2, . . . , en. Thus xi = Ai(e1, e2, . . . , en) for some algebraic function Ai.
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Let CSym(x1, x2, . . . , xn) be a circuit of size L(fSym) computing fSym(x1, x2, . . . , xn). If
we could substitute the xi’s by the Ai’s in CSym(x1, x2, . . . , xn), we would obtain a circuit
for f . But we cannot compute algebraic functions using arithmetic circuits. Now replace en
by en + (−1)n−1 in Equation 7. Thus the new F (y, e1, e2, . . . , en) is:

F (y, e1, e2, . . . , en) = yn − e1y
n−1 + . . .+ (−1)n(en + (−1)n−1). (8)

We call the roots of F (y) in Equation 8 again A1, A2, . . . , An. By using Lemma 14, we know
that the Ai’s are in C[[e1, e2, . . . , en]]. The following Equation 9 follows from the above
discussion:

CSym(A1, A2, . . . , An) = f(e1, e2, . . . , en + (−1)n−1). (9)

To compute f , it is enough to substitute the degree d truncations of the Ai’s in Equation 9,
instead of the exact infinite power series Ai. Let D1, D2, . . . , Dn be the outputs of the circuit
D obtained by applying Theorem 19 with degree 2dlog de. We substitute the xi → Di in the
circuit CSym(x1, x2, . . . , xn). We obtain the following equality:

h
def==== CSym(D1, D2, . . . , Dn) = f(e1, e2, . . . , en + (−1)n−1) + g. (10)

In the above Equation 10, g is a polynomial with all its monomials of degree at least d+ 1,
i.e., g ∈ Id+1 with I = (e1, e2, . . . , en). Hence it follows that:

f(e1, e2, . . . , en + (−1)n−1) =
d∑
i=0

h[i].

By applying Theorem 19, we know that LfSym(h) ≤ (n2 log d+n log2 d). Note that the degree
of each Di is at most 2dlog de, which is at most 2d. Thus the degree of h is at most 2ddSym.
By using Lemma 12, we conclude that for any 0 ≤ i ≤ deg(h):

Lh(h[i]) ≤ O(n · d · dSym). (11)

Equation 11 implies that Lh(
∑d
i=0 h

[i]) ≤ O(n · d2 · dSym). By using LfSym(h) ≤ (n2 log d+
n log2 d), we obtain that:

LfSym(
d∑
i=0

h[i]) ≤ O(n · d2 · dSym · (n2 log d+ n log2 d))

= Õ
(
n3 · d2 · dSym

)
.

By using the substitution en → en − (−1)n−1, we obtain that:

LfSym(f) ≤ Õ
(
n3 · d2 · dSym

)
.

If we use Lemma 13 instead of Lemma 12 in the above argument, we obtain that:

L(f) ≤ O(d2(L(fSym) + n2 log d+ n log2 d)))
= Õ

(
d2L(fSym) + d2n2) .

This concludes the proof. J

I Remark. In contrast to results in [7, 6], our results do depend on the degree d. But if the
degree d is poly(n) then our upper bound on L(f) is polynomial in n and L(fSym). This
upper bound was exponential in [7, 6].
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5 Hard Symmetric Polynomials

By using Theorem 4, we are ready to prove that there exist hard symmetric polynomials. To
this end, the following Theorem 20 suffices.

I Theorem 20. Let (fn)n∈N be a VNP-complete family. Then the corresponding symmetric
polynomial family ((fn)Sym)n∈N is VNP-complete under c-reductions.

Proof. Let d = deg(fn) and dSym = deg((fn)Sym). Since (fn)n∈N ∈ VNP, we know that
both d and dSym are polynomially bounded in n. By using Theorem 4, we know that
LfSym(f) ≤ Õ

(
n3 · d2 · dSym

)
= Õ (poly(n)). Thus ((fn)Sym)n∈N is VNP-hard under c-

reductions. It is also easy to see that ((fn)Sym)n∈N is in VNP. Therefore ((fn)Sym)n∈N is
VNP-complete under c-reductions. J

I Corollary 21. The polynomial family (qn)n∈N defined by qn
def=== (pern)Sym is VNP-complete

under c-reductions. Therefore if VP6= VNP, then the polynomial family (qn)n∈N is not in VP.
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A Appendix

A.1 Algebraic complexity theory
Analogous to the idea of classical complexity classes, we can also define algebraic complexity
classes. We refer the reader to [5, 11] for a more comprehensive introduction to algebraic
complexity classes. In this section, a p-bounded function is simply a polynomially bounded
function.

I Definition 22 (Arithmetic Circuit Complexity). For a polynomial p ∈ F[x1, x2, . . . , xn], the
(arithmetic) circuit complexity L(p) of p is defined as the size of smallest arithmetic circuit
computing p, that is

L(p) def==== min{s | ∃ size s arithmetic circuit computing p}.

I Definition 23 (p-family). A family (or a sequence) (fn)n∈N of (multivariate) polynomials
over the field F is said to be a p-family iff the number of variables as well as the degree of fn
are p-bounded functions of n.

Now we define the notion of efficient polynomial families.

I Definition 24 (p-computable). A p-family (fn)n∈N is called p-computable iff the arithmetic
complexity L(fn) is a p-bounded function of n.

p-computable polynomial families define the algebraic analogue of the P, called VP.

I Definition 25 (Class VP). The (algebraic complexity) class VP is the set of all p-computable
polynomial families.

I Definition 26 (Class VNP). A p-family (fn)n∈N is said to be in the (algebraic complexity)
class VNP if there exists a polynomial family (gn)n∈N ∈ VP with gn ∈ F[x1, x2, . . . , xq(n)]
such that:

fn(x1, x2, . . . , xp(n)) =
∑

e∈{0,1}q(n)−p(n)

gn(x1, x2, . . . , xp(n), e1, e2, . . . , eq(n)−p(n)).

Similar to the Boolean case, there is an algebraic notion of reduction also, called the
p-projections.
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I Definition 27 (Projection). A polynomial f(x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn] is said to
be a projection of a polynomial g(y1, y2, . . . , ym) ∈ F[y1, y2, . . . , ym], if there exists a map
α : {y1, y2, . . . , ym} → {x1, x2, . . . , xn} ∪ F such that f = g under the substitution map α.
We write f ≤ g to denote that f is a projection of g.

I Definition 28 (p-projection). A polynomial family (fn)n∈N is said to be a p-projection of a
polynomial family (g)n∈N if there is a p-bounded function β : N→ N and n0 ∈ N such that:

∀n ≥ n0 : fn ≤ gβ(n).

We denote (fn)n∈N being a p-projection of (g)n∈N by f ≤p g.

Definition 9 naturally lends to the following definition:

I Definition 29 ([5]). Let f = (fn), g = (gn) be two polynomial families. We say that f is
a c-reduction of g, denoted by f ≤c g, iff there is a p-bounded function t : N→ N such that
Lgt(n)(fn) is a p-bounded function of n.

Now the idea of completeness and hardness can be defined as in the case of Boolean case.

I Definition 30 (Hardness and Completeness). For an algebraic complexity classic C, a
p-family f = (fn)n∈N is said to be a C-hard if g ≤p f for all g ∈ C, f is called C-complete if
f is C-hard and f ∈ C. Similarly, we can define the notion of hardness under c-reductions.

I Theorem 31 ([15], see also [5]). Over the fields F with char(F) 6= 2, the p-family (pern) is
VNP-complete.

The holy grail of algebraic complexity theory is to show that VP 6= VNP. For this it is
enough to show that (pern) 6∈ VP over fields F with char(F) 6= 2 . Note that pern and detn
are the same polynomials if char(F) = 2 . Thus if char(F) = 2 then (pern) ∈ VP hence (pern)
is unlikely to VNP-complete over fields of characteristic two.

A.2 Missing proofs
We provide some proofs of known results used in this work for the reader’s convenience.

Proof of Lemma 13. Let C be a circuit of size L(f) computing f . We create m+ 1 copies
of each arithmetic gate in C, i.e., each{+,−,×}-gate G has m + 1 copies G0, G1, . . . , Gm.
If the gate G computes the polynomial g then Gi computes the polynomial g[i]. This can
be trivially done for input and constant gates. Suppose G = G1 + G2 is a “+” gate and
g1, g2 are the polynomials computed by gates G1 and G2 respectively. Now we know that
g[i] = g

[i]
1 +g[i]

2 for all i ∈ [[m]]. A similar statement is true for “−” gates also. If G = G1×G2
is a “×” gate, then we have the following equality:

g[i] =
i∑

j=0
g

[j]
1 · g

[i−j]
2 . (12)

Suppose we already have the gates for g[j]
1 , g

[j]
2 for all j ∈ [[m]]. Then one g[i] in Equation 12

can be computed using 2(i + 1) additional gates. Thus the gates G0, G1, . . . , Gm can be
constructed using

∑m
k=0 2(k + 1) = O(m2) gates. Hence every gate in C corresponds to at

most O(m2) new gates. Therefore:

L({f [0], f [1], . . . , f [m]}) ≤ O(m2L(f)).

J
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Proof of Theorem 16. Our claim is obviously true for k = 0. We prove the theorem by
induction on k. We prove it simultaneously for all i ∈ [n], so for the sake of brevity we use
A(k) to denote A(k)

i and α to denote αi. Consider the following equalities for a root A = Ai
of F (y):

0 = F (A) = F (A(k) + (A−A(k)))

= F (A(k)) + (A−A(k))F ′(A(k)) +
∑
j>1

(A−A(k))j

j! F (j)(A(k)). (13)

Here F (j) def==== ∂jF (y,u1,u2,...,un)
∂yj is the jth derivative of F (y) with respect to y. Since α is a

simple root of F (y, 0, 0, . . . , 0), we know that:

constant term of F ′(A(k)) = F ′(α) 6= 0.

Thus F ′(Ak) is invertible in the ring C[[u1, u2, . . . , un]] of power series. Therefore we have:

A−A(k+1) = A−
(
A(k) − F (A(k))

F ′(A(k))

)
= −

∑
j>1

(A−A(k))jF (j)(A(k))
j! · F ′(A(k))

. (by using Equation 13)

Since A−A(k) ∈ I2k , the right hand side of the above equation is in I2k+1 . Thus A(k+1) ≡
A mod I2k+1 . J

Proof of Lemma 17. We again prove it by induction on k, the induction hypothesis is that
pk ≡ g−1 mod I2k . This induction hypothesis is trivially true for k = 0. Consider:

1
g
− pk+1 = 1

g
− pk(2− g · pk)

= g · ( 1
g2 −

2pk
g

+ p2
k)

= g · (1
g
− pk)2.

By using the induction hypothesis, we know that 1
g − pk ∈ I

2k . Therefore it implies that
1
g − pk+1 ∈ I2k+1 . Now the lemma follows from the fact that ` = dlog de. J
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