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Geometric complexity theory for product-plus-power

Pranjal Dutta, Fulvio Gesmundo, Christian Ikenmeyer,

Gorav Jindal, Vladimir Lysikov

Abstract

According to Kumar’s recent surprising result (ToCT’20), a small border Waring rank implies
that the polynomial can be approximated as a sum of a constant and a small product of linear
polynomials. We prove the converse of Kumar’s result and establish a tight connection between
border Waring rank and the model of computation in Kumar’s result. In this way, we obtain a
new formulation of border Waring rank, up to a factor of the degree.

We connect this new formulation to the orbit closure problem of the product-plus-power
polynomial. We study this orbit closure from two directions:

1. We deborder this orbit closure and some related orbit closures, i.e., prove all points in the
orbit closure have small non-border algebraic branching programs.

2. We fully implement the geometric complexity theory approach against the power sum by
generalizing the ideas of Ikenmeyer-Kandasamy (STOC’20) to this new orbit closure. In this
way, we obtain new multiplicity obstructions that are constructed from just the symmetries of
the polynomials.
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1 Introduction

Waring rank is an important complexity measure for homogeneous polynomials, classically studied
in geometry and invariant theory. In complexity theory, it defines a model of computation also
known as the homogeneous diagonal depth-3 circuits, see e.g. [Sax08]. In addition, the matrix
multiplication exponent, a fundamental constant in computational complexity, can be described in
terms of the Waring rank of a particular family of polynomials, which are a symmetrized version
of the matrix multiplication tensors [CHI+18]. In this work, we closely relate Waring rank and its
border version to a new measure that we call border Kumar complexity, inspired by the recent work
of Kumar [Kum20].

The Waring rank of a homogeneous degree d polynomial f , denoted WR(f), is the smallest r
such that there exist homogeneous linear polynomials (also called ‘linear forms’) ℓ1, . . . , ℓr, with
f =

∑
i∈[r] ℓ

d
i . This is a natural generalization of the rank of a symmetric matrix, but when d ≥ 3,

a sequence of homogeneous polynomials of Waring rank r may converge to a polynomial of Waring
rank strictly larger than r. The border Waring rank of f , denoted WR(f), is the smallest r such
that f can be written as the limit of a sequence of polynomials fǫ with WR(fǫ) = r.

Following [Kum20], we introduce another measure of complexity for homogeneous polynomials:
given a homogeneous f of degree d, the Kumar complexity of f , denoted Kc(f), is the smallest m
such that there exists a constant α ∈ C and homogeneous linear polynomials ℓ1, . . . , ℓm with the
property that

f = α
(∏m

i=1(1 + ℓi) − 1
)
. (1.※)
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For instance, given a linear form ℓ, we see that Kc(ℓd) = d, because ℓd =
∏d

j=1(1 + ζjℓ) − 1, where
ζ is a primitive d-th root of unity. However, not all polynomials have finite Kumar complexity:
for example, it is easy to see that x1 · · · xn cannot be expressed as in (1.※). The border Kumar
complexity of f , denoted Kc(f), is the smallest m such that

f = lim
ǫ→0

α(ǫ)
(∏m

i=1(1 + ℓi(ǫ)) − 1
)
,

for α(ǫ) ∈ C[ǫ±1], and linear forms ℓi ∈ C[ǫ±1][x]1. Alternatively, one can define α ∈ C(ǫ) and
ℓi ∈ C(ǫ)[x]1, which is equivalent, as can be seen analogously to [BCS97, Lem. 15.22]. We will only
be working over C[ǫ±1].

Kumar [Kum20] proved that Kc(f) is finite for every homogeneous polynomial f . More precisely,
he proved Kc(f) ≤ deg(f) · WR(f), and it is easy to see that in fact Kc(f) ≤ deg(f) · WR(f).
This inequality is not tight: for instance the square-free monomial of degree n can be written as
x1 · · · xn = limǫ→0 ǫ

n
(∏

i(1 + 1
ǫxi) − 1

)
which shows Kc(x1 · · · xn) = n, whereas it is a classical

fact that WR(x1 · · · xn) ≥
( n
⌊n/2⌋

)
, which is exponentially large as a function of n 1. We develop a

border version of the Newton identities and use it to prove a converse Kumar’s result, showing that
completely reducible forms are essentially the only example where Kumar’s inequality is far from
being tight:

1.1 Theorem (Converse of Kumar’s theorem). Let f be a homogeneous polynomial. Then either
WR(f) ≤ Kc(f) or f is a product of linear forms.

One important consequence of the close relationship between border Waring rank and
Kumar complexity is a new characterization of the matrix multiplication exponent. The matrix
multiplication exponent is defined as

ω = inf{τ : two n× n matrices can be multiplied using O(nτ ) scalar multiplications}.

This fundamental constant can be defined in terms of the tensor rank and the tensor border rank
of the matrix multiplication tensor [Str69, BCLR79]. The results of [CHI+18] show that ω =
limn→∞ lognWR(trace(X3

n)), where Xn = (xij)i,j=1,...,n is a matrix of variables, so trace(X3
n) is a

homogeneous degree 3 polynomial in n2 variables. This result, together with Theorem 1.1, implies
the following

1.2 Corollary. The exponent of matrix multiplication is characterized as

ω = lim
n→∞

logn Kc(trace(X3
n)).

Theorem 1.1, together with Corollary 1.2, serves as motivation to study upper and lower bounds
methods for Kc. In order to study Kumar’s model from a geometric point of view, we introduce
a homogenized version of it, that we call product-plus-power model. We provide several results on
this model:

• We prove debordering results, providing strong upper bounds to the border Waring rank of
homogeneous polynomials in terms of their complexity in the product-plus-power model, see
Section 1.2.

• We implement the geometric complexity theory program (GCT), providing an infinite family
of obstructions, see Section 1.3.

1We remark that determining the exact value ofWR(x1 · · ·xn) is an open problem. It is known thatWR(x1 · · ·xn) =
2n−1 [CCG12]. The same result on cactus rank (a scheme-theoretic version of Waring rank) is proved in [RS11]. There
are (at least) two incorrect/incomplete proofs available online of the same result for border rank: the early versions
of [Oed19], and the first version of [CGO19]. A discussion on the gaps in the proofs is available in the first version of
[BB19, Sec 6.1]
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1.1 The product-plus-power model

Homogeneous models of algebraic computation and their border versions are conveniently described
using the notions of restrictions and degenerations of homogeneous polynomials. Let f(x), g(x) be
homogeneous polynomials of degree d in n variables x1, . . . , xn. We say that g is a restriction of f
if there exist linear forms ℓ1(x), . . . , ℓn(x) such that g(x) = f(ℓ1(x), . . . , ℓn(x)); in this case, write
g ≤ f . Equivalently, regarding f, g as polynomial functions on Cn, we have that g ≤ f is there exist
a linear map A : Cn → Cn such that g(x) = f(Atx). Here At is the transpose of the matrix A.

We say that g is a degeneration of f is there exist linear forms ℓ1(x), . . . , ℓn(x), depending
rationally on a parameter ǫ, such that g(x) = limǫ→0 f(ℓ1(x), . . . , ℓn(x)); in this case, write g E f .
Equivalently, g(x) = limǫ→0 f(Aǫx) where Aǫ is a linear map Aǫ : Cn → Cn depending on ǫ. It is a
classical fact that the entries of Aǫ, or equivalently the coefficients of ℓi(x), can be taken in the ring
of Laurent polynomials C[ǫ±1], see e.g. [BCS97, Section 20.6]; in particular, the polynomial f(Aǫx)
is an element of C[ǫ±1, x1, . . . , xn].

The number of variables does not play a role, and we will occasionally use the slightly larger
ring C[x0, x1, . . . , xn] for notational convenience.

Define the product-plus-power polynomial P
[d]
1,1 = x1 · · · xd + xd0 ∈ C[x0, x1, . . . , xn]d. Given a

homogeneous degree d polynomial f in the variables x1, . . . , xn (without x0), it is clear that if

Kc(f) ≤ m then xm−d
0 f is a degeneration of P

[m]
1,1 . Therefore, lower bounds on the smallest possible

m such that xm−d
0 f E P

[m]
1,1 provide lower bounds on Kc(f) and hence on WR.

It is unclear to what extent the product-plus-power model is stronger than Kumar’s model, so
we provide debordering results for the product-plus-power model, see Section 1.2. We establish that
this model is not much stronger, hence lower bounds are expected to exist. To find such lower
bounds on Kumar’s complexity, we implement the geometric complexity theory approach for the
product-plus-power model, see Section 1.3.

1.2 Debordering the product-plus-power model

Border Waring rank, and border Kumar complexity are border measures of complexity, that is
they are defined in terms of degeneration. It is often unclear what the gap between a non-border
complexity measure and its border complexity measure can be. Lower bounds of a border complexity
measure in terms of a non-border measure are commonly called debordering results and they
guarantee that introducing the degeneration procedure does not make a model of computation
much stronger. We provide debordering results for the product-plus-power model and some
generalizations.

We record one important debordering result for border Waring rank, in terms of the algebraic
branching program width. Given a homogeneous polynomial f of degree d, the algebraic branching
program width of f , denoted abpw(f), is the smallest w such that f can be expressed as a product
f(x) = A1(x) · · ·Ad(x) of matrices whose entries are linear forms, with A1 of size 1 ×w, Ak of size
w×w for k = 2, . . . , d−1 and Ad of size w×1. It is known that abpw(f) ≤ WR(f) [For16, BDI21], and
further, these measures can be exponentially far (for e.g., see [CKW11]). In particular, Theorem 1.1
can be interpreted as a debordering result for Kumar’s complexity, showing abpw(f) ≤ Kc(f).

Similarly, other debordering results for border Waring rank, such as [DGI+24, Theorem 1],
and more generally classification results for secant varieties as in [BL14, Bal17, BB13], can be
reinterpreted in terms of Kumar’s complexity via Theorem 1.1.

We obtain the following result for degenerations of the product-plus-power polynomial P
[d]
1,1:

1.3 Theorem (Debordering product-plus-power). Let f ∈ C[x1, . . . , xn]d. If f E P
[d]
1,1, then

(i) either f ≤ P
[d]
1,1

(ii) or WR(f) ≤ O(d5).
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Also, we will obtain debordering results for a variant of the product-plus-power polynomial,

that is the product-plus-two-powers polynomial P
[d]
1,2 = x1 · · · xd + xd0 + xdd+1, as well. These

debordering results are more fine-grained because the previous techniques would show that abpw(f)
is polynomially-bounded [DDS21]. In Section 3.2, we show exponential lower bounds for the same
(see Theorem 3.15-Theorem 3.16).

1.3 The GCT program

Mulmuley and Sohoni introduced the geometric complexity theory (GCT) program [MS01, MS08]
as an approach to Valiant’s determinant vs permanent problem. The approach aims to determine
“representation theoretic obstructions” in order to prove lower bounds of certain complexity
measures, typically by proving the impossibility of a degeneration. Basic background knowledge on
the representation theory of the general linear group and the symmetric group can for example be
found in [FH91] and [Ful97], and is especially valuable in Section 4.

The group GLn has a natural action on C[x1, . . . , xn]d given by g · f = f ◦ gt or equivalently
g · f(x) = f(gtx) for any f ∈ C[x1, . . . , xn]d, g ∈ GLn, x ∈ Cn. Now, given two elements f1, f2 ∈
C[x1, . . . , xn]d, the condition that a polynomial f1 degenerates to a polynomial f2 is equivalent to
the fact that f2 ∈ GLn ·f1; here GLn ·f1 = {g ·f1 | g ∈ GLn} denotes the orbit of f1 under the group
action and the overline indicates the closure, equivalently in the Zariski or the Euclidean topology
of C[x1, . . . , xn]d [Kra84, AI.7.2 Folgerung]. Further, the membership statement f2 ∈ GLn ·f1 is
equivalent to the inclusion of orbit-closures GLn ·f2 ⊆ GLn ·f1.

Let C
[
C[x1, . . . , xn]d

]
be the ring of polynomials over C[x1, . . . , xn]d: its elements are polynomials

in the coefficients of the elements of C[x1, . . . , xn]d. Given f ∈ C[x1, . . . , xn]d, let I(GLn ·f) ⊆
C
[
C[x1, . . . , xn]d

]
denote the vanishing ideal of the algebraic variety GLn ·f and let C[GLn ·f ] =

C
[
C[x1, . . . , xn]d

]
/I(GLn ·f) be the quotient ring, called the coordinate ring of GLn ·f . It turns

out that C[GLn ·f ] is a graded ring; denote by C[GLn ·f ]D its degree D component. The condition
GLn ·f2 ⊆ GLn ·f1 is equivalent to the inclusion I(GLn ·f1) ⊆ I(GLn ·f2), yielding a surjection of
graded rings C[GLn ·f1] ։ C[GLn ·f2]. In summary, if f1 degenerates to f2, then for every degree
D there is a surjective linear map

C[GLn ·f1]D ։ C[GLn ·f2]D.

The group action of GLn on C[x1, . . . , xn]d induces an action of GLn on the coordinate rings
via canonical pullback. This makes both C[GLn f1]D and C[GLn f2]D into finite dimensional
representations of GLn. The surjection is GLn-equivariant, namely it commutes with the group
action. The group GLn is reductive, a condition that guarantees that both representations
decompose into a direct sum of irreducible representations. For each partition λ, the representation
theoretic multiplicity multλ counts the number of irreducible representations of type λ in such
a decomposition; this number is independent of the decomposition. In the setting described
here, λ is always a partition of Dd into at most n parts, and Schur’s Lemma (see, e.g., [FH91,
Lemma 1.17]) implies an inequality of representation theoretic multiplicities: multλ(C[GLn f2]D) ≥
multλ(C[GLn f1]D).

The GCT program aims to prove obstructions to the existence of the surjection by determining
violations of these inequalities. More precisely, the existence of any λ with multλ(C[GLn f1]D) <
multλ(C[GLn f2]D) would guarantee GLn f2 6⊆ GLn f1 and therefore show that f2 is not a
degeneration of f1. This is called a representation theoretic multiplicity obstruction. If additionally
multλ(C[GLn f1]D) = 0, then we call this an occurrence obstruction. It is a wide open
question in geometric complexity theory in which situations orbit closure containment can be
disproved by representation theoretic multiplicity obstructions. Very few examples are known
[BI11, BI13a, IK20]. We determine multiplicity obstructions that show that the polynomial
xd0 + · · · + xdd is not a degeneration of P d

1,1 (which for example could also be seen directly by
comparing the dimensions of their orbit closures):
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1.4 Theorem (New obstructions). Let d ≥ 3, and let λ = (5d− 1, 1) + ((d + 1) × (10d)). These λ

are representation theoretic multiplicity obstructions that show xd0 + · · · + xdd 6E P
[d]
1,1:

multλ(C
[
GLd+1 P

[d]
1,1

]
) ≤ 4 < 5 = multλ(C

[
GLd+1(x

d
0 + · · · + xdd)

]
).

This result extends the result of [IK20] from the product polynomial to product-plus-power
by exhibiting multiplicity obstructions that are based entirely on the symmetries of the two
polynomials; see Theorem 4.10 for details.

Indeed, from a representation-theoretic and a combinatorial point of view, the polynomial P
[d]
1,1 =

∏
i∈[d] xi + xd0 looks very similar to the well-studied product polynomial P

[d]
1,0 =

∏
i∈[d] xi, which was

the object of several GCT papers [Kum15, BI17, DIP20, IK20]. A system of set-theoretic equations
for its orbit-closure was known for over a century, due to Brill and Gordon [Gor94], and their
representation theoretic structure has been recently described by Guan [Gua18]. We transfer as

much as possible of the known theory for P
[d]
1,0 to the setting of P

[d]
1,1, in order to mimic the proof

technique of [IK20].
In order to prove Theorem 4.10, we obtain several results about the more general polynomial

P
[d]
r,s :=

∑r
i=1

∏d
j=1xji +

∑s
i=1 y

d
i .

1. We determine the stabilizer of P
[d]
r,s under the action of the group GLrd+s, see Theorem 4.2.

2. We use the stabilizer to determine the representation theoretic structure of the coordinate

ring of the orbit of P
[d]
1,1, which is achieved in Proposition 4.4.

3. We prove that P
[d]
r,s is polystable, in the sense of invariant theory, see Proposition 4.5.

4. Polystability implies the existence of a fundamental invariant in the sense of [BI17]. In

Proposition 4.7, in the case P
[d]
1,1, we show an interesting connection between the degree

of this fundamental invariant and the famous Alon-Tarsi conjecture on Latin squares in
combinatorics: the fundamental invariant appears in degree d+ 1 if and only if the Alon-Tarsi
conjecture holds for d.

A Latin square is an n × n matrix with entries 1, . . . , n such that each row and each column
is a permutation. The column sign of a Latin square is the product of the signs of its column
permutations. If n is odd, then there are exactly as many sign +1 Latin squares as sign −1 Latin
squares, and a sign-reversing involution is obtained by switching the first two rows. The Alon-Tarsi
conjecture states that for n even, the number of sign +1 and sign −1 Latin squares are different.
The main references on the Alon-Tarsi conjecture are [AT92, Dri97, Gly10], where it is shown that
the conjecture is true for n = p± 1 for all odd primes p.

1.4 Related work and context

Waring rank and border Waring rank are the objects of a long history of work in classical algebraic
geometry and invariant theory, beginning in the nineteenth century [Cay45, Syl52, Cle61]. It is
related to the classical study of secant varieties [Pal06, Ter11] and today it has strong connections
to the study of the Gorenstein algebras [IK99, BB14] and the geometry of the Hilbert scheme of
points [BB21, JM22].

In complexity theory, one is interested in the growth of a complexity parameter in a sequence
of polynomials. In this context, we say that a p-family is a sequence of polynomials (fn)n∈N such
that the degree and the number of variables of fn are polynomially bounded as functions of n. The
complexity classes VWaring and VWaring consist of all p-families (fn)n∈N such that, respectively,
WR(fn) or WR(fn), are a polynomially bounded function of n. Important complexity classes include
VBP and VNP, consisting of p-families with polynomially bounded determinantal complexity or
permanental complexity, respectively. The determinantal complexity of a homogeneous polynomial
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f of degree d in n variables x1, . . . , xn is the smallest N such that xN−d
0 f is a restriction of the

determinant polynomial detN =
∑

σ∈SN
(−1)σ

∏N
i=1 xi,σ(i), which is a polynomial of degree N in N2

variables. The permanental complexity is defined similarly, in terms of the permanent polynomial
perN =

∑
σ∈SN

∏N
i=1 xi,σ(i). It is known that VBP ⊆ VNP [Val79, Tod92], and Valiant’s determinant

vs. permanent conjecture states that this inclusion is strict, that is VNP 6⊆ VBP.
The border complexity classes are VBP and VNP are defined similarly, replacing the notion

of restriction with the one of degeneration, that is allowing arbitrary close approximations of
polynomials in terms of determinants or permanents, rather than an exact expression. These border
complexity classes can be defined as topological closures as well, see [IS22]. A systematic study of
border complexity classes was initiated in [MS01, Bü04]: the Mulmuley-Sohoni conjecture is a
strengthening of Valiant’s conjecture, and it predicts that VNP 6⊆ VBP.

It is wide open whether VBP = VBP, hence it is unclear to what extent the Mulmuley-Sohoni
conjecture is stronger than Valiant’s conjecture. As a first step towards resolving this question, in
[BIZ18] it is shown that border of width-2 algebraic branching programs define the same complexity
class as algebraic formulas VBP2 = VF, over fields of characteristic 6= 2, and using [AW16] this
implies that VBP2 $ VBP2. Resolving similar problems of inclusion between a border complexity
class and a non-border complexity class is the goal of the debordering techniques. For instance,
the already mentioned inequality abpw(f) ≤ WR(f) proves the inclusion VWaring ⊆ VBP [For16,

BDI21]. In [DDS21, DS22], it is shown that Σ[k]ΠΣ $ VBP, where Σ[k]ΠΣ is the class of p-families

of polynomials which can be expressed as
∑k

i=1

∏
j ℓij, for linear forms ℓij. Very recently, [DIK+24]

showed that border width-2 ABPs over characteristic 2 can compute any algebraic formulas.
A major difficulty to achieve debordering results is that, in general, boundaries of orbits of

algebraic groups may present strong geometric pathologies. In small cases, one can achieve boundary
classification results. This was done in the case of border Waring rank at most 5 [BL14, BB13,

Bal17], for the 3 × 3 determinant polynomial det3 [HL16], and partially for the binomial P
[d]
2,0 =

x1 · · · xd + xd+1 · · · x2d [Hü17, Ch. II.9]. There are however universal results [Kac80, Vak06, Jel20]
hinting towards the difficulty of such a fine classification in general.

The GCT approach discussed in Section 1.3 was introduced in [MS01, MS08] as a path toward
the Mulmuley-Sohoni conjecture, and proposed to use occurrence obstructions to prove lower bounds
on the determinantal complexity of the padded permanent xN−n

0 pern. The no-go theorem of [IP17,
BIP19] proved that this is impossible by making use of the fact that [MS01, MS08] use the padded
formulation of the Mulmuley-Sohoni conjecture. There exists no such result when the determinant is
replaced, for instance, by the iterated matrix multiplication polynomial, so that the determinantal
complexity is replaced by the algebraic branching program width. The potential of multiplicity
obstructions is explored in [DIP20, IK20]: in particular, the GCT approach is used to prove that
the power sum polynomial is not a product of homogeneous linear forms, although there are easier
ways to prove this.

Friedman and McGuinness [FM19] give a survey about the Alon-Tarsi conjecture. The GCT
result in [Kum15] is based on the conjecture. The conjecture has been generalized in numerous
directions. [SW12] prove that Drisko’s proof method cannot be used without modifications to
prove the Alon-Tarsi conjecture. The same is true for results in [BI13b, BI17], some of which
are based on generalizations or variants of the conjecture. The Polymath Project number 12
(https://polymathprojects.org) was devoted to the study of Rota’s basis conjecture, which
for even n is implied by the Alon-Tarsi conjecture, see [HR94]. [Alp17] proves an upper bound on
the difference between the even and odd Latin squares.

2 Kumar’s complexity and border Waring rank

In this section, we prove Theorem 1.1, connecting Waring and border Waring rank to Kc-complexity
and its variants. To obtain the result, we observe that Kc expressions fall into three different cases,
depending on whether the scalar α(ǫ) in (1.※) converges to 0, converges to a nonzero constant, or
diverges. We study these three cases independently. For the case where α(ǫ) converges to zero, it is

6
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easy to see that the resulting polynomial is a product of affine linear polynomials, see Lemma 2.8.
For the case where α(ǫ) converges to a nonzero value, we use the Newton Identities to obtain the
desired lower bound given by the Waring rank, see Proposition 2.9. The case where α(ǫ) diverges
is the most interesting one as it is the one where cancellations occur in the limit; in this case the
proof is obtained via a border version of Newton relations.

Let ek(x1, . . . , xn) denotes the k-th elementary symmetric polynomial, defined by

ek(x1, . . . , xn) :=
∑

1≤j1<j2<···<jk≤n

xj1 · · · xjk ;

Recall that by definition e0 = 1. First, we record an immediate observation that will be useful
throughout:

2.1 Remark. It is easy to observe that

m∏

i=1

(1 + xi) =
m∑

j=0

ej(x)

where x = (x1, . . . , xm). In particular, given a homogeneous polynomial f ∈ C[x]d of degree d, if
f = α(

∏m
i=1(1 + ℓi) − 1) for homogeneous linear forms ℓ1, . . . , ℓm, then

ej(ℓ1, . . . , ℓm) = 0 for all j 6= d,

ed(ℓ1, . . . , ℓm) = 1
αf.

Newton identities are a central tool in this section; they relate the elementary symmetric
polynomials and the power sum polynomial, defined as pk(x) := xk1 + · · · + xkn.

2.2 Proposition (Newton Identities, see e.g. [Mac95], Section I.2). Let n, k be integers with
n ≥ k ≥ 1. Then

k · ek(x1, . . . , xn) =
∑

i∈[k]

(−1)i−1ek−i(x1, . . . , xn) · pi(x1, . . . , xn) .

In light of the Remark 2.1, the Kc model of computation is a sum of elementary symmetric
polynomials. Shpilka [Shp02] studied a similar notion of circuit complexity called ssym. For a
polynomial f , ssym(f) is defined as the smallest m such that f = ed(ℓ1, ℓ2, . . . , ℓm) where d = deg(f)
and ℓi are affine linear forms. It was proved in [Shp02] that ssym(f) is always finite, moreover several
upper and lower bounds for ssym(f) were proven. The complexity Kc differs from ssym(f), as Kc can
even be infinite. In fact, the only homogeneous polynomials with finite Kc-complexity are powers
of linear forms, as the following lemma shows.

2.3 Lemma. Let f ∈ C[x]d be a homogeneous polynomial such that Kc(f) < ∞. Then Kc(f) = d
and f is a power of a linear form.

Proof. If f is a homogeneous polynomial of degree d, then it is immediate that Kc(f) ≥ deg(f).
Notice that for any linear form ℓ, we have ℓd =

∏d
i=1(1 + ζ iℓ) − 1 where ζ is a primitive d-th root

of 1. This shows Kc(ℓd) ≤ d, hence equality holds.
Assume f ∈ C[x]d is a homogeneous polynomial with Kc(f) = m < ∞. By definition f =

α (
∏m

i=1(1 + ℓi) − 1) for some homogeneous linear forms ℓi ∈ C[x]. Write ℓ = (ℓ1, . . . , ℓm). By
Remark 2.1, we have, ed(ℓ) = 1

αf and ej(ℓ) = 0 for j 6= d.
First, observe m = d. Indeed, if m > d, we have 0 = em(ℓ) = ℓ1 · · · ℓm, which implies ℓi = 0 for

some i, in contradiction with the minimality of m. Since Kc(f) ≥ deg(f), we deduce m = d.
Now we show that if ℓ = (ℓ1, . . . , ℓd) satisfies e1(ℓ) = · · · = ed−1(ℓ) = 0 then ed(ℓ) = (−1)d−1 ·ℓdd;

in particular, by unique factorization, all ℓi’s are equal up to scaling. Write ℓ̂ = (ℓ1, . . . , ℓd−1). We
use induction on j to prove that ej(ℓ̂) = (−1)j · ℓjd for j = 1, . . . , d− 1. For j = 1, we have

0 = e1(ℓ) = (ℓ1 + · · · + ℓd−1) + ℓd = e1(ℓ̂) + ℓd
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which proves the statement. For j = 2, . . . , d− 1, consider the recursive relation

ej(ℓ) = ej(ℓ̂) + ℓdej−1(ℓ̂).

By assumption we have ej(ℓ) = 0 and the induction hypothesis guarantees ej−1(ℓ̂) = (−1)j−1 · ℓj−1
d ;

we deduce ej(ℓ̂) = −ℓd · (−1)j−1 · ℓj−1
d = (−1)jℓjd which proves the statement. Finally, notice

f = αed(ℓ) = αℓd · (−1)d−1 · ed−1(ℓ̂) = −αℓdd, which concludes the proof.

However, the model is complete if one allows approximations, as shown in [Kum20]. We
introduce an equivalence relation on C[ǫ±1][x]: given two polynomials f1, f2 whose coefficients
depend rationally on ǫ, we write f1 ≃ f2 if limǫ f1, limǫ f2 are both finite and they coincide. We
often use this notation with either f1 or f2 not depending on ǫ: if, for instance, f1 does not depend
on ǫ, then f1 ≃ f2 means that f2 = f1 + O(ǫ).

2.4 Proposition ([Kum20]). For all homogeneous f we have Kc(f) ≤ deg(f) ·WR(f).

Proof. The proof is based on a construction by Shpilka [Shp02]. Let WR(f) = r and write f =∑r
i=1 ℓ

d
i . Let ζ be a primitive d-th root of unity. Then one verifies that

f = −ed(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓr, . . . ,−ζd−1ℓr)

and for all 0 < i < d we have

ei(−ζ0ℓ1,−ζ1ℓ1, . . . ,−ζd−1ℓ1, . . . . . . ,−ζ0ℓr,−ζ1ℓ1, . . . ,−ζd−1ℓr) = 0.

Hence f ≃ −ǫ−d
((

(1 − ǫζ0ℓ1) · · · (1 − ǫζd−1ℓr)
)
− 1
)
. Therefore Kc(f) ≤ rd.

In fact, the following slightly stronger statement is true:

2.5 Proposition. For all homogeneous f we have Kc(f) ≤ deg(f) ·WR(f).

Proof. Analogously to the proof in Proposition 2.4, let WR(f) = r and let ℓ1, . . . , ℓr be linear forms
depending rationally on ǫ such that f ≃

∑r
i=1 ℓ

d
i = −ed(−ζ0ℓ1, . . . ,−ζd−1ℓr). Moreover, for all

0 < i < d, we have ei(−ζ0ℓ1, . . . ,−ζd−1ℓr) = 0.
Choose M large enough so that for all d < i ≤ dr we have that

ǫ−Mdei(−ǫMζ0ℓ1, . . . ,−ǫMζd−1ℓr) ≃ 0. We obtain f ≃ −ǫ−Md
((

(1−ǫM ζ0ℓ1) · · · (1−ǫMζd−1ℓr)
)
−1
)
.

Therefore Kc(f) ≤ rd.

Proposition 2.4 and Proposition 2.5 show that if WR(f) is small then Kc(f) is small. However,
there are polynomials with large Waring (border) rank but small Kumar complexity, such as
products of linear forms. For instance WR(x1 · · · xn) is exponentially large: a lower bound of(

n
⌊n/2⌋

)
can be easily shown by partial derivative methods, see e.g. [LT10, Sec. 11], [CKW11, Thm.

10.4]. However every completely reducible form has small Kumar complexity:

2.6 Lemma. If f = ℓ1 · · · ℓd is a product of homogeneous linear forms ℓi, then Kc(f) = d.

Proof. The lower bound is immediate because Kc(f) ≥ deg(f). For the upper bound, notice f ≃
ǫd
((∏d

i=1(1 + ǫ−1ℓi)
)
− 1
)
.

The main result of this section is a converse of the above statements: informally, homogeneous
polynomials with small border Waring rank and product of linear forms are the only homogeneous
polynomials with small border Kumar complexity. The following result explains the relation between
border Waring rank and border Kumar’s complexity and completes the proof of Theorem 1.1.

2.7 Theorem. If f is a product of homogeneous linear forms, then Kc(f) = deg(f). For all other
homogeneous f we have

max{deg(f), WR(f)} ≤ Kc(f) ≤ deg(f) ·WR(f).
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Proof. The first statement is Lemma 2.6. The right inequality follows from Proposition 2.5. Clearly
deg(f) ≤ Kc(f). The inequality WR(f) ≤ Kc(f) is a combination of Lemma 2.8, Proposition 2.9,
and Theorem 2.10 below.

Note that in the definition of Kc, the factor α can be assumed to be a scalar times a power of ǫ,
because only the lowest power of ǫ in α would contribute to the limit. We distinguish three cases,
depending on the sign of the exponent of ǫ in α.

• Kc+(f) is the smallest m such that f ≃ γǫN
(∏m

i=1(1 + ℓi) − 1
)

for some N ≥ 1, γ ∈ C and
ℓi ∈ C[ǫ±1][x]1; set Kc+(f) = ∞ if such an m does not exist;

• Kc−(f) is the smallest m such that f ≃ γǫ−M
(∏m

i=1(1 + ℓi) − 1
)

for some M ≥ 1, γ ∈ C and
ℓi ∈ C[ǫ±1][x]1; set Kc−(f) = ∞ if such an m does not exist;

• Kc=(f) is the smallest m such that f ≃ γ
(∏m

i=1(1+ℓi)−1
)

for some γ ∈ C and ℓi ∈ C[ǫ±1][x]1;
set Kc=(f) = ∞ if such an m does not exist.

We observe that Kc(f) = min
{
Kc+(f), Kc=(f), Kc−(f)

}
.

2.8 Lemma. For all homogeneous f , if Kc+(f) is finite, then f is a product of homogeneous linear
forms.

Proof. Let f ≃ γǫN
(∏m

i=1(1 + ℓi) − 1
)

with N ≥ 1. Since ǫN ≃ 0, we have f ≃ γǫN
∏m

i=1(1 + ℓi),
namely f is limit of a product of affine linear polynomials. The property of being completely
reducible is closed, therefore we deduce that f is a product of affine linear polynomials. Since f is
homogeneous, its factors are homogeneous as well.

2.9 Proposition (Newton Identities). For all homogeneous f we have WR(f) ≤ Kc(f) = Kc=(f).

Proof. Let d := deg(f). Suppose Kc=(f) = m and write f ≃ fǫ := γ
(∏m

i=1(1 + ℓi) − 1
)
. One can

verify that if even one of the ℓi diverges, then the j-th homogeneous part of fǫ diverges, where j is
the number of diverging ℓi. Hence all ℓi converge and we can set ǫ to zero. Hence, Kc=(f) = Kc(f).
Now, since f is homogeneous, each homogeneous degree i part of fǫ vanishes, i < d. In other words,
ei(ℓ) = 0 for all 1 ≤ i < d, where ℓ = (ℓ1, . . . , ℓm). Hence s(ℓ) = 0 for all symmetric polynomials of
degree < d. Therefore the Newton identity pd = (−1)d−1 · d · ed +

∑d−1
i=1 (−1)d+i−1ed−i · pi gives that

ed(ℓ) and pd(ℓ) are same up to multiplication by a scalar. Hence WR(f) ≤ m.

2.10 Theorem (Border Newton Identities). For all homogeneous f : WR(f) ≤ Kc−(f).

Proof. Let d := deg(f). Let f ≃ fǫ := γǫ−M
(∏m

i=1(1+ℓ′i)−1
)

with M ≥ 1. From the convergence of
fǫ we deduce that for each i we have ℓ′i = ǫℓi with ℓi ∈ C[ǫ][x]1, because otherwise the homogeneous
degree j part diverges, where j is the number of ℓ′i that do not satisfy this property.

Now, let fǫ,j denote the homogeneous degree j part of fǫ. Since f is homogeneous of degree d,
for 0 ≤ j < d we have fǫ,j ≃ 0. By expanding the product, observe that for all 0 < j < d we have
0 ≃ fǫ,j = γǫ−Mej(ǫℓ1, . . . , ǫℓm) = γǫ−M+jej(ℓ1, . . . , ℓm). We now show by induction that for all
1 ≤ j < d we have ǫ−M+jpj(ℓ1, . . . , ℓm) ≃ 0. This is clear for j = 1, because p1 = e1. For the step
from j to j + 1 we use Newton’s identities:

pj+1 = (−1)j (j + 1) ej+1 +
∑j

i=1(−1)j+iej+1−i · pi.

Hence ǫ−M+(j+1)pj+1(ℓ)

= (−1)j (j + 1) ǫ−M+(j+1)ej+1(ℓ)︸ ︷︷ ︸
≃0

+

j∑

i=1

(−1)j+i ǫ−M+(j+1)−iej+1−i(ℓ)︸ ︷︷ ︸
≃0

· ǫM︸︷︷︸
≃0

· ǫ−M+ipi(ℓ)︸ ︷︷ ︸
≃0

≃ 0.
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This finishes the induction proof, now we use Newton’s identities again in the same way to see that
ǫ−M+dpd(ℓ) ≃ (−1)d−1 · d · ǫ−M+ded(ℓ):

ǫ−M+dpd(ℓ) = (−1)d−1 · d · ǫ−M+ded(ℓ) +
d−1∑

i=1

(−1)d−1+i ǫ−M+d−ied−i(ℓ)︸ ︷︷ ︸
≃0

· ǫM︸︷︷︸
≃0

· ǫ−M+ipi(ℓ)︸ ︷︷ ︸
≃0

.

We are done now, because f ≃ fǫ,d = γǫ−M+ded(ℓ1, . . . , ℓm) ≃ γǫ−M+d · 1
d · (−1)d−1pd(ℓ1, . . . , ℓm)

and hence WR(f) ≤ m.

2.1 Linear approximations and Waring rank

We demonstrated the inequality Kc(f) ≤ deg(f) · WR(f) in Proposition 2.4. In the proof
of Proposition 2.4, only “linear approximations” have been used; we prove here a converse of
Proposition 2.4 in the restricted setting of linear approximation. Given a homogeneous polynomial
f ∈ C[x]d, let Kc−1 (f) be the smallest m such that there exist linear forms ℓ1, . . . , ℓm ∈ C[x]1 and

M ≥ 1 such that f ≃ γǫ−M
(∏m

i=1(1 + ǫℓi) − 1
)
.

2.11 Proposition. For any homogeneous polynomial f of degree d, we have WR(f) ≤ Kc−1 (f) ≤
d ·WR(f).

Proof. The inequality Kc−1 (f) ≤ d · WR(f) is clear from the proof of Proposition 2.4, as there we

obtained an expression of the form described in the definition of Kc−1 . Suppose Kc−1 (f) = m and

write f ≃ fǫ := γǫ−M
(∏m

i=1(1 + ǫℓi)− 1
)

with M ≥ 1 and ℓi ∈ C[x]1. It is immediate that m ≥ M ,
f = γeM (ℓ) and ej(ℓ) = 0 for j < M , where ℓ = (ℓ1, . . . , ℓm). Via the Newton identity for the
power sum polynomial, we have

pM (ℓ) = (−1)M−1MeM (ℓ) +
∑M−1

i=1 (−1)M+i−1eM−i(ℓ) · pi(ℓ).

Since ej(ℓ) = 0 for all 1 ≤ j < M , we obtain:

pM (ℓ) = (−1)M−1MeM (ℓ) = 1
γ (−1)M−1Mf.

We conclude WR(f) = WR(pM (ℓ)) ≤ WR(pM ) = m = Kc−1 (f), as desired.

3 Restricted binomials: debordering and lower bounds

In this section, we study restricted binomials. A binomial bnd is the polynomial bnd(x,y) := P
[d]
2,0 =

x1 . . . xd + y1 · · · yd. Theorem 1.3 is based on the presentation of P
[d]
1,1 and P

[d]
1,2 as restrictions of the

binomial P
[d]
2,0, which follows from the fact that both xd0 and xd0 − xdd+1 =

∏d
i=1(x0 − ζ ixd+1) are

completely reducible; here ζ is a primitive d-th root of 1. Therefore, degenerations of P
[d]
1,1 and P

[d]
1,2

arise as limits of the sum of two products

lim
ǫ→0

(
d∏

i=1

ℓi(ǫ) +

d∏

i=1

ℓ′i(ǫ)

)

where ℓi(ǫ), ℓ
′
i(ǫ) are linear forms depending rationally on ǫ, and the second product is restricted, in

the sense that, up to change of coordinates, it has either one or two variables.

In Section 3.1, we deborder product-plus-power (P
[d]
1,1) and product-plus-two-powers

models (P
[d]
1,2). In Section 3.2, we show exponential gaps between product-plus-power,

product-plus-two-powers, and binomials (in the affine sense). Identifying explicit polynomials which
are hard to approximate, and proving it remains a major template in algebraic and geometric
complexity theory. Often, proving lower bounds on the homogeneous model turns out to be easier
than in its affine model, because of the non-trivial cancellations in the latter model. However, in the
restricted setting, we are able to show optimal lower bounds, see Theorem 3.15 & Theorem 3.16.
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3.1 Debordering: Characterizing special binomials

In this section we prove debordering results for product-plus-power and product-plus-two-powers
models. Our method applies also for more general computational model based on restricted
binomials. More specifically, we prove that polynomials obtained in the limit in our model have
low border Waring rank. One can then apply a debordering result for WR such as abpw(f) ≤
WR(f) [BDI21, For14] or the results from [DGI+24] to get a complete debordering.

3.1 Definition (Restricted binomial model). We say that a homogeneous degree d polynomial f is
in the class RBk if it can be presented as

f =
d∏

i=1

ℓi +
d∏

i=1

ℓ′i

for some linear forms ℓi, ℓ
′
i such that rank(ℓ′1, . . . , ℓ

′
d) ≤ k. We also define the corresponding

approximate class RBk in the standard way: a homogeneous degree d polynomial f is in RBk

if

f = lim
ε→0

(
d∏

i=1

ℓi(ǫ) +

d∏

i=1

ℓ′i(ǫ)

)
(3.2)

for some ℓi(ǫ), ℓ
′
i(ǫ) ∈ C[ǫ±1][x]1 such that rank(ℓ′1(ǫ), . . . , ℓ′d(ǫ)) ≤ k for every ǫ 6= 0.

The main theorem of this section is a debordering result of RBk in terms of border Waring rank.
Theorem 1.3 is a consequence of this result.

3.3 Theorem (Debordering RBk). Let f be a homogeneous polynomial of degree d in RBk. Then
either f ∈ RBk, or WR(f) ≤ O(d3k+2).

To prove this theorem, we first need some basic lemmas which will be used in the proof. We will
use non-homogeneous polynomials, so instead of Waring rank we will be working with the complexity
of ΣΛΣ-circuits. Denote by Σ[s]Λ[e]Σ the class of (non-homogeneous) polynomials representable as

a sum of s powers of affine linear forms with exponents not exceeding e, and by Σ[s]Λ[e]Σ the
corresponding class closed under approximation. As the following lemma shows, for homogeneous
polynomials this model is equal in power to border Waring rank.

3.4 Lemma. Let f be a homogeneous polynomial of degree d. Then f ∈ Σ[s]ΛΣ if and only if
WR(f) ≤ s

Proof. Clearly, if WR(f) ≤ s then f ∈ Σ[s]ΛΣ. For the converse, suppose f ≃
∑

i∈[s](αi + ℓi)
ei ,

where αi ∈ C[ǫ±1], and ℓi ∈ C[ǫ±1][x]1. Taking the degree d part of each side, we obtain a border
Waring rank decomposition f ≃

∑
i : ei≥d

(ei
d

)
ℓdiα

ei−d
i with at most s summands.

We recall a classical result on the border Waring rank of a binary monomial.

3.5 Proposition (see, e.g., [LT10, Cor. 4.5]). If a ≤ b, then WR(xayb) = a + 1.

The next lemma bounds the ΣΛΣ complexity of a polynomial in terms of the complexity of
polynomials obtained from it by substitution of variables.

3.6 Lemma (Interpolation). Let f be a polynomial of degree d such that f(γi, x2, . . . , xn) ∈

Σ[s] ∧[e] Σ for some distinct γ0, . . . , γd ∈ C. Then f ∈ Σ[s(d+1)3] ∧[e+d] Σ.

Proof. Write f(x) =
∑d

j=0 x
j
1fj(x2, . . . , xn). By polynomial interpolation there exist αij ∈ C such

that fj =
∑d

i=0 αijf(γi, x2, . . . , xn). By assumption, f(γi, x2, . . . , xn) ≃
∑s

j=1 ℓ
ej
ij , where ℓij are

affine linear forms with coefficients in C[ǫ±1], and ej ≤ e. Hence

fj(x) ≃

d∑

i=0

s∑

j=1

αijℓ
ej
ij =⇒ fj(x) ∈ Σ[s(d+1)] ∧[e] Σ .
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Note that for any affine linear polynomial ℓ the polynomial xj1ℓ
e can be approximated by a

Σ[d+1] ∧[e+j] Σ-circuit using the decomposition of the monomial xjye with border Waring rank
equal to min{j + 1, e + 1} ≤ j + 1 ≤ d + 1; this follows from Proposition 3.5. Therefore

xj1fj ∈ Σ[s(d+1)2] ∧[e+j] Σ, and f(x) =
∑d

i=0 x
j
1fj ∈ Σ[s(d+1)3] ∧[e+d] Σ.

Applying Lemma 3.6 several times we obtain the following result.

3.7 Corollary. Let f(x) ∈ C[x] be a polynomial of degree d such that

f(γ1i1 , γ2i2 , . . . , γkik , xk+1, . . . , xn) ∈ Σ[s] ∧[e] Σ

for some γij ∈ C, 1 ≤ i ≤ k, 0 ≤ j ≤ d, with γi0, . . . , γid distinct for each i. Then

f ∈ Σ[s(d+1)3k ] ∧[e+kd] Σ.

Additionally, we need the following statement similar to Theorem 2.10, which considers an
auxiliary Kumar-like model.

3.8 Theorem. For any degree d polynomial f(x) ∈ C[x], not necessarily homogeneous, suppose we
have f ≃ ǫ−M

(∏m
i=1(1 + ǫai) −

∏m
i=1(1 + ǫbi)

)
for some linear forms ai, bi ∈ C[ǫ][x]1 with M ≥ 1.

Then f ∈ Σ[2md] ∧[d] Σ.

Proof. Let fǫ = ǫ−M
(∏m

i=1(1+ǫai)−
∏m

i=1(1+ǫbi)
)
. Denote by fj and fǫ,j the homogeneous degree

j parts of f and fǫ respectively. Since f ≃ fǫ, we have

fj ≃ fǫ,j = ǫ−M (ej(ǫa1, . . . , ǫam) − ej(ǫb1, . . . , ǫbm)) = ǫ−M+j (ej(a) − ej(b)) ,

where a = (a1, . . . , am) and similarly b = (b1, . . . , bm). Note that since fǫ,j converges, ej(a) − ej(b)
is divisible by ǫM−j for all j ≥ 1, that is,

ej(a) ≡ ej(b) mod 〈ǫM−j〉

where we consider ej(a) and ej(b) as elements of the ring C[ǫ][x].
We now show by induction that for all j ≥ 1 the following additional congruences hold.

pj(a) ≡pj(b) mod 〈ǫM−j〉

pj(a) − pj(b) ≡(−1)j−1j (ej(a) − ej(b)) mod 〈ǫM−j+1〉

The case j = 1 is trivially true because p1 = e1. For the induction step from j to j + 1, we use
Newton’s identities

pj+1 = (−1)j(j + 1)ej+1 +
∑j

i=1(−1)j+iej+1−i · pi.

We obtain

pj+1(a) − pj+1(b) =(−1)j(j + 1) (ej+1(a) − ej+1(b))

+

j∑

i=1

(−1)j+i (ej+1−i(a) · pi(a) − ej+1−i(b) · pi(b)) . (3.9)

By induction hypothesis we know that for 1 ≤ i ≤ j

pi(a) ≡pi(b) mod 〈ǫM−i〉

ej+1−i(a) ≡ej+1−i(b) mod 〈ǫM−(j+1)+i〉.

Since M − j ≤ M − i and M − j ≤ M − (j + 1) + i, this can be relaxed to

pi(a) ≡pi(b) mod 〈ǫM−j〉

ej+1−i(a) ≡ej+1−i(b) mod 〈ǫM−j〉.
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From (3.9) we get

pj+1(a) − pj+1(b) ≡ (−1)j(j + 1) (ej+1(a) − ej+1(b)) mod 〈ǫM−j〉.

Weakening this to an equivalence mod〈ǫM−(j+1)〉, we obtain

pj+1(a) − pj+1(b) ≡ (−1)j(j + 1) (ej+1(a) − ej+1(b)) ≡ 0 mod 〈ǫM−(j+1)〉,

or pj+1(a) ≡ pj+1(b) mod 〈ǫM−(j+1)〉, finishing the induction.
Finally, we use the proved congruences to write an approximate decomposition of f . We have

fj ≃ ǫ−M+j (ej(a) − ej(b)) ≃ ǫ−M+j ·
1

j
· (−1)j−1 (pj(a) − pj(b)) ,

which shows that WR(fj) ≤ 2m. Note that f0 = 0, so f =
∑d

j=1 fj ∈ Σ[2md]Λ[d]Σ.

3.10 Corollary. For any degree d polynomial f(x) ∈ C[x], not necessarily homogeneous, suppose
we have f ≃ ǫ−M

(
α
∏m

i=1(1 + ǫai) − β
∏m

i=1(1 + ǫbi)
)
with M ≥ 1 for some ai, bi ∈ C[ǫ][x]1 and

α, β ∈ C[ǫ] such that α ≃ β 6≃ 0. Then f ∈ Σ[2md+1] ∧[d] Σ.

Proof. Let fj and fǫ,j be the homogeneous parts as in the proof of the preceding Theorem.

Additionally, Let α0 = limǫ→0 α and γ′ = β
α ∈ C[[ǫ]]. As mentioned earlier, one can truncate

and work with γ ≡ γ′ mod 〈ǫr〉, for some large positive integer r. From assumptions of the
theorem, α0 6= 0 and γ ≃ 1. We have

1

α0
f ≃

1

α
f ≃ ǫ−M

( m∏

i=1

(1 + ǫai) − γ

m∏

i=1

(1 + ǫbi)
)

By taking degree 0 part we get 1
α0
f0 ≃

1
α0
fǫ,0 = ǫ−M (1 − γ), so for j ≥ 1 we have

1

α0
fj ≃ ǫ−M+j(ej(a) − γej(b)) = ǫ−M+j(ej(a) − ej(b)) + ǫj

fǫ,0
α0

ej(b) ≃ ǫ−M+j(ej(a) − ej(b)),

hence

f ≃ f0 + α0ǫ
−M
( m∏

i=1

(1 + ǫai) −

m∏

i=1

(1 + ǫbi)
)
,

and we reduce to the case considered in Theorem 3.8.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Since f ∈ RBk, it has an approximate decomposition (3.2), which we rewrite
as

f ≃ ǫp
d∏

i=1

ℓi − ǫp
′

d∏

i=1

ℓ′i

where ℓi, ℓ
′
i ∈ C[ǫ][x]1 are not divisible by ǫ and rank(ℓ′1, . . . ℓ

′
d) ≤ k at any ǫ 6= 0. Define ℓi0 ∈ V

as ℓi0 = ℓi|ǫ=0 and similarly ℓ′i0 = ℓ′i|ǫ=0. ℓi0 and ℓ′i0 are nonzero and by semicontinuity of rank we
have rank(ℓ′10, . . . ℓ

′
d0) ≤ k.

If p = p′ = 0, then f =
∏d

i=0 ℓi0−
∏d

i=0 ℓ
′
i0. Similarly, if one of the exponents p and p′ is positive,

then the corresponding summand tends to 0 as ǫ → 0, and f is a product of linear forms, and if
both p and p′ are positive, then f = 0. In all these cases we have f ∈ RBk.

Consider now the case when there are negative exponents. The convergence of the right hand
side of the decomposition implies that p = p′ and the lowest degree term

∏d
i=0 ℓi0−

∏d
i=0 ℓ

′
i0 is zero.

By unique factorization the sets of linear forms ℓi0 and ℓ′i0 are the same up to scalar multiples, and
we can permute and rescale the factors in one of the products so that ℓi0 = ℓ′i0. Additionally we
can assume that ℓ10, . . . , ℓr0 are linearly independent, where r = rank(ℓ10, . . . ℓd0) ≤ k.
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Since ℓi0 for i ≤ r are linearly independent, there exists an invertible linear map A such that
ℓi0(Ax) = xi for i ≤ r. The linear forms ℓi0 lie in the linear span of the first r of them, which means
that ℓi0(Ax) ∈ C[x1, . . . , xr]1 for all i.

Let M = −p, Li(x) = ℓi(Ax) and L′
i(x) = ℓ′i(Ax). For the polynomial g(x) = f(Ax) we obtain

an approximate decomposition of the following form

g ≃ ǫ−M
( d∏

i=1

Li −

d∏

i=1

L′
i

)

where Li, L
′
i ∈ C[ǫ][x]1 are such that Li0 := Li|ǫ=0 = L′

i|ǫ=0 are nonzero elements of C[x1, . . . , xr].
Choose γij ∈ C for 1 ≤ i ≤ r, 0 ≤ j ≤ d so that γi0, . . . , γid are distinct for each i and

Li0(γ1j1 , . . . , γrjr) 6= 0 for all i, j1, . . . , jr. The choice is possible because Lk0 are nonzero and hence
the set of tuples γ not satisfying the required conditions is a nontrivial Zariski closed set. Write

Li(γ1j1 , . . . , γrjr , xr+1, . . . , xn) = αi + ǫAi(xr+1, . . . , xn)

L′
i(γ1j1 , . . . , γrjr , xr+1, . . . , xn) = βi + ǫBi(xr+1, . . . , xn)

with αi, βi ∈ C[ǫ] such that αi ≃ βi and Ai, Bi ∈ C[ǫ][xr+1, . . . , xn]1. Set α =
∏d

i=1 αi, β =
∏d

i=1 βi,
ai = Ai

αi
, bi = Bi

βi
. Because αi|ǫ=0 = Li0(γ1j1 , . . . , γrjr) 6= 0, ai are well defined in the ring C[[ǫ]][x];

ditto for bi. As argued earlier, truncating and working with finite precision of ǫ suffices, therefore,
let a′i := ai mod 〈ǫr〉, and similarly for b′i, for some large positive integer r. We obtain

g(γ1j1 , . . . , γrjr , xr+1, . . . , xn) ≃ ǫ−M
(
α

d∏

i=1

(1 + ǫa′i) − β
d∏

i=1

(1 + ǫb′i)
)
.

By Corollary 3.10 g(γ1j1 , . . . , γrjr ,x) ∈ Σ[2d2+1]Λ[d]Σ. By Lemma 3.6 g ∈ Σ[(2d2+1)(d+1)3r ]Λ[(r+1)d]Σ,
and by Lemma 3.4 WR(g) ≤ (2d2 + 1)(d + 1)3r = O(d3k+2). Since border Waring rank is invariant
under invertible linear transformations, the same is true for f .

As special cases we obtain the following results for product-plus-power and product-plus-two
powers. Note that RB1 consists of polynomials of the form

∏d
i=1 ℓi + ℓ′d1, which are exactly the

restrictions of P
[d]
1,1. Similarly, f ∈ RB1 if and only if f E P

[d]
1,1. Therefore, Theorem 1.3 is a

consequence of Theorem 3.3.
Similarly, the result for the product-plus-two-powers follows for the analysis of RB2, because

the sum of two powers xd0 − xdd+1 can be represented as a product of linear forms in two variables

xd0−xdd+1 =
∏d

i=1(x0−ζ ixd+1), where ζ is a primitive d-th root of unity. A more careful case-by-case
analysis gives the following result.

3.11 Theorem (debordering product-plus-two-powers). Let f ∈ C[x1, · · · , xn]d such that f E P
[d]
1,2.

One of the three alternatives is true:

1. f ≤ P
[d]
1,2, or

2. f ≤
∏d

i=1 yi + yd−1
0 · yd+1, or

3. WR(f) = O(d8).

Proof. The proof mostly follows the proof of Theorem 3.3. For the completeness, we give a detailed
proof.

Since, f E P
[d]
1,2, by definition, f = limε→0 (A + B + C), where A :=

∏d
i=1 ℓi(ε), B := ℓ′(ε)d, and

C := ℓ′′(ε)d. There are a few cases to analyze.

(I) If individually, limε→0A, limε→0B, and limε→0C exist, then f ≤ P
[d]
1,2.
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(II) If g := limε→0(A+B) and h := limε→0C exist, then note that g E P
[d]
1,1, then by Theorem 1.3,

we have

(i) either g ≤ P
[d]
1,1

(ii) or WR(g) ≤ O(d5).

Since, WR(h) = 1, and f = g + h, the theorem follows.

(III) If g := limε→0A and h := limε→0(B +C) exist, then note that g ≤ P
[d]
1,0, and WR(h) = 2. It is

known that this either WR(h) = 2 or h = ℓ̂d−1
1 ℓ̂2 for two linear forms ℓ̂1, ℓ̂2, see, e.g., [LT10].

Therefore, f = g + h corresponds to either (1) or (2).

(IV) If none of (I)–(III) is true, then note that f can be rewritten as

lim
ε→0

(
d∏

i=1

ℓi(ε) +

d∏

i=1

(ℓ′(ε) − ζ2i−1ℓ′′(ε))

)
,

where ζ is the (2d)-th primitive root of unity. Further, it is easy to see that
rank

(
ℓ′(ε) − ζℓ′′(ε), · · · , ℓ′(ε) − ζ2d−1ℓ′′(ε)

)
≤ 2, for every ε 6= 0. Therefore, by definition f ∈

RB2. Using, Theorem 3.3, we get that WR(f) ≤ O(d8).

This finishes the proof.

3.2 Lower Bounds

In this section, we prove several exponential separations between related polynomials contained in
the affine closure of binomials.

3.12 Lemma. The polynomial P
[d]
1,2 =

∏
i∈[d] xi + xdd+1 + xdd+2 cannot be written as a product of

linear forms.

Proof. For every homogeneous polynomial f of degree d which is a product of linear forms, the
space of first order partial derivatives has dimension at most d. But

∏
i∈[d] xi + xdd+1 + xdd+2 clearly

has d + 2 linearly independent partial derivatives.

3.13 Lemma. The polynomial P
[d]
2,0 =

∏d
i=1 xi +

∏2d
i=d+1 xi cannot be written as a product of linear

forms.

Proof. It easily follows from a proof similar to that of Lemma 3.12.

3.14 Lemma. For the polynomial P
[d]
1,2 =

∏
i∈[d] xi + xdd+1 + xdd+2, we have WR(f) ≥ 2Ω(d).

Proof. Evaluating xd+1 = xd+2 = 0, we obtain

WR(f) ≥ WR(x1 · · · xd) ≥

(
d

⌈d/2⌉

)

where the second inequality follows computing the dimension of the space of partial derivatives of
order ⌊d/2⌋, see, e.g., [LT10, Prop. 11.6].

For polynomials f and g (not necessarily homogeneous) we write f ≤aff g if there exists an
affine linear map A with f = g ◦ A. We write f Eaff g if there exist affine linear maps Aǫ with
f = limǫ→0 g ◦ Aǫ.

3.15 Theorem (First exp. gap theorem). If P
[d]
1,2 Eaff P

[e]
1,1, then e ≥ exp(d).

We remark that by Kumar’s result [Kum20], we know that there exists e ≤ exp(d), such that

P
[d]
1,2 Eaff P

[e]
1,1. Therefore, Theorem 3.15 is optimal.
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Proof of Theorem 3.15. Let P
[d]
1,2 Eaff P

[e]
1,1. That means that there are affine linear forms Li ∈

C[ǫ±1][x] such that
∏

i∈[d] xi+xdd+1+xdd+2+ǫ·S(x, ǫ) =
∏

i∈[e]Li+Le
e+1. By substituting, xi 7→ xi/x0,

and multiplying both sides by xe0, we get that xe−d
0 ·P

[d]
1,2 + ǫ · Ŝ =

∏
i∈[e] L̂i + L̂e

e+1, for homogeneous

linear forms L̂i, or, equivalently, xe−d
0 · P

[d]
1,2 E P

[e]
1,1.

By Theorem 1.3, we know that xe−d
0 ·P

[d]
1,2 E P

[e]
1,1 implies either (i) xe−d

0 ·P
[d]
1,2 =

∏
i∈[e] ℓi + ℓe0, for

some linear forms ℓi ∈ C[x], or (ii) WR(xe−d
0 · P

[d]
1,2) = O(e5). We show that (i) is an impossibility

while (ii) can happen only when e ≥ exp(d).

Proof of Part (ii): Fix a random x0 = α ∈ C. Note that, this implies that P
[d]
1,2 + ǫg =

∑
i∈[k] ℓ

e
i

for some affine forms ℓ̂i ∈ C[ǫ±1][x] and g ∈ C[ǫ][x] with k ∈ O(e5). Since P
[d]
1,2 is homogeneous, this

also implies that WR(P
[d]
1,2) ≤ k. But then Lemma 3.14 implies that k ≥ 2Ω(d), which in turn implies

that e ≥ 2Ω(d).

Proof of Part (i): Let xe−d
0 · P

[d]
1,2 =

∏
i∈[e] ℓi + ℓe0. The space of first order partials of the LHS

has dimension at least d + 2, while the one of the RHS has dimension at most e + 1; since trivially∏
i∈T ℓi, for T ⊂ [e], such that |T | = e − 1, and ℓe−1

0 certainly span the space of single partial
derivatives. Therefore, e ≥ d + 1. This will be important since we will use the fact that e− d ≥ 1,
in the below.

Further, we can assume that x0 ∤ ℓ0. Otherwise, say ℓ0 = c · x0, for some c ∈ C, which implies
that xe−d

0 |
∏

i∈[e] ℓi. Hence, without loss of generality, we can assume that ℓi = x0, for i ∈ [e − d]
(we are assuming constants to be 1, because we can always rescale and push the constants to the
other linear forms). Therefore, RHS is divisible by xe−d

0 . By dividing it out and renaming the linear
forms appropriately, we get

P
[d]
1,2 =

∏

i∈[d]

ℓ̂i + cxd0 ,

where ℓ̂i ∈ C[x]. Further, we can put x0 = 0. Note that, x0 ∤ ℓ̂i, for any i, since otherwise x0 divides
RHS, but it doesn’t divide the LHS. After substituting x0 = 0, we get that

P
[d]
1,2 =

∏

i∈[d]

ℓ̃i ,

where C[x1, . . . , xd+2] ∋ ℓ̃i = ℓ̂i|x0=0 6= 0. From Lemma 3.12, it follows that this is not possible.
A similar argument shows that x0 ∤ ℓi, for any i ∈ [d]; because otherwise that implies x0 | ℓ0, and
hence the above argument shows a contradiction.

Therefore, we assume that x0 ∤ ℓi, for i ∈ [0, d]. Now, there are two cases – (i) x0 appears in ℓ0,
(ii) x0 does not appear in ℓ0.

If x0 appears in ℓ0, then say ℓ0 = c0x0 + ℓ̂0, for some c0 6= 0. Note that ℓ̂0 ∈ C[x1, . . . , xd+2]1 is
non-zero, since we assume that x0 ∤ ℓ0. Substitute x0 = −ℓ̂0/c0 (so that ℓ0 vanishes). This implies:

(−ℓ̂0/c0)e−d · P
[d]
1,2 =

∏

i∈[e]

ℓ̂i ,

where ℓ̂i = ℓi|x0=−ℓ̂0/c0
. Since LHS is non-zero, so is each ℓ̂i. Since, everything is homogeneous, and

we have unique factorization, the above implies that up to renaming, P
[d]
1,2 = c ·

∏
i∈[d] ℓ̂i, which is a

contradiction by Lemma 3.12.
If x0 does not appear in ℓ0, then there must exist an i ∈ [e] such that x0 appears in ℓi, otherwise

RHS is x0-free which is trivially a contradiction. We also know that x0 cannot divide ℓi, by our
assumption. So, say ℓi = cix0 + ℓ̂i, where ℓ̂i is x0-free, and ci ∈ C is a nonzero element. Substitute
x0 = −ℓ̂i/ci, so that ℓi vanishes. Since ℓ0 is x0-free, we immediately get that

(−ℓ̂0/c0)e−d · P
[d]
1,2 = ℓe0 .
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Again, by unique factorization, we get that P
[d]
1,2 = c · ℓd0, for some c ∈ C, which is a contradiction

by Lemma 3.12. This finishes the proof.

3.16 Theorem (Second exp. gap theorem). If P
[d]
2,0 Eaff P

[e]
1,2, then e ≥ exp(d).

Proof. Let P
[d]
2,0 Eaff P

[e]
1,2. A similar formulation as above (in the previous theorem) gives us that

xe−d
0 ·P

[d]
2,0 E P

[e]
1,2. By Theorem 3.11, we know that xe−d

0 ·P
[d]
2,0 E P

[e]
1,2 implies – either (i) xe−d

0 ·P
[d]
2,0 =

g+h, where g =
∏

i∈[e] ℓi, for some linear forms ℓi ∈ C[x]1, and WR(h) ≤ 2, or (ii) WR(xe−d
0 ·P

[d]
2,0) =

O(e8). Similarly, as before, we show that (i) is an impossibility while (ii) can happen only when
e ≥ exp(d). Part (ii) proof is exactly to the argument in the proof of Theorem 3.15.

To prove the Part (i), there are two cases – (a) h = ℓe0+ℓee+1, for ℓi ∈ C[x]1, or, (b) h = ℓe−1
0 ·ℓe+1.

Case (a): Let xe−d
0 · P

[d]
2,0 =

∏
i∈[e] ℓi + ℓe0 + ℓee+1. We assume that x0 does not divide ℓi, for some

i ∈ {0, e + 1}, and each ℓi, for i ∈ [e], otherwise, we can divide by the maximum power of x0 on
both the sides.

The space of first order partial derivatives of the LHS has dimension at least 2d whereas the one
of the RHS has dimension at most e + 2: since trivially

∏
i∈T ℓi, for T ⊂ [e], such that |T | = e− 1,

and ℓe−1
0 , ℓee−1 certainly span the space of single partial derivatives. Therefore, e ≥ 2d− 2.

Now, we divide this into subcases:

(a1) x0 does not appear in ℓi, for any i ∈ [e],
(a2) x0 appears in ℓi, for some i ∈ [e].

Case (a1): x0 does not appear in ℓi, for i ∈ [e]. In that case, say ℓ0 = c0x0 + ℓ̂0, and ℓe+1 =
ce+1x0 + ℓ̂e+1, where ℓ̂0 and ℓ̂e+1 are x0-free, and c0, ce+1 are constants (might be 0 as well, but both
cannot be 0 since then RHS becomes x0-free). Therefore, the coefficient of xe−d

0 (as a polynomial)

in RHS is γ0ℓ̂
d
0 +γe+1ℓ̂

d
e+1, where γ0 =

(e
d

)
ce−d
0 , and similarly γe+1 =

(e
d

)
ce−d
e+1. Comparing with LHS,

we get that P
[d]
2,0 = γ0ℓ̂

d
0 + γe+1ℓ̂

d
e+1. Trivially, over C, γ0ℓ̂

d
0 + γe+1ℓ̂

d
e+1 is a product of linear forms,

which is a contradiction, using Lemma 3.13.

Case (a2): If x0 appears in one of the ℓi for i ∈ [e], it can appear in two ways, either ℓi is a
constant multiple of x0, or ℓi = cix0 + ℓ̂i, where ℓ̂i is a nonzero linear form which is x0-free. Let
S1 ⊆ [e] be such that ℓi = ci · x0, for i ∈ S1, for some nonzero constant ci ∈ C, and S2 ⊆ [e] be such
that ℓi = cix0 + ℓ̂i, where ℓ̂i is nonzero.

Note that if |S1| + |S2| < e − d, then xe−d
0 cannot be contributed from the product and hence

it only gets produced from ℓe0 + ℓee+1, and we get a contradiction in the same way as above. Hence,
without loss of generality, assume that |S1| + |S2| ≥ e− d.

If S2 is non-empty, say j ∈ S2, then substitute x0 = −ℓ̂j/cj , so that ℓj becomes 0. This
substitution gives us the following:

(−ℓ̂j/cj)
e−d · P

[d]
2,0 = ℓ̃e0 + ℓ̃ee+1 .

Since, ℓ̃e0 + ℓ̃ee+1 can be written as a product of linear forms, from the unique factorization, it follows
that f must be a product of linear forms, which is a contradiction from Lemma 3.13. Hence, we are
done when |S2| is non-empty.

If S2 is empty, since |S1|+ |S2| ≥ e−d by assumption, we have |S1| ≥ e−d. In particular, xe−d
0 |

LHS −
∏

ℓi =⇒ xe−d
0 | ℓe0+ℓee+1 =

∏
i(ℓ0−ζ2i+1ℓe+1), where ζ is 2e-th root of unity. Since, e−d ≥ 2

for d ≥ 4, this simply implies that there are two indices i1 and i2 such that ℓ0 − ζ i1ℓe+1 = ci1x0,
and ℓ0 − ζ i2ℓe+1 = ci2x0. Together, this implies that both ℓ0 and ℓe+1 are multiples of x0, which
is a contradiction, since we assumed that x0 cannot divide each ℓi, for i ∈ [0, e + 1]. Hence, we are
done with case (a).

Case (b): Let xe−d
0 · P

[d]
2,0 =

∏
i∈[e] ℓi + ℓe−1

0 · ℓe+1. We assume that x0 does not divide both ℓi, for
some i ∈ [e], and one of the ℓ0 or ℓe+1, otherwise, we can divide by the maximum power x0 both
side. Again, a similar argument shows that e ≥ 2d− 2.
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Similarly, as before, we divide into subcases: (b1) x0 does not appear in ℓi, for any i ∈ [e],
(b2) x0 appears in ℓi, for some i ∈ [e].

Case (b1): If x0 does not appear in the first product, i.e,. any of ℓi, for i ∈ [e], then it must
appear in ℓ0 (because if it only appears in ℓe+1, the degree of x0 is 1 in RHS, a contradiction). Note
that, x0 ∤ ℓ0 (and similarly ℓe+1), because otherwise, substituting x0 = 0 makes LHS 0, while RHS
remains

∏
i∈[e] ℓi. Hence, let ℓ0 := c0x0 + ℓ̂0, where ℓ̂0 is x0-free. Substitute x0 = −ℓ̂0/c0, so that

(−ℓ̂0/c0)e−d · P
[d]
2,0 =

∏

i∈[e]

ℓi .

This in particular implies that P
[d]
2,0 is a product of linear forms, which is a contradiction by

Lemma 3.13.

Case (b2): In this case, without loss of generality, x0 appears in ℓ1. Note that, x0 cannot divide
ℓ1, because otherwise, it must divide LHS-

∏
i∈[e] = ℓe−1

0 ℓe+1, which implies that x0 must divide one

of the ℓ0 or ℓe+1, contradicting the minimality of x0-division. Therefore, ℓ1 = c1x0 + ℓ̂1, where c1 is
a nonzero constant, and ℓ̂1 is a nonzero linear form which is x0-free. Substitute x0 = −ℓ̂1/c1, both
side to get that

(−ℓ̂1/c1)e−d · P
[d]
2,0 = ℓ̂e−1

0 ℓ̂e+1 .

Therefore, again by unique factorization, we get that f must a product of linear forms, which is a
contradiction by Lemma 3.13.

4 Geometric complexity theory for product-plus-power

In this section, we study computational and invariant theoretic properties of the polynomial

P [d]
r,s =

r∑

k=1

d∏

i=1

xki +

s∑

j=1

ydj ,

defined in Section 1.3; this is a polynomial of degree d in rd + s variables. The cases
(r, s) = (1, 1), (1, 2), (2, 0), (0, r) correspond, respectively, to the product-plus-power, the
product-plus-two-powers, the binomial, and the power sum polynomial mentioned in the previous
sections.

Theorem 4.2 determines the stabilizer of P
[d]
r,s under the action of the group GLrd+s acting on

the variables. The knowledge of the stabilizer H = StabGLd+1
(P

[d]
1,1) allows us to determine the

representation theoretic structure of the coordinate ring of the orbit of P
[d]
1,1, which is achieved

in Proposition 4.4. Recall that the irreducible representations of GLd+1 are indexed by partitions
λ = (λ1, λ2, . . .), λ1 ≥ λ2 ≥ ..., with ℓ(λ) ≤ d+1, see Section 4.2. Denote by Sλ(Cd+1) the irreducible
representation of type λ. In this section we write SdV = S(d)V for the space of homogeneous
polynomials of degree d in dimV variables. For every integer D and every partition λ of dD, we
obtain the following identity:

multλ(C[GLd+1 P
[d]
1,1]) = dim(SλCd+1)H =

D∑

δ=0

∑

µ⊢δd,µ�λ,ℓ(µ)≤d

aµ(d, δ) ,

where aµ(d, δ) is the plethysm coefficients, that is the multiplicity of Sµ(Cd+1) in Sd(Sδ(V )),
see Proposition 4.4. We use this formula, and apply the [IK20] approach to lower bounds

on multλ(C[GLd+1 P
[d]
0,d]), to find a sequence of partitions where multλ(C[GLd+1 P

[d]
1,1]) <

multλ(C[GLd+1 P
[d]
0,d]), see Theorem 4.10. This implies GLd+1 P

[d]
0,d 6⊆ GLd+1 P

[d]
1,1 if d ≥ 3.
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We implement this approach explicitly and we determine via a computer calculation an
abundance of multiplicity obstructions against generic polynomials, see Appendix A.

In Proposition 4.5, we prove that P
[d]
r,s is polystable, in the sense of invariant theory. This

guarantees the existence of a fundamental invariant, in the sense of [BI17]: in Proposition 4.7, we
show a connection between the degree of this fundamental invariant and the Alon-Tarsi conjecture
on Latin squares in combinatorics.

4.1 Stabilizer

Consider the action of the general linear group GLn on the homogeneous components of the
polynomial ring C[x1, . . . , xn], by linear change of variables, as described in Section 1.3. For a
homogeneous polynomial f ∈ C[x]d, write StabGLn

(f) for its stabilizer under this action. It is an
immediate fact that StabGLn

(f) is a closed algebraic subgroup of GLn. It may consists of several
connected (irreducible) components: the identity component, denoted Stab0

GLn
(f) is the connected

component containing the identity; Stab0
GLn

(f) is a closed, normal subgroup of StabGLn(f) [Ges16,
Lemma 2.1]; the quotient StabGLn(f)/Stab0

GLn
(f) is a finite group.

The Lie algebra g of an algebraic group G can be geometrically identified with the tangent space
to G at the identity element. Moreover, if G is a subgroup of GLn, then g is naturally a subalgebra
of gln = End(Cn); moreover g uniquely determined the identity component of G.

It is a classical fact that the Lie algebra of StabGLn(f) is the annihilator of f under the
Lie algebra action of gln on C[x]d; denote this annihilator by anngln(f). Typically, in order to
determine StabGLn

(f), one first computes anngln(f), which uniquely determines Stab0
GLn

(f). Then,
one determines StabGLn

(f) as a subgroup of the normalizer NGLn
Stab0

GLn
(f). The last step is

often challenging; some methods to do this systematically in simplified settings are presented in
[GG15, Ges16, GIP17].

First, we record a general result regarding the stabilizer of sums of polynomials in disjoint sets
of variables. This is the symmetric version of [CGL+21, Thm. 4.1(i)]. We say that a polynomial
f ∈ SdCn is concise (in SdCn) if the first order partials of f are linearly independent.

4.1 Lemma. Let V = V1 ⊕ V2 and let f ∈ C[V ∗]d = SdV be a homogeneous polynomial with
f = f1 + f2, where fi ∈ SdVi are both concise, with d ≥ 3. Then

(i) anngl(V )(f1) = anngl(V1)(f1) ⊕ Hom(V2, V );

(ii) anngl(V )(f1 + f2) = anngl(V1)(f1) ⊕ anngl(V2)(f2).

Proof. For both statements, the inclusion of the right-hand term into the left-hand term is clear.
We prove the reverse inclusion.

For X ∈ gl(V ), write X =
∑2

i,j=1Xij , with Xij ∈ Hom(Vi, Vj).
The proof of (i) amounts to showing that if X ∈ anngl(V )(f1), then X12 = 0 and X11 ∈

anngl(V1)(f1). Suppose X.f1 = 0. Notice X.f1 = X11.f1 + X12.f1; here X11.f1 ∈ SdV1 and

X12.f1 ∈ V2 ⊗ Sd−1V1. In particular, both terms must vanish. The term X12.f1 is a sum of at
most dimV2 linearly independent elements, each of which is a linear combination of first order
partials of f1. Therefore, all such linear combinations must be 0, and since f1 is concise in SdV1,
we obtain X12 = 0. The condition X11.f1 = 0 is, by definition, equivalent to X11 ∈ anngl(V1)(f1).
This conclude the proof of (i).

To prove (ii), we show that if X ∈ anngl(V )(f), then X12 = 0, X21 = 0 and Xii ∈ anngl(Vi)(fi).
Suppose X.f = 0. We have X.f = (X11 + X12).f1 + (X21 + X22).f2. Notice

X11f1 ∈ SdV1, X12f1 ∈ V2 ⊗ Sd−1V1,
X21f2 ∈ V1 ⊗ Sd−1V2, X22f2 ∈ SdV2.

Since d ≥ 3, the four terms are linearly independent, hence they all must vanish individually. This
concludes the proof.
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We can now determine the stabilizer of P
[d]
r,s . Let TSLn denote the subgroup of diagonal elements

in SLn. We use the wreath product notation: given a group G, the wreath product G ≀ Sk for the
semidirect product G×k ⋊ Sk where Sk acts on the direct product G×k by permuting the direct
factors; we refer to [Rob96, Sec. 1.6] for details on this construction.

4.2 Theorem. For d ≥ 3 and for every r, s, we have

StabGL(V )(P
[d]
r,s) = ([TSLd ⋊Sd] ≀Sr) × (Zd ≀Ss);

each copy of TSLd ⋊Sd acts by rescaling and permuting the variables in one of the r sets {xji : i =
1, . . . , d} for j = 1, . . . , r; the group Sr permutes (set-wise) these sets; the group Zd ≀ Ss acts by
rescaling (by a d-th root of 1) and permuting the variables in the set {yi : i = 1, . . . , s}.

Proof. It is clear that the group on the right-hand side is contained in the stabilizer StabGL(V )(P
[d]
r,s).

We show the reverse inclusion.
First, we determine the identity component of StabGL(V )(P

[d]
r,s). By Lemma 4.1, the annihilator of

P
[d]
r,s in gl(V ) is the direct sum of the annihilators of its summands. This guarantees that the identity

component of the stabilizer is the product of the identity components for the summands of P
[d]
r,s . The

identity component for each square-free monomial is a copy of TSLd , see, e.g., [Lan17, Sec. 7.1.2].

The identity component of each power is trivial. Therefore, we deduce Stab0
GL(V )(P

[d]
r,s) = (TSLd)×r.

Since Stab0
GL(V )(P

[d]
r,s) is a normal subgroup of StabGL(V )(P

[d]
r,s), we have

StabGL(V )(P
[d]
r,s) ⊆ NGLrd+s

(TSLd
×r

) = ([TSLd ⋊Sd] ≀Sr) ⋊Q

where Q is the parabolic subgroup stabilizing the subspace spanned by the xij variables; here
NGLrd+s

(=) denotes the normalizer subgroup.
In order to determine the discrete component, we follow the same argument as the one used for

the power sum polynomial P
[d]
0,s in [Lan17, Section 8.12.1]. In particular, StabGL(V )(P

[d]
r,s) stabilizes

the Hessian determinant of P
[d]
r,s , up to scaling. A direct calculation shows that this Hessian

determinant, up to scaling, is

H = (
∏

i,j

xij
∏

k

yk)d−2.

Unique factorization implies that StabGL(V )(P
[d]
r,s) ∩ Q ⊆ T ⋊Ss, where T is the torus of diagonal

matrices acting on the yj variables. Hence this subgroup commutes with [TSLd ⋊Sd] ≀Sr and we
deduce

StabGL(V )(P
[d]
r,s) ∩Q = StabGLs(y

d
1 + · · · + yds ) = Zd ≀Ss.

This concludes the proof.

In the context of geometric complexity theory it is important to know if the polynomial is

characterized by its stabilizer [MS08]. While this property fails for the polynomials P
[d]
r,s , a slightly

weaker statement is true — every polynomial stabilized by Stab(P
[d]
r,s) is in the orbit of P

[d]
r,s or a

very special restriction of P
[d]
r,s . This is similar to the properties of minrank tensors and slice rank

tensors considered in [BIL+19].

4.3 Theorem. If a polynomial f ∈ C[x11, . . . , xdr, y1, . . . , ys]d is stabilized by Stab(P
[d]
r,s), then

f = α
r∑

i=1

∏d
j=1xji + β

s∑

i=1

ydi ,

for some α, β ∈ C.
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Proof. Partition the set of variables into the subsets Xi = {x1i, . . . , xdi} and Yi = {yi}. Note that

Stab(P
[d]
r,s) contains the transformation which scales all variables in one of the subsets by a d-th

root of unity, acting as identity on all other variables. It follows that each monomial of f contains
variables from only one of the subsets, because if this was not the case then the transformation
described above multiplies the monomial by a coefficient different from 1. Thus we have

f =

r∑

i=1

fi(x1i, . . . , xdi) +

s∑

i=1

βiy
d
i .

Since f is fixed under the symmetric group Ss permuting y1, . . . , ys, the coefficients βi are all
equal. Since f is fixed under the symmetric group Sr permuting the subsets X1, . . . ,Xr, all the
polynomials fi also coincide.

Finally, the stabilizer group contains the transformations scaling xj1 by λ and xk1 by λ−1. This
transformation scales a monomial x

pj
j1x

pk
k1 . . . by λpj−pk . It follows that each monomial of f1 must

have the same degree with respect to each variable, that is, f1 = α
∏d

j=1 xj1.

4.2 Multiplicities in the coordinate ring of the orbit

A partition λ = (λ1, λ2, . . .) is a finite non-increasing sequence of nonnegative integers. We write
ℓ(λ) := max{i | λi 6= 0}, and λ ⊢ D means

∑
i λi = D. To each partition λ we associate its

Young diagram, which is a top-left justified array of boxes with λi boxes in row i. For example,

the Young diagram of λ = (4, 4, 3) is . The transpose of the Young diagram is obtained

by switching rows and columns. Denote the partition corresponding to this Young diagram by
λt, for example (4, 4, 3)t = (3, 3, 3, 2). A group homomorphism ̺ : GLD → GL(V ), where V is
a finite dimensional complex vector space, is called a representation of GLD. A representation is
polynomial if each entry of the matrix corresponding to the linear map ̺(g) is given by a polynomial
in the entries of the elements of GLD. A linear subspace that is closed under the group operation
is called a subrepresentation. A representation with only the two trivial subrepresentations is called
irreducible. The irreducible polynomial representations of GLd+1 are indexed by partitions λ with
ℓ(λ) ≤ d + 1, see for example [Ful97, Ch. 8]. Denote by Sλ(Cd+1) the irreducible representation of
type λ. For a GLd+1-representation V , write multλ(V ) to denote the multiplicity of λ in V , i.e.,
the dimension of the space of equivariant maps from Sλ(Cd+1) to V , or equivalently, the number
of summands of isomorphism type λ in any decomposition of V into a direct sum of irreducible
representations.

In this section, we consider the representations given by the homogeneous components of the

coordinate ring of GLd+1 ·P
[d]
1,1. By Theorem 4.2, the stabilizer of P

[d]
1,1 under the action of GLd+1 is

H := StabGLd+1
(P

[d]
1,1) ≃ Zd × (TSLd ⋊Sd).

The stabilizer is used to determine the multiplicities in the coordinate ring of the group orbit

multλ(C[GLd+1 P
[d]
1,1]). It is a general fact that C[GLd+1 P

[d]
1,1] ≃ C[GLd+1]

H : in other words the
coordinate ring of the orbit coincides with the subring of H-invariant elements in the coordinate ring
of the group GLd+1. This ring of H-invariants can be determined using the Algebraic Peter-Weyl
Theorem [GW09, Thm. 4.2.7], a powerful tool that allows us to compute the relevant multiplicities.
In turn, we have

multλ(C[GLd+1 P
[d]
1,1]) = dim(SλCd+1)H .

We determine the dimension of these invariant spaces by classical representation branching rules,
see Proposition 4.4.

For partitions µ and λ, define µ � λ if and only if the Young diagram of µ is contained in the
one of λ, (that is for every i, one has µi ≤ λi) and the skew diagram λ/µ given by the difference
has at most 1 box in each column (that is λt

i − µt
i ≤ 1). In other words, λ can be obtained from

µ by adding a suitable number of boxes, with no two of them in the same column. The plethysm
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coefficient is defined to be the multiplicity aµ(d,D) := multµ(Sd(SD(CN ))), and it does not depend
on N as long as N ≥ d.

4.4 Proposition. For λ ⊢ dD we have

multλ(C[GLd+1 P
[d]
1,1]) = dim(SλCd+1)H =

D∑

δ=0

∑

µ⊢δd
µ�λ

ℓ(µ)≤d

aµ(d, δ).

Proof.

(SλCd+1)H = (Sλ(C⊕ Cd) ↓
GLd+1

GL1 ×GLd
)Zd×(TSLd⋊Sd) Pieri’s rule

=
⊕

µ�λ
ℓ(µ)≤d

(S|λ|−|µ|C1)Zd ⊗ (SµCd)T
SLd⋊Sd ,

where Pieri’s rule is a well-known decomposition rule, see for example [FH91, p. 80, Exe. 6.12].
Now, dim((S|λ|−|µ|C1)Zd) = 1 if and only if |λ| − |µ| is a multiple of d if and only if |µ| is a multiple
of d. Otherwise it is 0. Hence

dim(SλV )H =
d∑

δ=0

∑

µ⊢δd
µ�λ

ℓ(µ)≤d

dim(SµCd)T
SLd⋊Sd

︸ ︷︷ ︸
=aµ(d,δ)

The last underbrace equality is Gay’s theorem [Gay76].

The condition that ℓ(µ) ≤ d is not necessary, because if ℓ(µ) > d, then aµ(d, δ) = 0.
A computer calculation shows that this indeed gives multiplicity obstructions in the sense of

Section 1.3. We record the result of the this calculation in Appendix A. We used the HWV software
[BHIM22] to directly calculate that (10, 6, 4, 4) and (8, 8, 4, 4) are the only types in the vanishing
ideal for D = 8, d = 3. For d = 3 there are no equations in degree 1, . . . , 7. In particular, none of

Brill’s equations from [Gor94], which are of degree d + 1, vanishes on GLd+1 P
[d]
1,1 ∩ SdCd.

4.3 Polystability

A polynomial f ∈ SdV is called polystable if its SL(V )-orbit is closed. Polystability is an important
property in GCT, as it implies the existence of a fundamental invariant that connects the GL-orbit
with the GL-orbit closure, see [BI17, Def. 3.9 and Prop. 3.10]. This connection can be used to
exhibit multiplicity obstructions, as was done in [IK20].

4.5 Proposition. Let d ≥ 2. The polynomial P
[d]
r,s is polystable, i.e., the orbit SLrd+s P

[d]
r,s is closed.

Proof. If d = 2, then P
[2]
r,s is a polynomial of degree 2 defining a quadratic form of maximal rank.

This is polystable.
Suppose d ≥ 3. A criterion for polystability is given in [BI17, Prop. 2.8], based on works of

Hilbert, Mumford, Luna, and Kempf.

In order to apply this criterion, consider the group R = Stab(P
[d]
r,s) ∩ T, where T denotes the

torus of diagonal matrices in GLrd+s, in the basis defined by the variables. By Theorem 4.2, we
deduce R = (TSLd)×r × Z×s

d . This is a group consisting entirely of diagonal matrices and it is easy
to verify that its centralizer in SLd+1 coincides with TSLd+1 . This proves the first property of the
criterion.

For the second property, consider the exponent vectors of the monomials appearing in P
[d]
r,s . For

a monomial m, write wt(m) for its exponent vector. It is immediate to verify that

r∑

i=1

wt(xi1 · · · xid) +
1

d

s∑

j=1

wt(ydj ) = (1, . . . , 1);
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this shows that the vector (1, . . . , 1) lies in the convex cone generated by the exponent vectors of

the monomials of P
[d]
r,s . This proves the second part of the criterion and concludes the proof.

Proposition 4.5 reduces to the following in the special case r = s = 1:

4.6 Corollary. Let d ≥ 2. The product-plus-power polynomial P
[d]
1,1 is polystable, i.e., the orbit

SLd+1 P
[d]
1,1 is closed.

4.4 Fundamental invariants and the Alon-Tarsi conjecture

The fundamental invariant Φ of a polystable polynomial f ∈ SDV is the unique (up to scaling)
smallest degree SL(V )-invariant function in C[GL(V )f ], see Def. 3.8 in [BI17]. It describes the
connection between the orbit and the orbit-closure of f : more formally, the coordinate ring of the
orbit C[GL(V )f ] is canonically isomorphic to the localization at Φ of the coordinate ring of the
orbit-closure, that is C[GL(V )f ]Φ; see [BI17, Pro. 3.9]. This connection can be used to exhibit
multiplicity obstructions, as was done in [IK20].

It is known that for even d the orbit closure GLd(x1 · · · xd) of a squarefree monomial has
fundamental invariant of degree d if and only if the Alon-Tarsi conjecture on Latin squares holds
for d; see [KL15] and [BI17, Prop. 3.26]; otherwise the fundamental invariant has higher degree. In

this section we show an analogous result for the orbit closure GLd+1(x1 · · · xd + xdd+1): if d is even
this orbit closure has fundamental invariant of degree d+ 1 if and only if the Alon-Tarsi conjecture
on Latin squares holds for d; otherwise the fundamental invariant has higher degree.

4.7 Proposition. Let d be even. The degree of the fundamental invariant of P
[d]
1,1 is d + 1 if and

only if the Alon-Tarsi conjecture for d is true, otherwise it is of higher degree.

Proof. We follow the presentation in [CIM17, BI17, BDI21]. For a partition λ we place positive
integers into the boxes of the Young diagram and call it a tableau T of shape λ. The vector of
numbers of occurrences of 1s, 2s, etc, is called the content of T . The content is n × d if T has
exactly d many 1s, d many 2s, . . ., d many ns. The set of boxes of the Young diagram of λ is
denoted by boxes(λ). The boxes that have the same number are said to form a block.

Let m = n + 1. Fix a tableau T of shape λ with content n× d and fix a tensor p =
∑r

i=1 ℓi,1 ⊗
· · · ⊗ ℓi,d ∈ ⊗dCm. A placement

ϑ : boxes(λ) → [r] × [d]

is called proper if the first coordinate of ϑ is constant in each block and the second coordinate of
ϑ in each block is a permutation. We define the determinant of a matrix that has more rows than
columns as the determinant of its largest top square submatrix.

For a tableau T with content ∆ × d we define the polynomial fT via its evaluation on p:

fT (p) :=
∑

proper ϑ

λ1∏

c=1

det ϑ,c with det ϑ,c := det
(
ℓϑ(1,c) . . . ℓϑ(µc,c)

)
(4.8)

The degree of fT is ∆. The polynomial fT is SLm-invariant if and only if the shape of T is
rectangular with exactly m many rows. It is easy to see that fT = 0 if T has any column in which
a number appears more than once. Moreover, it is easy to see that fT is fixed (up to sign) when
two entries in T are exchanged within a column. So, up to sign, there is only one T that could give
an SLm-invariant of degree d + 1: It is the tableau with m = d + 1 many rows and d columns that
has only entries i in row i. For n = 4 it looks as follows.

T =

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
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For this T it remains to verify that fT does not vanish identically on to orbit closure

GLd+1(x1 · · · xd + xdd+1). Since fT is SLd+1-invariant, this is equivalent to fT not vanishing at

the point x1 · · · xd + xdd+1. So we now evaluate fT (x1 · · · xd + xdd+1). The nonzero summands
in Equation (4.8) must place (d + 1, ∗) into one of the blocks. We can partition the summands
according to the row in which (d+ 1, ∗) is placed. Since the number of columns is even, each part of
the partition contributes the same number to the overall sum. That number is the column sign of
the unique Latin square that is obtained when removing the row in which (d+1, ∗) is placed. Hence
the whole sum if d + 1 times the difference of the column-even and column-odd Latin squares, so
its nonvanishing is equivalent to the Alon-Tarsi conjecture for d.

4.9 Remark. Other fundamental invariants connected to the Alon-Tarsi conjecture have recently
been studied in [LZX21, AY22].

4.5 New obstructions

For two partitions λ and µ, their sum is defined coordinatewise, i.e., (λ + µ)i = λi + µi. We
write a × b for the partition (b, b, . . . , b) of ab. For example, if d = 3, then the Young diagram to
λ := (5d − 1, 1) + ((d + 1) × (10d)) is the following:

This section is devoted to proving the following result, which is a restatement of Theorem 1.4.

4.10 Theorem. Let d ≥ 3 be even, and let λ := (5d − 1, 1) +
(
(d + 1) × (10d)

)
. Then we have

representation theoretic multiplicity obstructions:

multλ(C[GLd+1 P
[d]
1,1]) ≤ 4 < 5 = multλ(C[GLd+1(xd1 + · · · + xdd+1)]),

and hence GLd+1(xd1 + · · · + xdd+1) 6⊆ GLd+1 P
[d]
1,1.

We point out that these obstructions of Theorem 4.10 are only based on the symmetries of the
two polynomials as in [IK20].

The upper and the lower bound are proved independently, see Proposition 4.11 and
Proposition 4.12, which proves the theorem. Fix the following notation: κ := (5d − 1, 1),
� := (d + 1) × (10d), � := d× (10d), ∆ := |�|/d = 10d, and λ := κ + �.

4.11 Proposition. multλ(C[GLd+1 P
[d]
1,1]) ≤ multλ(C[GLd+1 P

[d]
1,1]) = multκ(C[GLd+1 P

[d]
1,1]) = 4.

Proof. The ring C[GLd+1 P
[d]
1,1] is a localization of the ring C[GLd+1 P

[d]
1,1], see [BI17], which implies

multλ(C[GLd+1 P
[d]
1,1]) ≤ multλ(C[GLd+1 P

[d]
1,1]). We observe that aν+�(d, i + ∆) = aν(d, i), because

� has an even number of columns and exactly d rows. Then we calculate:

multλ(C[GLd+1 P
[d]
1,1]) =

5∑

δ=0

∑

µ⊢δd
µ�λ

ℓ(µ)≤d

aµ(d, δ)

= a(d)+�(d, 1 + ∆) + a(d−1,1)+�(d, 1 + ∆) + a(2d)+�(d, 2 + ∆)

+a(2d−1,1)+�(d, 2 + ∆) + a(3d)+�(d, 3 + ∆) + a(3d−1,1)+�(d, 3 + ∆)

+a(4d)+�(d, 4 + ∆) + a(4d−1,1)+�(d, 4 + ∆) + a(5d−1,1)+�(d, 5 + ∆)

= a(d)(d, 1) + a(d−1,1)(d, 1) + a(2d)(d, 2) + a(2d−1,1)(d, 2) + a(3d)(d, 3)

+a(3d−1,1)(d, 3) + a(4d)(d, 4) + a(4d−1,1)(d, 4) + a(5d−1,1)(d, 5)

= 4,
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because a(nm)(n,m) = 1, and a(nm−1,1)(n,m) = 0, because (nm− 1, 1) is of hook shape, see [BI18,
Prop. 19.3.20]. Note that there is no summand a(5d)(d, 5) and no summand a(0)(d, 0), because
(5d) 6� (5d − 1, 1), and (0) 6� (5d− 1, 1).

4.12 Proposition. multλ(C[GLd+1(xd1 + · · · + xdd+1)]) ≥ 5.

Proof. We use the Main Technical Theorem 4.2 from [IK20]. Consider all partitions ̺ of 5, and
observe that

∑d+1
i=1 2⌈ ̺i

2(d−2)⌉ ≤ 10. In the notation of [IK20], we set eΞ := 10, which is exactly how

many (d + 1) × d blocks form �.
For a partition ̺ ⊢m D the frequency notation ̺̂ ∈ Nm is defined via ̺̂i := |{j | ̺j = i}|. For

example, the frequency notation of ̺ = (3, 3, 2, 0) is ̺̂= (0, 1, 2, 0). We observe that |̺| =
∑

i î̺i.
We first use Theorem 4.1 from [IK20] (with adjusted notation):

Let m := d + 1, D := 5, κ = (5d − 1, 1) ⊢m Dd. Define

b(κ, ̺, d,D) :=
∑

µ1,µ2,...,µD

µi⊢di ̺̂i

cκµ1,µ2,...,µD

D∏

i=1

aµi(̺̂i, i · d).

Then
multκC[GLm(xd1 + xd2 + · · · + xdm)] =

∑

̺⊢mD

b(κ, ̺, d,D).

For the multi-Littlewood-Richardson coefficient to be nonzero, it is necessary that all µi ⊆ (5d−1, 1),
so each µi is either a single row or a hook (̺̂i · i ·d−1, 1). But anm−1,1(n,m) = 0 and anm(n,m) = 1,
so we can assume that the sum has only the summand with µi = (̺̂i · i · d) and the product of
plethysm coefficients is 1. Hence, the multi-Littlewood-Richardson coefficient counts the number of
semistandard tableaux of shape (5d− 1, 1) and content (µ1, . . . , µ5).

It is instructive to look at all possible ̺̂: ̂(1, 1, 1, 1, 1) = (5), ̂(2, 1, 1, 1) = (3, 1), ̂(2, 2, 1) = (1, 2),
̂(3, 1, 1) = (2, 0, 1), (̂3, 2) = (0, 1, 1), (̂4, 1) = (1, 0, 0, 1), (̂5) = (0, 0, 0, 0, 1). We observe that ̺̂

has exactly two nonzero entries in 5 cases, and only one nonzero entry in 2 cases. There are no
semistandard tableaux of shape (5d−1, 1) with only one entry, and there is exactly one semistandard
tableaux of shape (5d− 1, 1) with two symbols and fixed content. Hence

multκC[GLd+1(x
d
1 + xd2 + · · · + xdd+1)] = 5.

Note that this argument works indeed for all d ≥ 3, even though for d = 3 we do not have
̺ = (1, 1, 1, 1, 1) in the sum (because it has more than d + 1 = 4 rows, but its contribution is zero
anyway).

We now apply Theorem 4.2 from [IK20], which implies

mult�+κC[GLd+1(xd1 + xd2 + · · · + xdd+1)] ≥ 5.
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A Calculation tables

We list the partitions λ for which the plethysm coefficient a := aλ(δ, d) exceeds the multiplicity
b := multλ(C[GLd+1(x1 · · · xd + xdd+1)]). We write λa>b. We list λ always with all d + 1 parts, i.e.,
with all trailing zeros. λ always has dδ many boxes. If we list a case (d, δ) and not list (d, δ′) with
δ′ < δ, then this means that (d, δ′) is empty.

d = 3, δ = 8:

(8, 8, 4, 4)2>1 , (10, 6, 4, 4)4>3

d = 4, δ = 6:

(6, 6, 4, 4, 4)1>0 , (7, 7, 5, 5, 0)1>0 , (7, 7, 7, 3, 0)1>0 , (8, 5, 5, 3, 3)1>0

d = 4, δ = 7:

(7, 7, 5, 5, 4)1>0 , (7, 7, 6, 5, 3)1>0 , (7, 7, 7, 4, 3)1>0 , (7, 7, 7, 5, 2)1>0 , (7, 7, 7, 7, 0)1>0 , (8, 6, 6, 4, 4)4>1 ,
(8, 7, 5, 4, 4)1>0 , (8, 7, 5, 5, 3)2>0 , (8, 7, 6, 4, 3)4>2 , (8, 7, 6, 5, 2)4>1 , (8, 7, 7, 3, 3)3>0 , (8, 7, 7, 4, 2)1>0 ,
(8, 7, 7, 5, 1)3>0 , (8, 8, 4, 4, 4)4>2 , (8, 8, 5, 4, 3)4>1 , (8, 8, 6, 4, 2)9>4 , (8, 8, 7, 3, 2)3>1 , (8, 8, 7, 4, 1)4>3 ,
(8, 8, 8, 2, 2)3>2 , (9, 6, 5, 4, 4)3>0 , (9, 6, 5, 5, 3)1>0 , (9, 6, 6, 4, 3)5>3 , (9, 6, 6, 5, 2)4>3 , (9, 7, 4, 4, 4)2>1 ,
(9, 7, 5, 4, 3)7>2 , (9, 7, 5, 5, 2)5>1 , (9, 7, 6, 3, 3)5>3 , (9, 7, 6, 4, 2)10>5 , (9, 7, 6, 5, 1)6>4 , (9, 7, 7, 3, 2)5>1 ,
(9, 7, 7, 4, 1)5>2 , (9, 7, 7, 5, 0)2>1 , (9, 8, 4, 4, 3)5>2 , (9, 8, 5, 3, 3)4>1 , (9, 8, 5, 4, 2)11>5 , (9, 8, 5, 5, 1)4>3 ,
(9, 8, 6, 3, 2)11>6 , (9, 8, 6, 4, 1)12>11 , (9, 8, 7, 2, 2)5>3 , (9, 8, 7, 3, 1)8>6 , (9, 9, 4, 3, 3)3>1 , (9, 9, 4, 4, 2)2>1 ,
(9, 9, 5, 3, 2)7>5 , (9, 9, 5, 4, 1)6>4 , (10, 5, 5, 5, 3)1>0 , (10, 6, 4, 4, 4)7>2 , (10, 6, 5, 4, 3)6>2 ,
(10, 6, 5, 5, 2)2>0 , (10, 6, 6, 4, 2)13>8 , (10, 7, 4, 4, 3)8>4 , (10, 7, 5, 3, 3)7>3 , (10, 7, 5, 4, 2)14>6 ,
(10, 7, 5, 5, 1)6>2 , (10, 7, 6, 3, 2)14>8 , (10, 7, 6, 4, 1)15>13 , (10, 7, 7, 2, 2)1>0 , (10, 7, 7, 3, 1)10>5 ,
(10, 8, 4, 3, 3)2>1 , (10, 8, 4, 4, 2)17>9 , (10, 8, 5, 3, 2)15>8 , (10, 8, 5, 4, 1)17>14 , (10, 8, 6, 2, 2)17>10 ,
(10, 9, 4, 3, 2)10>7 , (10, 9, 4, 4, 1)10>9 , (10, 9, 5, 2, 2)10>6 , (10, 10, 4, 2, 2)9>5 , (11, 5, 4, 4, 4)2>1 ,
(11, 5, 5, 4, 3)3>0 , (11, 6, 4, 4, 3)8>4 , (11, 6, 5, 3, 3)3>2 , (11, 6, 5, 4, 2)13>6 , (11, 6, 5, 5, 1)3>2 ,
(11, 6, 6, 3, 2)10>9 , (11, 7, 4, 3, 3)6>3 , (11, 7, 4, 4, 2)14>9 , (11, 7, 5, 3, 2)18>9 , (11, 7, 5, 4, 1)18>15 ,
(11, 7, 6, 2, 2)12>7 , (11, 7, 7, 2, 1)8>7 , (11, 8, 4, 3, 2)17>10 , (11, 8, 5, 2, 2)17>12 , (11, 9, 3, 3, 2)5>3 ,
(11, 9, 4, 2, 2)12>9 , (11, 10, 3, 2, 2)6>4 , (12, 4, 4, 4, 4)4>3 , (12, 5, 4, 4, 3)4>2 , (12, 5, 5, 3, 3)3>0 ,
(12, 5, 5, 4, 2)3>1 , (12, 5, 5, 5, 1)1>0 , (12, 6, 4, 4, 2)17>11 , (12, 6, 5, 3, 2)12>8 , (12, 6, 5, 4, 1)13>12 ,
(12, 6, 6, 2, 2)13>10 , (12, 7, 3, 3, 3)1>0 , (12, 7, 4, 3, 2)17>11 , (12, 7, 5, 2, 2)14>10 , (12, 8, 3, 3, 2)4>3 ,
(12, 8, 4, 2, 2)23>18 , (12, 9, 3, 2, 2)9>8 , (13, 5, 4, 3, 3)2>0 , (13, 5, 4, 4, 2)8>6 , (13, 5, 5, 3, 2)4>2 ,
(13, 5, 5, 4, 1)4>3 , (13, 6, 4, 3, 2)13>11 , (13, 6, 5, 2, 2)13>11 , (13, 7, 3, 3, 2)5>3 , (13, 7, 4, 2, 2)16>14 ,
(13, 8, 3, 2, 2)12>11 , (14, 5, 4, 3, 2)7>5 , (15, 5, 3, 3, 2)1>0

d = 4, δ = 8:

(7, 7, 7, 7, 4)1>0 , (8, 6, 6, 6, 6)2>1 , (8, 7, 6, 6, 5)1>0 , (8, 7, 7, 5, 5)3>0 , (8, 7, 7, 6, 4)1>0 , (8, 7, 7, 7, 3)2>0 ,
(8, 8, 6, 6, 4)7>1 , (8, 8, 7, 5, 4)3>0 , (8, 8, 7, 6, 3)5>0 , (8, 8, 8, 4, 4)8>2 , (8, 8, 8, 5, 3)2>1 , (8, 8, 8, 6, 2)7>2 ,
(9, 6, 6, 6, 5)2>1 , (9, 7, 6, 5, 5)3>0 , (9, 7, 6, 6, 4)5>1 , (9, 7, 7, 5, 4)7>0 , (9, 7, 7, 6, 3)6>0 , (9, 7, 7, 7, 2)3>0 ,
(9, 8, 5, 5, 5)1>0 , (9, 8, 6, 5, 4)14>2 , (9, 8, 6, 6, 3)12>3 , (9, 8, 7, 4, 4)10>1 , (9, 8, 7, 5, 3)18>2 ,
(9, 8, 7, 6, 2)13>2 , (9, 8, 7, 7, 1)3>0 , (9, 8, 8, 4, 3)11>2 , (9, 8, 8, 5, 2)12>4 , (9, 8, 8, 6, 1)7>4 ,
(9, 9, 5, 5, 4)6>0 , (9, 9, 6, 4, 4)5>0 , (9, 9, 6, 5, 3)15>3 , (9, 9, 6, 6, 2)5>2 , (9, 9, 7, 4, 3)14>1 , (9, 9, 7, 5, 2)17>3 ,
(9, 9, 7, 6, 1)7>2 , (9, 9, 7, 7, 0)2>0 , (9, 9, 8, 3, 3)8>1 , (9, 9, 8, 4, 2)8>1 , (9, 9, 8, 5, 1)9>3 , (9, 9, 9, 3, 2)3>1 ,
(9, 9, 9, 4, 1)3>0 , (10, 6, 6, 6, 4)9>3 , (10, 7, 5, 5, 5)3>0 , (10, 7, 6, 5, 4)15>1 , (10, 7, 6, 6, 3)13>3 ,
(10, 7, 7, 4, 4)5>0 , (10, 7, 7, 5, 3)19>1 , (10, 7, 7, 6, 2)8>0 , (10, 7, 7, 7, 1)4>0 , (10, 8, 5, 5, 4)7>0 ,
(10, 8, 6, 4, 4)31>4 , (10, 8, 6, 5, 3)32>5 , (10, 8, 6, 6, 2)29>8 , (10, 8, 7, 4, 3)35>5 , (10, 8, 7, 5, 2)34>6 ,
(10, 8, 7, 6, 1)18>6 , (10, 8, 8, 3, 3)4>1 , (10, 8, 8, 4, 2)33>9 , (10, 8, 8, 5, 1)15>9 , (10, 9, 5, 4, 4)15>1 ,
(10, 9, 5, 5, 3)16>1 , (10, 9, 6, 4, 3)39>6 , (10, 9, 6, 5, 2)38>8 , (10, 9, 6, 6, 1)16>9 , (10, 9, 7, 3, 3)21>5 ,
(10, 9, 7, 4, 2)43>8 , (10, 9, 7, 5, 1)28>9 , (10, 9, 8, 3, 2)24>7 , (10, 9, 8, 4, 1)24>10 , (10, 9, 9, 2, 2)2>0 ,
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(10, 9, 9, 3, 1)8>3 , (10, 10, 4, 4, 4)12>2 , (10, 10, 5, 4, 3)18>3 , (10, 10, 5, 5, 2)7>0 , (10, 10, 6, 3, 3)8>2 ,
(10, 10, 6, 4, 2)42>10 , (10, 10, 6, 5, 1)18>7 , (10, 10, 6, 6, 0)11>10 , (10, 10, 7, 3, 2)23>6 , (10, 10, 7, 4, 1)26>12 ,
(10, 10, 8, 2, 2)17>5 , (10, 10, 8, 3, 1)13>9 , (10, 10, 9, 2, 1)6>4 , (11, 6, 6, 5, 4)9>1 , (11, 6, 6, 6, 3)10>4 ,
(11, 7, 5, 5, 4)11>0 , (11, 7, 6, 4, 4)22>3 , (11, 7, 6, 5, 3)31>4 , (11, 7, 6, 6, 2)19>6 , (11, 7, 7, 4, 3)25>3 ,
(11, 7, 7, 5, 2)25>2 , (11, 7, 7, 6, 1)11>2 , (11, 7, 7, 7, 0)2>0 , (11, 8, 5, 4, 4)26>3 , (11, 8, 5, 5, 3)23>2 ,
(11, 8, 6, 4, 3)60>11 , (11, 8, 6, 5, 2)58>13 , (11, 8, 6, 6, 1)24>13 , (11, 8, 7, 3, 3)26>4 , (11, 8, 7, 4, 2)64>14 ,
(11, 8, 7, 5, 1)40>15 , (11, 8, 8, 3, 2)28>9 , (11, 8, 8, 4, 1)30>17 , (11, 9, 4, 4, 4)11>1 , (11, 9, 5, 4, 3)45>6 ,
(11, 9, 5, 5, 2)33>5 , (11, 9, 6, 3, 3)36>8 , (11, 9, 6, 4, 2)78>19 , (11, 9, 6, 5, 1)46>20 , (11, 9, 7, 3, 2)57>14 ,
(11, 9, 7, 4, 1)58>24 , (11, 9, 8, 2, 2)20>7 , (11, 9, 8, 3, 1)37>21 , (11, 9, 9, 2, 1)9>5 , (11, 10, 4, 4, 3)21>5 ,
(11, 10, 5, 3, 3)20>4 , (11, 10, 5, 4, 2)52>12 , (11, 10, 5, 5, 1)20>7 , (11, 10, 6, 3, 2)56>16 , (11, 10, 6, 4, 1)56>29 ,
(11, 10, 7, 2, 2)30>9 , (11, 10, 7, 3, 1)46>26 , (11, 10, 8, 2, 1)25>20 , (11, 11, 4, 3, 3)10>2 , (11, 11, 4, 4, 2)10>3 ,
(11, 11, 5, 3, 2)26>7 , (11, 11, 5, 4, 1)23>12 , (11, 11, 6, 2, 2)13>5 , (11, 11, 6, 3, 1)30>18 , (11, 11, 7, 2, 1)19>15 ,
(12, 6, 5, 5, 4)4>0 , (12, 6, 6, 4, 4)21>3 , (12, 6, 6, 5, 3)14>3 , (12, 6, 6, 6, 2)17>8 , (12, 7, 5, 4, 4)19>1 ,
(12, 7, 5, 5, 3)22>1 , (12, 7, 6, 4, 3)49>10 , (12, 7, 6, 5, 2)46>9 , (12, 7, 6, 6, 1)17>10 , (12, 7, 7, 3, 3)23>3 ,
(12, 7, 7, 4, 2)32>5 , (12, 7, 7, 5, 1)26>6 , (12, 8, 4, 4, 4)25>5 , (12, 8, 5, 4, 3)56>8 , (12, 8, 5, 5, 2)32>5 ,
(12, 8, 6, 3, 3)32>7 , (12, 8, 6, 4, 2)109>29 , (12, 8, 6, 5, 1)54>27 , (12, 8, 7, 3, 2)62>17 , (12, 8, 7, 4, 1)65>31 ,
(12, 8, 8, 2, 2)30>13 , (12, 8, 8, 3, 1)27>20 , (12, 9, 4, 4, 3)33>6 , (12, 9, 5, 3, 3)35>7 , (12, 9, 5, 4, 2)80>18 ,
(12, 9, 5, 5, 1)32>11 , (12, 9, 6, 3, 2)88>28 , (12, 9, 6, 4, 1)88>45 , (12, 9, 7, 2, 2)41>14 , (12, 9, 7, 3, 1)71>40 ,
(12, 9, 8, 2, 1)34>28 , (12, 10, 4, 3, 3)14>4 , (12, 10, 4, 4, 2)52>16 , (12, 10, 5, 3, 2)63>18 , (12, 10, 5, 4, 1)62>32 ,
(12, 10, 6, 2, 2)60>23 , (12, 10, 6, 3, 1)71>48 , (12, 10, 7, 2, 1)50>41 , (12, 11, 3, 3, 3)2>0 , (12, 11, 4, 3, 2)32>11 ,
(12, 11, 4, 4, 1)25>16 , (12, 11, 5, 2, 2)32>14 , (12, 11, 5, 3, 1)46>31 , (12, 11, 6, 2, 1)41>38 , (12, 12, 3, 3, 2)3>2 ,
(12, 12, 4, 2, 2)19>10 , (12, 12, 4, 3, 1)13>11 , (13, 5, 5, 5, 4)1>0 , (13, 6, 5, 4, 4)15>1 , (13, 6, 5, 5, 3)9>0 ,
(13, 6, 6, 4, 3)26>7 , (13, 6, 6, 5, 2)24>8 , (13, 7, 4, 4, 4)17>4 , (13, 7, 5, 4, 3)45>7 , (13, 7, 5, 5, 2)28>3 ,
(13, 7, 6, 3, 3)30>8 , (13, 7, 6, 4, 2)73>21 , (13, 7, 6, 5, 1)39>18 , (13, 7, 7, 3, 2)34>7 , (13, 7, 7, 4, 1)36>15 ,
(13, 7, 7, 5, 0)12>11 , (13, 8, 4, 4, 3)38>9 , (13, 8, 5, 3, 3)33>6 , (13, 8, 5, 4, 2)88>23 , (13, 8, 5, 5, 1)32>13 ,
(13, 8, 6, 3, 2)91>31 , (13, 8, 6, 4, 1)91>55 , (13, 8, 7, 2, 2)43>17 , (13, 8, 7, 3, 1)65>41 , (13, 9, 4, 3, 3)25>6 ,
(13, 9, 4, 4, 2)55>18 , (13, 9, 5, 3, 2)85>28 , (13, 9, 5, 4, 1)78>41 , (13, 9, 6, 2, 2)62>26 , (13, 9, 6, 3, 1)94>67 ,
(13, 9, 7, 2, 1)59>50 , (13, 10, 3, 3, 3)4>1 , (13, 10, 4, 3, 2)55>21 , (13, 10, 4, 4, 1)46>33 , (13, 10, 5, 2, 2)57>24 ,
(13, 10, 5, 3, 1)75>54 , (13, 10, 6, 2, 1)69>68 , (13, 11, 3, 3, 2)15>6 , (13, 11, 4, 2, 2)32>17 ,
(13, 11, 4, 3, 1)44>37 , (13, 12, 3, 2, 2)13>8 , (13, 13, 2, 2, 2)1>0 , (14, 5, 5, 4, 4)2>0 , (14, 5, 5, 5, 3)3>0 ,
(14, 6, 4, 4, 4)18>4 , (14, 6, 5, 4, 3)26>4 , (14, 6, 5, 5, 2)11>1 , (14, 6, 6, 3, 3)8>4 , (14, 6, 6, 4, 2)45>17 ,
(14, 6, 6, 5, 1)17>13 , (14, 7, 4, 4, 3)31>9 , (14, 7, 5, 3, 3)29>6 , (14, 7, 5, 4, 2)63>17 , (14, 7, 5, 5, 1)24>8 ,
(14, 7, 6, 3, 2)63>23 , (14, 7, 6, 4, 1)62>40 , (14, 7, 7, 2, 2)14>4 , (14, 7, 7, 3, 1)38>21 , (14, 8, 4, 3, 3)18>4 ,
(14, 8, 4, 4, 2)66>24 , (14, 8, 5, 3, 2)78>27 , (14, 8, 5, 4, 1)76>47 , (14, 8, 6, 2, 2)70>33 , (14, 8, 6, 3, 1)83>68 ,
(14, 9, 3, 3, 3)5>2 , (14, 9, 4, 3, 2)63>26 , (14, 9, 4, 4, 1)52>38 , (14, 9, 5, 2, 2)61>29 , (14, 9, 5, 3, 1)85>65 ,
(14, 10, 3, 3, 2)15>6 , (14, 10, 4, 2, 2)57>30 , (14, 10, 4, 3, 1)56>53 , (14, 11, 3, 2, 2)22>14 , (14, 12, 2, 2, 2)11>9 ,
(15, 5, 4, 4, 4)6>2 , (15, 5, 5, 4, 3)8>0 , (15, 5, 5, 5, 2)2>0 , (15, 6, 4, 4, 3)22>7 , (15, 6, 5, 3, 3)12>3 ,
(15, 6, 5, 4, 2)38>12 , (15, 6, 5, 5, 1)10>4 , (15, 6, 6, 3, 2)31>17 , (15, 6, 6, 4, 1)30>26 , (15, 7, 4, 3, 3)18>5 ,
(15, 7, 4, 4, 2)45>20 , (15, 7, 5, 3, 2)57>21 , (15, 7, 5, 4, 1)54>35 , (15, 7, 6, 2, 2)40>20 , (15, 7, 6, 3, 1)57>49 ,
(15, 7, 7, 2, 1)25>23 , (15, 8, 3, 3, 3)2>0 , (15, 8, 4, 3, 2)58>26 , (15, 8, 4, 4, 1)49>42 , (15, 8, 5, 2, 2)59>33 ,
(15, 8, 5, 3, 1)74>64 , (15, 9, 3, 3, 2)19>9 , (15, 9, 4, 2, 2)51>32 , (15, 10, 3, 2, 2)28>19 , (16, 4, 4, 4, 4)7>4 ,
(16, 5, 4, 4, 3)10>3 , (16, 5, 5, 3, 3)6>0 , (16, 5, 5, 4, 2)8>2 , (16, 5, 5, 5, 1)2>0 , (16, 6, 4, 3, 3)7>3 ,
(16, 6, 4, 4, 2)36>18 , (16, 6, 5, 3, 2)30>14 , (16, 6, 5, 4, 1)29>22 , (16, 6, 6, 2, 2)27>18 , (16, 7, 3, 3, 3)3>0 ,
(16, 7, 4, 3, 2)42>21 , (16, 7, 5, 2, 2)36>22 , (16, 7, 5, 3, 1)54>50 , (16, 8, 3, 3, 2)13>7 , (16, 8, 4, 2, 2)53>37 ,
(16, 9, 3, 2, 2)26>20 , (17, 4, 4, 4, 3)5>4 , (17, 5, 4, 3, 3)4>0 , (17, 5, 4, 4, 2)15>9 , (17, 5, 5, 3, 2)8>3 ,
(17, 5, 5, 4, 1)8>5 , (17, 6, 4, 3, 2)26>17 , (17, 6, 5, 2, 2)24>19 , (17, 7, 3, 3, 2)10>5 , (17, 7, 4, 2, 2)33>27 ,
(17, 8, 3, 2, 2)24>22 , (18, 4, 4, 4, 2)9>8 , (18, 5, 4, 3, 2)11>7 , (18, 6, 3, 3, 2)4>3 , (19, 5, 3, 3, 2)1>0

d = 5, δ = 7, λ1 ≤ 8:

(8, 7, 7, 5, 5, 3)1>0 , (8, 7, 7, 6, 4, 3)1>0 , (8, 7, 7, 6, 5, 2)1>0 , (8, 7, 7, 7, 3, 3)1>0 , (8, 8, 7, 5, 4, 3)2>1 ,
(8, 8, 7, 6, 3, 3)1>0 , (8, 8, 7, 6, 4, 2)3>2 , (8, 8, 7, 6, 5, 1)2>1 , (8, 8, 7, 7, 4, 1)1>0
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