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Motivation

Suppose we can �compute� polynomials g, h e�ciently.

If h divides g, can we also �compute� f
def
=== g

h e�ciently?

What do �compute� and �e�ciently� mean here?
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Polynomials and Arithmetic Circuits

Every arithmetic circuit computes a polynomial and vice

versa.
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Above circuit computes the polynomial f ∈ C[x1, x2, x3, x4]
where f = 10x3(x1 + x2) + x1 + x2 + x4.

Size and depth have same de�nitions as in the Boolean case.
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Arithmetic Complexity

De�nition

The arithmetic complexity L(f) of a polynomial

f ∈ C[x1, x2, . . . , xn] is de�ned as the minimum size of any

arithmetic circuit computing f .

Thus L(f) ≤ 10, where f = 10x3(x1 + x2) + x1 + x2 + x4.
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Permanent vs. Determinant

It is not hard to show that L(detn) = poly(n) where

det n =
∑
σ∈Sn

sign(σ)
∏
i∈[n]

xi,σ(i)

is the famous determinant polynomial.

De�ne the permanent polynomial:

pern
def
===

∑
σ∈Sn

∏
i∈[n]

xi,σ(i)

Conjecture (Valiant)

L(pern) is super-polynomial in n.
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Divisions in Arithmetic Circuits

We only used {+,×} gates in the arithmetic circuits above.

What if we also used divisions?

Lemma (Folklore)

If f can be computed by a size s circuit using {+,×,÷} gates

then there exist g, h with L(g), L(h) ≤ 6s such that f = g
h .
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Division Elimination

Problem (1)(Kaltofen 87)

If a polynomial can be computed by an arithmetic circuit (with

division) of size s, can it be computed by a division-free

arithmetic circuit of size poly(s)?

Problem (2)

If L(g), L(h) ≤ s and h divides g then is it true that

L( gh) ≤ poly(s)?

Problem (1) ⇐⇒ Problem (2).
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Known Results

Theorem (Strassen 73)

If f can be computed by an arithmetic circuit (with division) of

size s, then L(f) ≤ poly(s, deg(f)).

Example

If g = x2
s − 1 and h = x− 1 then Strassen's result implies the

upper bound L(f) ≤ 2O(s).
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Main Result

Theorem (Main Theorem)

If L(g) ≤ s1, L(h) ≤ s2 and h divides g then

L( gh) ≤ O((s1 + s2)d
2
h), where dh = deg(h).

Essentially, it is �easy� to divide by low degree polynomials.

It is an exponential improvement over Strassen's result

when deg(h) is poly(s1) and deg(f) is exp(s2).
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Proof Technique

First consider the simpler case when g, h are uni-variate.

C is a circuit of size L(g) computing g.

We split every gate in C into two gates as:

First gate computes quotient modulo h and other
remainder.

p = qh+ r q r
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Addition Gate

Suppose p = p1 + p2 (in C) with
p1 = q1h+ r1, p2 = q2h+ r2.

Then:

p mod h = r1 + r2

p div h = q1 + q2
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Multiplication Gate

Suppose p = p1 × p2 (in C) with
p1 = q1h+ r1, p2 = q2h+ r2.

Then:

p mod h = r1r2 mod h

p div h = q1q2h+ q1r2 + q2r1 + (r1r2 div h)

Need to only compute (r1r2 mod h) and (r1r2 div h).

Easy to compute since they are polynomials of degree at
most deg(h)− 1 (naively).
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Multivariate Case

Assume h to be monic in xn.

Achievable by an invertible linear transformation of
variables.
Thus modh and div h are de�ned (w.r.t xn).

C is a circuit of size L(g) computing g.
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Multivariate Case

We split every gate T in C to dh + 1 (dh
def
=== deg(h)) many

gates.

T computes the polynomial p = qh+ r.
r = r0 + r1xn + · · ·+ rdh−1x

dh−1
n with

ri ∈ C[x1, x2, . . . , xn−1].
First dh gates compute r0, r1, . . . , rdh−1.
Last gate computes q.

p = qh+ r q ...

r1

r0

rdh−1
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Addition Gate

Suppose p = p1 + p2 (in C) with p1 = q1h+ a, p2 = q2h+ b

a = a0 + a1xn + · · ·+ adh−1x
dh−1
n

b = b0 + b1xn + · · ·+ bdh−1x
dh−1
n

Then:

ri
def
=== ai + bi

p mod h = r0 + r1xn + · · ·+ rdh−1x
dh−1
n

p div h = q1 + q2
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Multiplication Gate

Suppose p = p1 × p2 (in C) with p1 = q1h+ a, p2 = q2h+ b.

a = a0 + a1xn + · · ·+ adh−1x
dh−1
n

b = b0 + b1xn + · · ·+ bdh−1x
dh−1
n

Then:

p mod h = ab mod h

p div h = q1q2h+ q1r2 + q2r1 + (ab div h)

By using the polynomial long division, we can e�ciently
compute:

ab div h
Coe�cients of ab mod h
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Power Series

A =
∑

i≥0Aix
i is a power series in the power series ring

C[[x]].
Degree d truncation trunc(A, d) of A is:

trunc(A, d)
def
===

∑
0≤i≤dAix

i.

A uni-variate polynomial family (fd)d∈N (deg(fd) = d) is
�easy� if L(fd) = poly(log d).

Otherwise we call it �hard�.

Study the complexity of polynomial families obtained by

truncation of power series.
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Rational Functions

Theorem

If g, h are constant degree polynomials and f = g
h ∈ C[[x]] is a

power series then the polynomial family (trunc(f, d))d∈N is easy.

This theorem also holds for some cases where g, h have

non-constant degree.
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Upper Bound Idea

Lemma (Partial fraction decomposition)

If g
h ∈ C[[x]] is a rational function with deg(g) < deg(h) and

h(x) =
∏
i∈[k](x− ai)di then:

g

h
=
∑
i∈[k]

∑
j∈[di]

bij
(x− ai)j

. (for some bij ∈ C)

(trunc(1/(x− a), d))d∈N is easy

By computing higher order derivatives,

(trunc(1/(x− a)j , d))d∈N is also easy.
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Constant Free Complexity

De�nition

For any polynomial f , τ(f) is the size of the minimal

constant-free circuit computing f . Only constants allowed are

{−1, 0, 1}.

This de�nition also extends to computation of integers.

A sequence (an)n∈N of integers is �easy� to compute if

τ(an) ≤ poly(log n).
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Known Results

Lemma (Folklore)

If (n!)n∈N is easy then integer factorization can be performed in

polynomial time.

(Andrews 2020)=⇒
((

2n
n

))
n∈N is easy then so is (n!)n∈N.

Easiness of truncation of
√
1 + 4x implies easiness of((

2n
n

))
n∈N.

Thus polynomial time algorithms for integer factorization.
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Generalizing Hardness of
√
1 + 4x

Theorem

For any constant k, if τ(trunc((1 + k2x)
i
k , d)) = poly(log d) (for

all i ∈ [k − 1]) then integer factorization can be performed in

polynomial time (in the non-uniform setting).

The case k = 2 follows from (Andrews 2020).
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Hardness Idea

Easiness of trunc((1 + k2x)
i
k , d) (for all i ∈ [k − 1]) implies

the easiness of:

N(n, k)
def
===

k(k−2)d(nk)!

(n!)k

By a variant of binary search, easiness of N(n, k) implies

e�cient integer factorization.

We do not know if easiness of trunc((1 + k2x)
i
k , d) implies

easiness of (n!)n∈N.
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Stern Sequence (Easy)

De�nition

Sequence (an)n∈N given by

a0 = 0, a1 = 1, a2n = an, a2n+1 = an + an+1, is the Stern

sequence.

Lemma

The generating function A(x)
def
===

∑
anx

n of the Stern sequence

is transcendental.

Theorem

L(trunc(A(x), d)) = O(log2 d).
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Hard Transcendental Power Series

Lemma

The power series F (x)
def
===

∑
n≥0 n!x

n is transcendental.

If truncation of F (x) is easy to compute then (n!)n∈N is

easy to compute.

So truncation of F (x) is likely to be hard.
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Conclusion

Can divide by low degree polynomials e�ciently.

Our division complexity upper bound also holds for the

border complexity.

Truncation of general algebraic functions is likely to be
hard

Truncation of rational functions is easy

We also show some examples of Transcendental power
series:

Whose truncation is easy
Whose truncation is conditionally hard
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Thanks

Thanks for your attention
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