
On Approximate Polynomial
Identity Testing and Real Root

Finding
A study of approximating the rank of symbolic
matrices and real roots of sparse polynomials

Gorav Jindal

Dissertation

zur Erlangung des Grades des
Doktors der Naturwissenschaften

an der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Saarbrücken, Germany
2019

C O L L O Q U I U M I N F O R M AT I O N

Date: 11.11.2019

Saarbrücken, Germany

Dean: Prof. Dr. Sebastian Hack
Saarland University

Chairman: Prof. Dr. Raimund Seidel
Saarland University

Reviewers: Prof. Dr. Markus Bläser
Saarland University

Prof. Dr. Michael Sagraloff
Hochschule für angewandte
Wissenschaften Landshut

Scientific Assistant: Dr. Balagopal Komarath
Saarland University

Dedicated to My Parents and My Siblings

A C K N O W L E D G M E N T S

Work in this thesis was carried out during the years 2014-2018 at the Max-Planck-Institut
für Informatik and at the Department of Computer Science, Saarland University.

I owe my deepest gratitude to my advisor Prof. Markus Bläser. He always supported
and guided me with his reliable expertise in algebraic complexity theory. He always
listened to even the dumbest of my ideas and problems. He has been a pillar of support
even outside the academics. Without his continuous encouragement and support, this
thesis would not even have started.

I would also like to express my gratitude to Prof. Michael Sagraloff. His technical
expertise and his infinite patience while answering my dumb queries, has helped me to
learn a lot about the root computation of polynomials. The work done with him is an
integral part of this thesis. I am also grateful to him for being a reviewer of this thesis.

I also received generous support from the Max-Planck-Institut für Informatik, espe-
cially from Prof. Kurt Mehlhorn. Thanks also to Prof. Chandan Saha for hosting me for
an internship at the Indian Institute of Science. He has always been encouraging since
the time he taught me here at Saarbrücken. I would also like to thank Prof. Parinya
Chalermsook for his generous support for me at Aalto University.

Some special words of gratitude go to my friends who have always been a major
source of support. Andi, Anurag, Eig, Harry, Laszlo, Karteek, Pavel, Shay have always
been there for me to offer their unconditional support. I hope we keep crossing paths
in future also. Special thanks to Andi for encouraging for me to get into cycling and
always helping me to fix my almost always broken bike.

I sincerely apologize to all the people who directly or indirectly supported me but
could not be mentioned here due to my inattention.

Finally, I would like to show my greatest appreciation to my family for their unwa-
vering support. My parents and siblings have always made me feel loved and cherished.
Without their unconditional support, I would not have the courage to embark on a
research career.

i

A B S T R A C T

In this thesis we study the following three topics, which share a connection through
the (arithmetic) circuit complexity of polynomials.

1. Rank of symbolic matrices.

2. Computation of real roots of real sparse polynomials.

3. Complexity of symmetric polynomials.

We start with studying the commutative and non-commutative rank of symbolic
matrices with linear forms as their entries. Here we show a deterministic polynomial
time approximation scheme (PTAS) for computing the commutative rank. Prior to
this work, deterministic polynomial time algorithms were known only for computing
a 1

2 -approximation of the commutative rank. We give two distinct proofs that our
algorithm is a PTAS. We also give a min-max characterization of commutative and
non-commutative ranks.

Thereafter we direct our attention to computation of roots of uni-variate polynomial
equations. It is known that solving a system of polynomial equations reduces to
solving a uni-variate polynomial equation. We describe a polynomial time algorithm
for (n, k, τ)-nomials which computes approximations of all the real roots (even though
it may also compute approximations of some complex roots). Moreover, we also show
that the roots of integer trinomials are well-separated.

Finally, we study the complexity of symmetric polynomials. It is known that symmet-
ric Boolean functions are easy to compute. In contrast, we show that the assumption
VP 6= VNP implies that there exist hard symmetric polynomials. To prove this result,
we use an algebraic analogue of the classical Newton iteration.

iii

Z U S A M M E N FA S S U N G

In dieser Dissertation untersuchen wir die folgenden drei Themen, welche durch die
(arithmetische) Schaltkreiskomplexität von Polynomen miteinander verbunden sind:

1. der Rang von symbolischen Matrizen,

2. die Berechnung von reellen Nullstellen von dünnbesetzten (“sparse”) Polynomen
mit reellen Koeffizienten,

3. die Komplexität von symmetrischen Polynomen.

Wir untersuchen zunächst den kommutativen und nicht-kommutativen Rang von
Matrizen, deren Einträge aus Linearformen bestehen. Hier beweisen wir die Existenz
eines deterministischem Polynomialzeit-Approximationsschemas (PTAS) für die Berech-
nung des kommutative Ranges. Zuvor waren polynomielle Algorithmen nur für die
Berechnung einer 1

2 -Approximation des kommutativen Ranges bekannt. Wir geben
zwei unterschiedliche Beweise für den Fakt, dass unser Algorithmus tatsächlich ein
PTAS ist. Zusätzlich geben wir eine min-max Charakterisierung des kommutativen
und nicht-kommutativen Ranges.

Anschließend lenken wir unsere Aufmerksamkeit auf die Berechnung von Null-
stellen von univariaten polynomiellen Gleichungen. Es ist bekannt, dass das Lösen
eines polynomiellem Gleichungssystems auf das Lösen eines univariaten Polynoms
zurückgeführt werden kann. Wir geben einen Polynomialzeit-Algorithmus für (n, k, τ)-
Nome, welcher Abschätzungen für alle reellen Nullstellen berechnet (in manchen
Fallen auch Abschätzungen von komplexen Nullstellen). Zusätzlich beweisen wir, dass
Nullstellen von ganzzahligen Trinomen stets weit voneinander entfernt sind.

Schließlich untersuchen wir die Komplexität von symmetrischen Polynomen. Es
ist bereits bekannt, dass sich symmetrische Boolesche Funktionen leicht berechnen
lassen. Im Gegensatz dazu zeigen wir, dass die Annahme VP 6= VNP bedeutet, dass
auch harte symmetrische Polynome existieren. Um dies zu beweisen benutzen wir ein
algebraisches Analog zum klassischen Newton-Verfahren.

v

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 Contribution and Guide . 4

1.2.1 Rank of matrix spaces . 4

1.2.2 Real roots of real sparse polynomials . 5

1.2.3 Complexity of symmetric polynomials . 6

2 preliminaries 7

2.1 Notation . 7

2.2 Boolean and Algebraic Circuits . 7

2.3 Complexity classes . 10

2.3.1 Classes P, NP and completeness . 11

2.3.2 Low depth circuits . 12

2.3.3 Randomized Complexity Classes . 14

2.4 Formulas and Algebraic Branching Programs 14

2.5 Algebraic Complexity classes . 16

2.6 Completeness and hard polynomials . 17

2.7 Definitions and Facts in Linear Algebra . 19

i polynomial identity testing

3 symbolic matrices and matrix spaces 23

3.1 Preliminaries . 23

3.2 Matrix Spaces . 24

3.2.1 Commutative rank . 24

3.2.2 Non-commutative rank . 29

3.3 A max-min characterization of ranks . 34

4 ptas for commutative rank 39

4.1 1
2 -approximation algorithm for the commutative rank 40

4.2 2
3 -approximation algorithm for the commutative rank 42

4.3 (1− ε)-approximation algorithm for the commutative rank 45

4.4 Wong sequences and Wong index . 53

4.5 Relation between rank and Wong index . 55

4.6 An Alternative proof of correctness of Algorithm 4.4 62

4.7 Tight examples . 63

ii real root computation of sparse polynomials

5 computing the roots of polynomials 67

5.1 Complex Roots of Complex Polynomials . 68

vii

viii contents

5.2 Definitions and Notations . 71

5.3 Real Roots of (Sparse) Real Polynomials . 72

5.4 Root Separation of Trinomials . 78

5.4.1 Complex root separation . 81

5.5 Root separation for 4-nomials . 84

5.6 Introduction and History of Root Computation 86

5.7 Fractional Derivatives and Integer Roots . 88

5.8 Computing the Real Roots of k-nomials . 92

5.9 Overview of the Algorithm . 94

5.10 Polynomial arithmetic . 96

5.11 Refinement . 104

5.12 Computing a Weak Covering . 110

5.13 Tl-test . 113

5.14 Computing a Covering . 120

iii complexity of symmetric polynomials

6 complexity of symmetric polynomials 127

6.1 Checking Symmetries . 127

6.2 Computing Symmetric functions and Polynomials 129

6.2.1 Symmetric functions . 129

6.2.2 Symmetric polynomials . 130

6.2.3 Hard Symmetric Polynomials . 138

bibliography 139

L I S T O F F I G U R E S

Figure 2.1 Example of an arithmetic circuit 9

Figure 2.2 Example of an algebraic branching program 15

Figure 5.1 Obreshkoff discs and lens . 76

Figure 5.2 Cone . 77

Figure 5.3 Choosing a disk for Tl-test . 119

ix

L I S T O F A L G O R I T H M S

Algorithm 3.1 Randomized algorithm for COMMRANKCOMPUTE. 28

Algorithm 4.2 Greedy algorithm for 1
2 -approximating the commutative rank. . 41

Algorithm 4.3 Greedy algorithm for 2
3 -approximating the commutative rank. . 44

Algorithm 4.4 Greedy algorithm for (1− ε)-approximating commutative rank 51

Algorithm 5.5 Refine an isolating interval. 90

Algorithm 5.6 Compute locating list of f (x). 91

Algorithm 5.7 Compute all the integer roots. 92

Algorithm 5.8 NewtonTest
∗ . 106

Algorithm 5.9 BoundaryTest
∗ . 107

Algorithm 5.10 BisectionTest
∗ . 108

Algorithm 5.11 NewRefine
∗ . 108

Algorithm 5.12 Compute a weak (L, [0, 1 + 1/n])-covering of f 111

Algorithm 5.13 Merge . 113

Algorithm 5.14 Soft Predicate P̃ . 115

Algorithm 5.15 T̃l-test . 116

Algorithm 5.16 Wrapper T̃l-test . 119

Algorithm 5.17 Computing an (L, [0, 1 + 1
n])-covering 121

Algorithm 6.18 Newton’s Method . 134

Algorithm 6.19 Inverse computation . 135

xi

1
I N T R O D U C T I O N

1.1 Motivation

To answer the Entscheidungsproblem posed by David Hilbert in 1928, Turing [TUR36]
formalized the idea of an algorithm by defining the notion of a “Turing Machine”. The
famous Church-Turing thesis further states that Turing machine defined in [TUR36]
captures the notion of any physical computation. Thus, it is reasonable to study the
computation in context of Turing Machines. Turing machine as defined by Turing in
[TUR36], only captures the notion of whether a function or number is computable
or not. Turing did not ask, whether this computation is “efficient” or “inefficient”?
This question of studying the “efficiency” of computation has lead to the field of
computational complexity theory.

Gödel had pondered about the idea of efficient computation. In a letter [Har89] to
von Neumann, he wrote:
I would like to allow myself to write you about a mathematical problem, of which

your opinion would very much interest me: One can obviously easily construct a

Turing machine, which for every formula F in �rst order predicate logic and every

natural number n, allows one to decide if there is a proof of F of length n (length

= number of symbols). Let ψ(F, n) be the number of steps the machine requires

for this and let ϕ(n) = maxF ψ(F, n). The question is how fast ϕ(n) grows for an

optimal machine. One can show that ϕ(n) ≥ K · n. If there really were a machine

with ϕ(n) ∼ K.n (or even ∼ K · n2), this would have consequences of the greatest

importance. Namely, it would obviously mean that in spite of the undecidability of

the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-

No questions could be completely replaced by a machine. After all, one would simply

have to choose the natural number n so large that when the machine does not deliver

a result, it makes no sense to think more about the problem. Now it seems to me,

however, to be completely within the realm of possibility that ϕ(n) grows that slowly.
Since it seems that ϕ(n) ≥ K · n is the only estimation which one can obtain by a

generalization of the proof of the undecidability of the Entscheidungsproblem and

1

2 introduction

after all ϕ(n) ∼ K.n (or ∼ K · n2) only means that the number of steps as opposed

to trial and error can be reduced from N to log N (or (log N)2).

This letter illustrates that Gödel had already thought about whether there exists an
algorithm to decide if a given mathematical statement has a reasonably sized proof.
This intuition about whether proof finding can be automated has led to the “P vs NP”
problem [Coo00], which essentially asks whether finding proofs is as easy as verifying
them?

The “P vs NP” problem has significantly contributed to development of computa-
tional complexity theory. Here the main goal is to classify computational problems in
complexity classes. Goal of an algorithm designer is to find efficient algorithms for a
given computational task. On the contrary, complexity theory is mainly concerned with
trying to prove that there exists no efficient algorithm for a specified computational
task. This boundary between algorithm design and complexity theory is very fine.
Nevertheless, traditionally algorithm design and complexity theory have been in a race
to prove the tractability or hardness of computational problems.

But these two seemingly competing goals have a lot in common. More specifically, it
has been shown that finding deterministic algorithms for certain problems is equivalent
to proving lower bounds [ACR98; Bab+93; IW97; ISW99; ISW00; NW94; SU01; STV01;
Uma03; KI04]. For instance, the following theorem was proved in [IW97].

Theorem 1.1 (Theorem 2 in [IW97]). If there is a language f ∈ E with C(fn) = 2Ω(n) , then
BPP = P.

Here E is the complexity class of the languages which can be decided in time O(2O(n))

by Turing machines. The complexity class BPP is essentially the set of languages
which can be decided by a randomized polynomial time Turing machine and the
class P is the set of languages which can be decided by a deterministic polynomial

time Turing machine (see Chapter 2 for more precise definitions). This question P
?
=

BPP is of fundamental importance in computational complexity and the philosophy

of the nature of computation. P ?
= BPP is essentially asking whether randomness

helps in computation at all? It is widely believed that P = BPP. Impagliazzo and
Wigderson [IW97] prove that if we can prove strong enough circuit lower bounds on
the complexity class E then we can derandomize BPP. This phenomenon is usually
known as “Hardness vs Randomness”. Theorem 1.1 implies that hardness leads to
derandomization. We can also ask this question in the other direction, i.e., whether
derandomization implies hardness? Consider the following problem.

Problem 1.1 (Arithmetic Circuit identity testing, ACIT)). Given an arithmetic circuit C,
decide if the polynomial computed by C is the zero polynomial?

For a precise definition of arithmetic circuits, see Chapter 2. By using the Schwartz-
Zippel Lemma (Lemma 3.1) of Chapter 3, one can show that Problem 1.1 (ACIT) is
in the complexity class BPP, i.e., can be solved in polynomial time by a randomized

1.1 motivation 3

polynomial time Turing machine. It is a big open question whether one can find deter-
ministic polynomial time algorithms for ACIT. Now consider the following theorem
from [KI04].

Theorem 1.2 (Theorem 18 in [KI04]). If ACIT over Z can be solved in non-deterministic
sub-exponential time then at least one of the following statement is true.

1. NEXP can not be solved by polynomial size Boolean circuits.

2. Over Q, permanent can not be computed by polynomial-size arithmetic circuits.

For a precise formulation of non-determinism, see Chapter 2. The complexity class
NEXP is the set of languages which can be solved in non-deterministic O(2poly(n)) time.
Thus Theorem 1.2 states that solving ACIT even in sub-exponential time (even with
non-determinism) implies circuit lower bounds. Theorem 1.1 and Theorem 1.2 imply
that derandomization and lower bounds are essentially two sides of the same coin. As
we shall see in Chapter 2, that we can also study the complexity of polynomials instead
of Boolean functions. The algebraic analogue of P vs NP problem is the VP vs VNP

problem, also know as Valiant’s Conjecture.
There is a surprising connection between the VP vs VNP problem and the real roots

of sum of products of sparse polynomials. Consider a real uni-variate polynomial
f (x) ∈ R[x] of the following form.

f (x) =
k

∑
i=1

m

∏
j=1

fij(x). (1.1)

Assume that fij(x)’s are real uni-variate polynomials having at most t monomials but
can have arbitrarily high degree. Thus the degree of f (x) is unbounded whereas f (x)
has at most k · tm many monomials. By using the Descartes’s rule of sign (see Chapter 5

and Theorem 5.3), we know that f (x) can have at most 2k · tm many real roots. Now
consider the following conjecture of Koiran [Koi11].

Conjecture 1.1 (Conjecture 3 in [Koi11], Real τ-conjecture). The number of real roots of f
in Equation (1.1), is bounded by a polynomial function of kmt.

Koiran [Koi11] also proved that the real τ-conjecture (Conjecture 1.1) also implies
lower bounds.

Theorem 1.3 ([Koi11]). If real τ-conjecture is true then permanent is not in VP0.

Here VP0 is the set of families of polynomials which can be computed by constant
free polynomial size arithmetic circuits. In this thesis, we do not focus on proving the
bounds on number of real roots of polynomials of the form Equation (1.1). Rather
we focus on computing the real roots of sparse (polynomials having few monomials)
uni-variate polynomials.

4 introduction

Motivated by these surprising connections, this thesis deals with the following three
themes.

1. Polynomial identity testing.

2. Computing the real roots of real sparse polynomials.

3. Complexity of symmetric polynomials.

1.2 Contribution and Guide

In this section, we describe the structure of this thesis and contribution of various
chapters. This thesis has three parts, described below in Subsections 1.2.1 to 1.2.3. The
preliminaries Chapter 2 formalizes the necessary background of the themes encountered
in this thesis.

1.2.1 Rank of matrix spaces

This part deals with computing the rank of matrix spaces and it is partially based on
our contribution in [BJP18].

Chapter 3 first describes the classical Schwartz-Zippel Lemma[Sch80; Zip79], which
is applied several times in this thesis. Thereafter, we formalize the classical polynomial
identity testing problems. Chapter 3 then sets up the necessary background to define
the notion of a matrix space. We also describe the notions of commutative and non-
commutative ranks of a matrix space. To motivate the idea of commutative rank, several
classical problems are demonstrated which reduce to computing the commutative rank
of a matrix space. These problems are:

1. Maximum matching in bipartite graphs.

2. Maximum matching in general graphs using Tutte matrix

3. Identity testing of formulas and algebraic branching programs.

We show in Chapter 3, that computing the commutative rank of a matrix space (or
equivalently of a symbolic matrix) is equivalent to the identity testing of algebraic
branching programs. Thus computation of the commutative rank can be easily per-
formed in randomized polynomial time but computing it deterministically remains
elusive.

This chapter also describes several equivalent definitions of the non-commutative
rank. We also prove the classical result of [FR04], which states that for any matrix space
B the following inequality always holds.

crk(B) ≤ ncrk(B) ≤ 2 · crk(B). (1.2)

1.2 contribution and guide 5

Chapter 3 concludes with a new max-min and min-max characterizations of commuta-
tive and non-commutative ranks respectively.

It was shown in [Gar+16] that ncrk(B) can be computed in deterministic polynomial
time. In light of this result of [Gar+16], Equation (1.2) implies that a 1

2 -approximation of
crk(B) can be computed in deterministic polynomial time. This motivates the question
whether one can compute better approximations of the commutative rank determinis-
tically. To answer this question, Chapter 4 describes a deterministic polynomial time
algorithm for approximating the commutative rank of a given matrix space. This chap-
ter describes our contribution published in [BJP18]. We introduce the ideas of Wong
sequences in this chapter and a novel notion of Wong index. We show that the higher
the Wong index of a given matrix, the more closely it approximates the commutative
rank. This was the crucial contribution of [BJP18]. We also generalize this connection of
Wong index and commutative rank, to non-commutative rank also. Moreover, Chapter 4

also describes an alternative approach to prove that the greedy algorithm of [BJP18]
approximates the commutative rank. In this new approach, instead of looking at the
Wong index, we look at the constant degree part of a suitable matrix polynomial. We
hope that this new approach can be used to approximate the commutative rank in a
more general setting as well.

1.2.2 Real roots of real sparse polynomials

The second part of this thesis deals with real roots of sparse polynomials. This part is
based on our contribution in [JS17].

In Chapter 5, we first lay the foundation for studying the structure of roots of real
sparse polynomials. It starts with a classical algebraic proof of the fundamental theorem
of algebra. Then we formalize the notion of sparse polynomials. A simple proof for the
Descartes’s rule of signs is also presented. To describe our root computation algorithms,
we need a generalization of Descartes’s rule of signs. This generalization (described by
using Obreshkoff regions) is introduced. Thereafter, we prove a root separation lower
bound for the roots of integer trinomials. We also demonstrate a simple 4-nomial where
such a lower bound is not possible.

Subsequently, Chapter 5 deals with computing the real roots of real sparse polynomi-
als. We first explain the classical algorithm of Cucker, Koiran, and Smale [CKS99]. This
algorithm computes all the integer roots of a sparse integer polynomial in polynomial
time. This algorithm is used to motivate the idea of so called fractional derivatives. This
notion of fractional derivatives is crucial to our algorithm which computes the real
roots of real polynomials. Then we introduce the notions of weak coverings and (strong)
coverings. These are the objects which describe the approximations of real roots of the
given polynomial. We then describe an iterative algorithm to compute a weak covering
of sparse polynomials. This weak covering is then converted to a (strong) covering by
using the so called Tl-test based on Pellet’s Theorem. The classical Tl-test is not efficient

6 introduction

if it is applied naively to sparse polynomials. Thus we propose a modified Tl-test which
is efficient even for sparse polynomials. This allows us to compute a (strong) covering
for sparse polynomials in polynomial time.

1.2.3 Complexity of symmetric polynomials

The last part studies the arithmetic complexity of symmetric polynomials.
It is known that symmetric Boolean functions are easy to compute. More precisely,

every symmetric Boolean function can be computed using constant depth threshold cir-
cuits. These circuits can be captured by the complexity class TC0. Then we consider the
problem of checking whether a given Boolean function (resp. polynomial) is symmetric?
We show that symmetry checking for Boolean functions is NP-hard (under Turing
reductions), whereas symmetry checking for polynomials can be done in randomized
polynomial time.

At last, we consider the arithmetic complexity of symmetric polynomials. In contrast
to symmetric Boolean functions, we show that there exist symmetric polynomial
families which have super polynomial arithmetic complexity (under the assumption
that VP 6= VNP). This is shown using the classical Newton’s Iteration in the algebraic
setting.

2
P R E L I M I N A R I E S

The main theme of this thesis is computation in algebraic and numerical models. In
the classical Boolean model, one studies the complexity of Boolean functions. This
complexity is usually studied in terms of the size of the smallest Boolean circuit
computing the given Boolean function. In this chapter, we motivate the study of
algebraic models of computation. Moreover we define the notion of algebraic circuits
and related concepts. For a more comprehensive introduction, we refer the reader to
[Bü00; SY+10; AB09]. Below are some of the notations which are used frequently.

2.1 Notation

1. For a natural number n ∈N, we use the notation [n] to denote the set {1, 2, . . . , n},
also [[n]] is used to denote the set [n] ∪ {0} = {0, 1, 2, . . . , n}.

2. If c1, c2, . . . , cn ∈ Fm are n column vectors then we use the notation [c1; c2; . . . ; cn]

to denote the m× n matrix whose ith column is ci.

3. f [d] is used to denote the degree d homogeneous component of a polynomial f .

2.2 Boolean and Algebraic Circuits

Definition 2.1 (Boolean Circuit). A Boolean circuit C is a finite directed acyclic graph.
Each vertex is either a {¬,∧,∨}-gate or one of the inputs, and there is exactly one node
which is labeled as the output.

If the given Boolean circuit C has n inputs x1, x2, . . . , xn then it naturally computes a
function C f : {0, 1}n → {0, 1} in the following way.

• Input gates xi compute the Boolean function xi.

• ¬-gate g computes the Boolean function ¬(h) where h is the Boolean function
computed by the child of g.

7

8 preliminaries

• ∧-gate g computes the Boolean function (h1 ∧ h2) where h1 and h2 are the Boolean
functions computed by the children g1, g2 of g.

• ∨-gate g computes the Boolean function (h1 ∨ h2) where h1 and h2 are the Boolean
functions computed by the children g1, g2 of g.

We say that the function computed by the output gate of C is the function computed
by C, denoted by C f . Note that we assume {∧,∨}-gates have in degree two. The depth
of a Boolean circuit is defined as the length of longest path from an input node to the
output node. The size of the circuit is defined as the number of gates in it. For a given
Boolean function f : {0, 1}n → {0, 1}, one studies the smallest (with respect to the size)
Boolean circuit which computes f . To this end, we define the following complexity
measure.

Definition 2.2 (Boolean Circuit Complexity). The circuit complexity C(f) of a Boolean
function f : {0, 1}n → {0, 1} is the size of the smallest circuit computing f .

Proving lower bounds on the circuit complexity of Boolean functions is the main
goal of computational complexity. Unfortunately, this task has remained elusive in the
case of general Boolean circuits defined above. There has been significant progress in
proving lower bounds in restricted circuit models. We refer the reader to [AB09; Vol13;
Juk12] for a more comprehensive introduction to circuit complexity. Now it is easy to
observe that the following equalities for Boolean functions h, h1, h2 hold:

¬h = 1− h

h1 ∧ h2 = h1 × h2

h1 ∨ h2 = h1 + h2 − h1 × h2

This suggests that Boolean gates can be simulated using the algebraic operations
{+,−,×}. This in turn implies that Boolean functions can be computed using {+,−,×}
gates instead of {¬,∧,∨} gates. Thus we define the following idea of arithmetic circuits.

Definition 2.3 (Arithmetic Circuit). An arithmetic circuit C is a finite directed acyclic
graph. Each vertex is one of the following:

• An input gate labeled by some variable xi with in degree zero.

• A constant gate with in degree zero, labeled by some constant c ∈ F. Here F is
the underlying field.

• A {+,−,×}-gate with in degree two.

• An output gate with out degree zero, we assume there is exactly one output gate.

2.2 boolean and algebraic circuits 9

Figure 2.1: Example of an arithmetic circuit

If the given arithmetic circuit C has n inputs x1, x2, . . . , xn then it naturally computes
a polynomial Cp ∈ F[x1, x2, . . . , xn] in the following way.

• Variable input gates xi compute the polynomial xi.

• Constant input gates c compute the constant polynomial c.

• For ◦ ∈ {+,−,×}, a ◦-gate g computes the polynomial (h1 ◦ h2) where h1 and h2

are the polynomials by the children g1, g2 of g.

We say that the polynomial computed by the output gate of C is the polynomial
computed by C, denoted by Cp. Usually, the output gate is also a {+,−,×}-gate
because otherwise C computes a trivial polynomial.

Remark 2.1. In Definition 2.3, we assumed that there is only one output gate. In a more
general setting, one can consider arithmetic circuits which have multiple outputs and
thus compute a set of polynomials. In the definition of arithmetic circuits, “−” gates
are omitted sometimes in the literature. This is because h1− h2 = h1 + (−1)h2 and thus
“−” gates can be simulated by “+” gates.

The size of an arithmetic circuit is defined as the number of gates in it. For a
polynomial p ∈F[x1, x2, . . . , xn], one studies the smallest arithmetic circuit computing
p.

The polynomial computed by the arithmetic circuit in Figure 2.1 is 10x3(x1 + x2) +

x1 + x2 + x4.

Definition 2.4 (Arithmetic Circuit Complexity). For a polynomial p ∈ F[x1, x2, . . . , xn],
the (arithmetic) circuit complexity L(p) of p is defined as the size of smallest arithmetic
circuit computing p, that is

L(p) def
=== min{s | ∃ size s arithmetic circuit computing p}.

We can also define the arithmetic complexity of a set S ⊆ F[x1, x2, . . . , xn] of
polynomials. So L(S) for a set S ⊆ F[x1, x2, . . . , xn] of polynomials is defined as the
minimum size of any arithmetic circuit whose outputs compute all the elements of S.

Suppose we have a circuit C computing a polynomial f ∈ F[x1, x2, . . . , xn]. It might
be the case that f is not homogeneous. For some applications, it might be better to work
with homogeneous polynomials. So we want to know if there exist “small” circuits
also for the homogeneous components of f . The following Lemma 2.1 proves that the
homogeneous components of f also have “small” arithmetic circuits.

10 preliminaries

Lemma 2.1 ([SY+10; Str73]). For all polynomials f and all d ∈ N, we have L(f [d]) ≤
O(d2 · L(f)).

Proof. Let C be a circuit of size L(f) computing f . We create d + 1 copies of each
arithmetic gate in C, i.e., each{+,−,×}-gate G has d + 1 copies G0, G1, . . . , Gd. If the
gate G computes the polynomial g then Gi computes the polynomial g[i]. This can be
trivially done for input and constant gates. Suppose G = G1 + G2 is a “+” gate and
g1, g2 are the polynomials computed by gates G1 and G2 respectively. Now we know
that g[i] = g[i]1 + g[i]2 for all i ∈ [[d]]. A similar statement is true for “−” gates also. If
G = G1 × G2 is a “×” gate then we have the following equality.

g[i] =
i

∑
j=0

g[j]1 · g
[i−j]
2 (2.1)

Suppose we already have the gates for g[j]1 , g[j]2 for all j ∈ [[d]]. Then one g[i] in Equa-
tion (2.1) can be computed using 2(i + 1) additional gates. Thus the gates G0, G1, . . . , Gd
can be constructed using ∑d

k=0 2(k + 1) = O(d2) gates. Hence every gate in C corre-
sponds to at most O(d2) new gates. Thus L(f [d]) ≤ O(d2 · L(f)).

Remark 2.2. Note that the circuit constructed in the proof of Lemma 2.1 computes all
the homogeneous components f [0], f [1], . . . , f [d] instead of just f [d] .

2.3 Complexity classes

• A function q : N→ N is called polynomially bounded or simply p-bounded if
there exists a polynomial f ∈ Z[x] such that for all n ∈N : q(n) ≤ f (n).

Definition 2.5 (Language). A language L is just a subset of {0, 1}∗, that is, a set of
binary sequences of any length. For a language L ⊆ {0, 1}∗, there is a corresponding
total function L f which computes L, that is, L f : {0, 1}∗ → {0, 1} and L f (x) = 1 iff x ∈ L.
We use the symbol Ln to denote the function L f restricted on {0, 1}n.

Remark 2.3. In Definition 2.5, one can also define the languages over an arbitrary
alphabet Σ. But the binary alphabet Σ = {0, 1} is the most commonly used alphabet.

Definition 2.6 (Complexity class). A complexity class C is a set of languages.

Most complexity classes are defined by how much resources they need on some
abstract machine (e.g Turing machines). We define below some well known complexity
classes. For a more complete introduction to Turing machines and complexity classes, we
refer the reader again to [AB09]. For a complexity class C, the complement complexity
class coC of C is defined as

coC def
=== {{0, 1}∗ \ L | L ∈ C}.

2.3 complexity classes 11

2.3.1 Classes P, NP and completeness

We define the complexity classes using Boolean circuits. To this end, we need the notion
of polynomial-time uniform family of Boolean circuits.

Definition 2.7 (Polynomial-time uniform family). A family of Boolean circuits {Cn : n ∈
N} is said to be polynomial-time uniform if there exists a polynomial time deterministic
Turing machine M, such that for all n ∈N , M outputs a description of Cn on input 1n.

In Definition 2.7, for the description of Cn, any reasonable encoding of Boolean circuits
can be used. Also, polynomial time deterministic Turing machine M outputting Cn

implies that the size of Cn is p-bounded function of n.

Definition 2.8 (Complexity class P). A language L is in the complexity class P if and
only if there exists a polynomial-time uniform family of Boolean circuits {Cn : n ∈N} ,
such that Cn computes the function Ln for all n ∈N.

So the complexity class P is the set of decision problems (interchangeably used with
languages) which can be decided by polynomial size circuits or in polynomial time by
deterministic Turing machines. To motivate the definition of NP, consider the following
decision problem CSAT.

Definition 2.9 (Language CSAT). The language CSAT is defined as the set of (encoding
of) of circuits which can be satisfied, that is,

CSAT def
=== {Circuit C(x1,x2, . . . , xn) | ∃(a1,a2, . . . , an) ∈ {0, 1}n : C(a1,a2, . . . , an) = 1}.

Here CSAT can be seen as a subset of {0, 1}∗ by encoding the Boolean circuits using
binary strings in a reasonable way. Given a (encoding of a) circuit C(x1,x2, . . . , xn), how
to check if it is satisfiable? At first it seems that one needs to evaluate C on all the 2n

assignment (a1,a2, . . . , an) ∈ {0, 1}n and then check if C evaluates to 1 on one of these
2n assignments. In fact, essentially this is the best algorithm known for CSAT. The
conjectures ETH and SETH [CIP09; IP01] state that this is the best one can do even in
restricted models like 3-SAT and k-SAT. But now observe that if someone gives us an
assignment (a1,a2, . . . , an) ∈ {0, 1}n which satisfies C (C(a1,a2, . . . , an) = 1) then we can
check the condition C(a1,a2, . . . , an) = 1 efficiently, by evaluating C on (a1,a2, . . . , an).
Such a satisfying assignment (a1,a2, . . . , an) ∈ {0, 1}n is called a “witness”. The class of
decision problems where such “short” witnesses exist and their validity can be verified
in polynomial time, is called the complexity class NP. We formalize this definition
below.

Definition 2.10 (Complexity class NP). A language L is in the complexity class NP if
and only if the following conditions are true.

• There exists a polynomial-time uniform family of Boolean circuits {Cn : n ∈N}.

12 preliminaries

• There exists a p-bounded function q such that

– For all x ∈ L, there exists a “witness” w ∈ {0, 1}q(|x|) such that:

C|x|+q(|x|)(x, w) = 1.

– For all x 6∈ L, no such “witness” w exists.

Usually, the class NP is defined as the set of decision problems solvable in polynomial
time by a non-deterministic Turing machine. But it is an easy exercise to show that
Definition 2.10 is an alternate definition of NP. To formalize the idea of hardness of a
problem, we define the notion of a reduction.

Definition 2.11 (Many-one reduction). Let R be some set of functions {0, 1}∗ → {0, 1}∗.
A language L′ is called R many one reducible to another language L if there is some
function f ∈ R (the reduction) such that for all x ∈ {0, 1}∗,

x ∈ L′ ⇐⇒ f (x) ∈ L.

We use the notation L′ ≤R L to denote that L′ is R many one reducible to L.

In Definition 2.11, if R is the set of polynomial time computable functions then we
say that L′ polynomial time many one reduces to L, we denote this by L′ ≤P L. An
oracle Turing machine M with oracle access to a language L is denoted by ML.

Definition 2.12 (Turing reduction). Let R be a Turing machine. A language L′ is called
R Turing reducible to another language L if L′ is the language decided by the oracle
Turing machine RL. We use the notation L′ ≤T

R L to denote that L′ is R Turing reducible
to L.

In Definition 2.12, if R is a polynomial time Turing machine then we say that L′

polynomial time Turing reduces to L, we denote this by L′ ≤T
P L. We usually define the

notion of hardness by using polynomial time many one reductions.

Definition 2.13 (Hardness and Completeness). For a complexity complexity classic C,
a language L is said to be C-hard if L′ ≤P L for all L′ ∈ C. L is said to be C-complete if
L is C-hard and L ∈ C.

Theorem 2.1 (Theorem 2.21 in [Gol08]). The language CSAT is NP-complete.

2.3.2 Low depth circuits

Proving super-polynomial lower bounds has proved to be a hard task. So it is natural to
study the restricted classes of circuit families on which one can hopefully prove some
lower bounds. To this end, we define the complexity classes NC, AC and TC. First we
define the notion of a threshold gate.

2.3 complexity classes 13

Definition 2.14 (Threshold gate). A threshold gate takes m inputs x1, x2, . . . , xm and
computes the following Boolean function Tk : {0, 1}m → {0, 1}:

Tk(x1, x2, . . . , xm) =

1 ∑m
i=1 xi ≥ k

0 otherwise

A majority gate MAJm(x1, x2, . . . , xm) is defined as Tdm
2 e(x1, x2, . . . , xm).

Definition 2.15 (Complexity class NCi). A language L is in NCi if there exists a
polynomial-time uniform family of Boolean circuits {Cn : n ∈ N} such that Cn com-
putes the function Ln for all n ∈N , the depth of Cn is bounded by O(logi n) and the
size of Cn is bounded by poly(n). Here the gates in Cn are of fan-in at most two.

Definition 2.16 (Complexity class ACi). A language L is in ACi if there exists a
polynomial-time uniform family of Boolean circuits {Cn : n ∈ N} such that Cn com-
putes the function Ln for all n ∈ N, the depth of Cn is bounded by O(logi n) and the
size of Cn is bounded by poly(n). Here the AND and OR gates in Cn have unlimited
fan-in.

Definition 2.17 (Complexity class TCi). A language L is in TCi if there exists a
polynomial-time uniform family of Boolean circuits {Cn : n ∈ N} such that Cn com-
putes the function Ln for all n ∈ N, the depth of Cn is bounded by O(logi n) and the
size of Cn is bounded by poly(n). Here the AND and OR gates in Cn have unlimited
fan-in. Also, Cn is allowed to have unlimited fan-in threshold gates.

Note that unlimited fan-in AND and OR gates are also threshold gates. Thus all the
gates in a TCi can be assumed to be threshold gates. By the definitions above, it is easy
to see the following containment.

∀i : NCi ⊆ ACi ⊆ TCi.

We shall see in Chapter 6 that the languages defined by symmetric Boolean functions
are in TC0.

Remark 2.4. Note that any threshold gate Tk(x1,x2, . . . , xm) can be simulated by a majority
gate as below:

Tk(x1, x2, . . . , xm) =

MAJ2k(x1, x2, . . . , xm, 0, 0, . . . , 0) If m < 2k

MAJ2k(x1, x2, . . . , xm, 1, 1, . . . , 1) otherwise

And therefore all the threshold gates in Definition 2.17 can be assumed to majority
gates.

14 preliminaries

Although not relevant to the discussion here, Theorem 2.2 shows that proving lower
bounds on restricted circuit classes can be easier. To this end, we define the following
language PARITY.

PARITY def
=== {x ∈ {0, 1}∗ | number of 1′s in x is odd}.

Theorem 2.2 ([Smo93]). PARITY 6∈ AC0.

The complexity classes NC, AC and TC are defined as:

NC
def
===

⋃
i∈N

NCi

AC
def
===

⋃
i∈N

ACi

TC
def
===

⋃
i∈N

TCi

2.3.3 Randomized Complexity Classes

A randomized Turing machine is a Turing machine which can flip a fair coin in every
step. With probability 1

2 , the outcome is 1 and otherwise it is 0.

Definition 2.18 (Complexity class RP). A language L is in RP if there exists a random-
ized Turing machine M with polynomial running time such that:

1. for all x ∈ L, M accepts x with probability at least 1
2 .

2. for all x 6∈ L, M rejects x with probability 1.

Turing machines in Definition 2.18 are said to have one-sided error. One can also
define complexity classes with two-sided error. For instance:

Definition 2.19 (Complexity class BPP). A language L is in BPP if there exists a
randomized Turing machine M with polynomial running time such that:

1. for all x ∈ L, M accepts x with probability at least 2
3 .

2. for all x 6∈ L, M rejects x with probability at least 2
3 .

2.4 Formulas and Algebraic Branching Programs

We have described above the model of algebraic circuits which compute polynomials.
In this section, we describe the ideas of two other well studied algebraic models of
computation.

2.4 formulas and algebraic branching programs 15

Figure 2.2: Example of an algebraic branching program

Definition 2.20 (Arithmetic Formula). An arithmetic circuit is called a formula if the
underlying acyclic graph in Definition 2.3 is a tree.

It is obvious that arithmetic circuits are at least as powerful as arithmetic formulas
because an arithmetic formula is trivially an arithmetic circuit. Arithmetic branching
programs are another well studied algebraic model of computation.

Definition 2.21 (Algebraic Branching Program (ABP) [Nis91]). An Algebraic Branching
Program (ABP) in variables x1, x2, . . . , xn over the field F is a directed acyclic graph
with the following properties.

1. There is a distinguished vertex s of in-degree zero (the source).

2. There is a distinguished vertex t of out-degree zero (the sink).

3. Each edge e is labeled with a polynomial fe in the input variables x1, x2, . . . , xn .

The size of an ABP is defined as the number of vertices in the ABP. In the Defini-
tion 2.21, we have not imposed any restrictions on the edges. But it can be shown that
with a polynomial blowup in the the size, ABPs can be assumed to layered. This means
that that the vertices of the underlying graph are partitioned into layers 0, 1, . . . , T. In
this case, edges in the graph are only allowed to go from layer k− 1 to layer k , for
k ∈ [T]. Thus the source vertex s is is the only vertex at layer 0 and the sink vertex t is
the only vertex at layer T. So we always assumed ABPs to be layered.

The width of any ABP is the maximum number of nodes in any layer. The degree
of an ABP is defined to be the maximal degree of the polynomial edge labels. We can
define the polynomial computed by an ABP in the following way.

• Polynomial fP computed by each s t path P is the product of the labels of the
edges on P, i.e., fP = ∏e∈P fe.

• ABP A computes the polynomial fA which is the sum of all the polynomials
computed by all the s t paths, that is:

fA = ∑
P is an s t path

fP.

For example, the polynomial computed by the path s→ a1 → b2 → t in Figure 2.2 is
(2x1 + 5x2 + 7) · (27) · (13x1 + 17x2). The polynomial computed by the ABP of Figure 2.2
is sum of all such polynomials. In Definition 2.21 of ABPs, we allowed the edge labels
to be arbitrary polynomials. But this can allow even very short ABPs to compute hard

16 preliminaries

polynomials. So to define the idea of ABP complexity, we only allow linear polynomials
as edge labels, as in Figure 2.2. Thus from now on, we always assume edge labels to be
linear polynomials, that is, polynomials of degree at most 1.

Similar to the notion of arithmetic complexity, we can define the formula and ABP
complexity.

Definition 2.22 (Arithmetic Formula Complexity). For a polynomial p ∈ F[x1, x2, . . . ,
xn], the (arithmetic) formula complexity Le(p) of p is defined as the size of smallest
arithmetic formula computing p, that is

Le(p) def
=== min{s | ∃ size s arithmetic formula computing p}.

In the notation Le, e stands for expression which is an equivalent term for formulas.
As hinted above, it is obvious that ∀ f ∈ F[x1, x2, . . . , xn] : L(f) ≤ Le(f).

Definition 2.23 (ABP Complexity). For a polynomial p ∈ F[x1, x2, . . . , xn], the ABP
complexity La(p) of p is defined as the size of smallest ABP computing p, that is

La(p) def
=== min{s | ∃ size s ABP computing p}.

2.5 Algebraic Complexity classes

Analogous to the idea of classical complexity classes, we can also define the algebraic
complexity classes. Note that we have defined the notion of arithmetic complexity
in a non-uniform manner. This means that we do not require that the description
of an arithmetic circuit computing the polynomial should be the output of some
Turing Machine. And therefore we have to define algebraic complexity classes using
polynomial families. We refer the reader to [Bü00; Mah14] for a more comprehensive
introduction to algebraic complexity classes.

Definition 2.24 (p-family). A family (or a sequence) (fn)n∈N of (multivariate) polyno-
mials over the field F is said to be a p-family iff the number of variables as well as the
degree of fn are p-bounded functions of n.

Now we define the notion of efficient polynomial families.

Definition 2.25 (p-computable). A p-family (fn)n∈N is called p-computable iff the
arithmetic complexity L(fn) is a p-bounded function of n.

p-computable polynomial families define the algebraic analogue of the P, called VP.

Definition 2.26 (Class VP). The (algebraic complexity) class VP is the set of all p-
computable polynomial families.

2.6 completeness and hard polynomials 17

Definition 2.27 (Class VPe). The (algebraic complexity) class VPe is the set of all p-
families (fn)n∈N such that Le(fn) is a p-bounded function of n.

Definition 2.28 (Class VBP). The (algebraic complexity) class VBP is the set of all
p-families (fn)n∈N such that La(fn) is a p-bounded function of n.

A non-deterministic counterpart VNP of VP can be defined as follows.

Definition 2.29 (Class VNP). A p-family (fn)n∈N is said to be in the (algebraic com-
plexity) class VNP if there exists a polynomial family (gn)n∈N ∈ VP with gn ∈ F[x1, x2,
. . . , xq(n)] such that:

fn(x1, x2, . . . , xp(n)) = ∑
e∈{0,1}q(n)−p(n)

gn(x1, x2, . . . , xp(n), e1, e2, . . . , eq(n)−p(n)).

Analogous to Definition 2.29 of VNP, we can also define the class VNPe where the
polynomial family (gn)n∈N is required to be in class VPe instead of VP. Surprisingly, it
is known that VNPe = VNP.

Theorem 2.3 ([Bü00]). Over all fields, VNPe = VNP.

From the perspective of computational power, we also know that ABPs lie in between
formulas and circuits.

Theorem 2.4 ([Mah14]). Over all fields, VPe ⊆ VBP ⊆ VP.

2.6 Completeness and hard polynomials

Similar to the Boolean case, there is an algebraic notion of reduction also, called
p-projections.

Definition 2.30 (Projection). A polynomial f (x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn] is said
to be a projection of a polynomial g(y1, y2, . . . , ym) ∈ F[y1, y2, . . . , ym], if there exists a
map α : {y1, y2, . . . , ym} → {x1, x2, . . . , xn} ∪F such that f = g under the substitution
map α. We write f ≤ g to denote that f is a projection of g.

Definition 2.31 (p-projection). A p-family (fn)n∈N is said to be a p-projection of a
p-family (gn)n∈N if there is a p-bounded function β : N→N and n0 ∈N such that :

∀n ≥ n0 : fn ≤ gβ(n).

We denote (fn)n∈N being a p-projection of (gn)n∈N by f ≤p g.

Now the idea of completeness and hardness can be defined as in the Boolean case.

18 preliminaries

Definition 2.32 (Hardness and Completeness). For an algebraic complexity classic C, a
p-family f = (fn)n∈N is said to be C-hard if g ≤p f for all g ∈ C, f is called C-complete
if f is C-hard and f ∈ C.

It is known that the well known determinant polynomial family (detn) is VBP-
complete. Recall that detn is defined as:

det
n

def
=== ∑

π∈Sn

sgn(π)
n

∏
i=1

xi,π(i).

The following Theorem 2.5 shows that (detn) is VPe-hard.

Theorem 2.5 ([Val79]). Let f∈ F[x1, x2, . . . , xm] be a polynomial computed by an arithmetic
formula of size s then f is a projection of dets+2. Additionally, this projection can be computed
in deterministic poly(m, s) time.

In fact, we know that ABPs are projections of small size determinants and vice-versa.

Theorem 2.6 ([Vin91; Tod91; MV97].). Let f∈ F[x1, x2, . . . , xm] be a polynomial computed
by an ABP of size s then f is a projection of dets. Additionally, this projection can be computed
in deterministic poly(m, s) time. The converse is also true, i.e., dets can be computed by a
poly(s) size ABP.

Corollary 2.1. (detn) is VPe-hard and VBP-complete.

By using Theorem 2.4, we conclude that (detn) ∈ VP. It is not known whether (detn)

is VP-hard, although (detn) is known to be VP-hard under so called qp-projections
[Bü00]. We refer the curious reader to [Dur+14] for a discussion on VP-complete
polynomial families. Now we define the well known VNP-complete polynomial family
called the permanent.

pern
def
=== ∑

π∈Sn

n

∏
i=1

xi,π(i).

Theorem 2.7 ([Val79; Bü00]). Over the fields F with char(F) 6= 2, p-family (pern) is
VNP-complete.

The holy grail of algebraic complexity theory is to show that VP 6= VNP. For this it is
enough to show that (pern) 6∈ VP over fields F with char(F) 6= 2 . Note that pern and
detn are the same polynomials if char(F) = 2 . Thus if char(F) = 2 then (pern) ∈ VP.
Hence (pern) is unlikely to be VNP-complete over fields of characteristic two.

2.7 definitions and facts in linear algebra 19

2.7 Definitions and Facts in Linear Algebra

Definition 2.33 (Null-space). For an m× n matrix A ∈ Fm×n, the null-space Ker(A) of
A is a subspace of Fn defined as below:

Ker(A) = {v ∈ Fn | Av = 0}.

Definition 2.34 (Image). For an m× n matrix A ∈ Fm×n, the image Im(A) of A is a
subspace of Fm defined as below:

Im(A) = {Av | v ∈ Fn}.

Remark 2.5. The rank of an m× n matrix A ∈ Fm×n can be defined as dim(Im(A)).

Theorem 2.8 (Rank–nullity theorem, page 199 of [Mey00]). If A is an m× n matrix (with
m rows and n columns) over some field, then we have:

rank(A) + dim(Ker(A)) = n.

Part I

P O LY N O M I A L I D E N T I T Y T E S T I N G

3
S Y M B O L I C M AT R I C E S A N D M AT R I X S PA C E S

This chapter deals with checking the singularity of symbolic matrices. This singularity
problem can be phrased in terms of the rank of corresponding matrix spaces. Here we
introduce the definitions of symbolic matrices and matrix spaces. Then we describe the
associated computational problems and formalize relevant concepts.

3.1 Preliminaries

The following Lemma 3.1 is a common tool which we shall need.

Lemma 3.1 (Schwartz-Zippel Lemma [Sch80; Zip79]). Let g ∈ F[x1, x2, . . . , xn] be a
non-zero polynomial of degree d and S ⊆ F. Suppose a1, a2, . . . , an are selected at random
independently and uniformly from S. Then we have:

Pr[g(a1, a2, . . . , an) = 0] ≤ d
|S| .

Proof. We show that there are at most d · |S|n−1 zeroes of g in Sn. Thus it is enough to
show that there are at least (|S| − d) · |S| n−1 many points in Sn on which g evaluates
to non-zero. We do this by induction on n. This is obviously true for n = 1 because a
non-zero uni-variate polynomial of degree d has at most d many zeroes in S. For the
induction step, we have g = ∑k

i=0 gi · xi
n for some k ≤ d and gk 6= 0. Here gi ∈ F[x1,

x2, . . . , xn−1] and deg(gi) ≤ d − i. By the induction hypothesis, there are at least
(|S| − (d− k)) · |S| n−2 many points (a1, a2, . . . , an−1) ∈ Sn−1 such that gk(a1, a2, . . . ,
an−1) 6= 0. For each such (a1, a2, . . . , an−1) we have that g(a1, a2, . . . , an−1, xn) is a
non-zero uni-variate polynomial of degree k in xn. Thus for each such (a1, a2, . . . , an−1),
there are at least (|S| − k) many an ∈ S such that g(a1, a2, . . . , an) 6= 0. Thus

|{(a1, a2, . . . , an) | g(a1, a2, . . . , an) 6= 0}| ≥ (|S| − k) · (|S| − (d− k) · |S| n−2

≥ (|S| − d) · |S| n−1.

23

24 symbolic matrices and matrix spaces

In the next few chapters, we shall need the following simple application of Lemma 3.1.

Lemma 3.2. Let g ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of degree d such that g has a
non-zero monomial of degree at most `. Fix an arbitrary subset S ⊆ F of size d + 1. Then there
exists an assignment α to the variables xi’s with g(α) 6= 0 such that at most ` variables in α are
set to non-zero. Moreover this assignment α assigns these ` non-zero variables values from the
set S.

Proof. Let m be a non-zero monomial of g of least degree. By assumption of the lemma,
we know that deg(m) ≤ `. In particular, the number of variables in m is at most `. Let
these variables be xi1 , xi2 , . . . , xik for some k ≤ `. Now we assign all the other variables
to zero. This transforms g into a non-zero polynomial g′ in the variables xi1 , xi2 , . . . , xik .
Also, deg(g′) ≤ deg(g) = d. Thus by using Schwartz-Zippel lemma (Lemma 3.1) we
get that there exists an assignment α′ to the variables xi1 , xi2 , . . . , xik from set S such
that g′(α′) 6= 0. By setting other variables to zero, we can extend the assignment α′ to α

such that g(α) 6= 0. This assignment α obviously has all the properties claimed in the
statement of the lemma.

3.2 Matrix Spaces

We use the symbol F to denote the underlying field over which all the algebraic
concepts are defined in this chapter. Suppose we are given m matrices B1, B2, . . . ,
Bm ∈ Fn×n and we want to determine the maximum rank of any matrix which is an
F-linear combination of B1, B2, . . . , Bm. At this point, it is not clear why this simple
looking problem is of any importance. We shall see why this problem is of fundamental
importance. To this end, we formalize the following definition.

Definition 3.1 (Matrix space). A vector space B ≤ Fn×n is called a matrix space.

Thus we are given a matrix space B by a generating set B1, B2, . . . , Bm over F. Since
the dimension of Fn×n is n2, we can assume that m ≤ n2. In all the following chapters,
we shall always assume that m ≤ n2.

3.2.1 Commutative rank

Definition 3.2. The maximum rank of any matrix in a matrix space B is called the
commutative rank of B. We write crk(B) to denote this quantity.

When the field F is not clear from the context, we shall use crkF to denote the
rank over F. We shall use the notation rank(A) for denoting the usual rank of any
matrix. Note that the rank of a matrix A is same as the commutative rank of the
matrix space generated by A, that is, rank(A) = crk(〈A〉). Suppose we are given a

3.2 matrix spaces 25

matrix space B = 〈B1, B2, . . . , Bm〉. We can associate a matrix B with B in the
following way. The matrix B has entries which are homogeneous linear forms and we

define B def
=== ∑m

i=1 xiBi. Every matrix in B is the homomorphic image of B under some
substitution that assigns values from F to the variables. This motivates the following
Definition 3.3.

Definition 3.3. A matrix B ∈ (F[x1, x2, . . . , xm])n×n whose entries are homogeneous
linear forms is called a symbolic matrix.

Now we want to compute the rank(B) over the field of rational functions F(x1, x2,
. . . , xm). This problem was introduced by Edmonds [Edm67] and is now known
as Edmonds’ problem. The following folklore Lemma 3.3 demonstrates a connection
between the rank of symbolic matrices and matrix spaces.

Lemma 3.3. Let B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n be a matrix space and B(x1, x2, . . . ,
xm)) = ∑m

i=1 xiBi be the corresponding symbolic matrix. If |F| > n then rank(B) = crk(B).
Proof. Suppose λ1, λ2, . . . , λm ∈ F are such that ∑m

i=1 λiBi is of maximum rank in B.
We have that rank(B) ≥ rank(B(λ1, λ2, . . . , λm)) = crk(B). Thus rank(B) ≥ crk(B).
On the other hand, suppose r = rank(B). Then there exists a non-zero r × r minor
Mr of B(x1, x2, . . . , xm). Note that Mr is a homogeneous polynomial of degree
r in F[x1, x2, . . . , xm]. Thus by using Schwartz–Zippel Lemma (Lemma 3.1), we
know that there exist a1, a2, . . . , am ∈ F such that Mr(a1, a2, . . . , am) 6= 0. Thus
crk(B) ≥ r = rank(∑m

i=1 aiBi) = rank(B). Therefore rank(B) = crk(B).

If the field is large enough then it follows from Lemma 3.3 that computing the
commutative rank of matrix spaces and computing the rank of a given symbolic matrix,
are essentially the same problem. But in the cases when field is not large enough, these
two notions of the rank may not be same. This is illustrated by Example 3.1.

Example 3.1. Consider

B =

〈 1 0 0

0 1 0

0 0 0

 ,

 0 0 0

0 1 0

0 0 1


〉

The corresponding symbolic matrix is:

B = x1

 1 0 0

0 1 0

0 0 0

+ x2

 0 0 0

0 1 0

0 0 1

 =

 x1 0 0

0 x1 + x2 0

0 0 x2


Thus det(B) = x1(x1 + x2)x2, which always evaluates to zero if x1, x2 ∈ F2. Thus

crkF2(B) = 2 whereas rankF2(x1,x2)(B) = 3 because x1(x1 + x2)x2 is a non-zero polyno-
mial over the rational function field F2(x1, x2).

26 symbolic matrices and matrix spaces

To avoid this problem, we shall always assume that |F| > n unless stated otherwise.
At first glance, the problem of commutative rank computation may appear like any
other computational problem. But it is a general case of a lot of important problems in
algebraic complexity theory and graph theory. The following Lemma 3.4 shows that
bipartite graph matching is a special case of Edmonds’ problem.

Lemma 3.4 ([Lov79]). Let G = (V ∪W, E) be a bipartite graph on 2n vertices. Suppose
V = {v1, v2, . . . , vn}, W = {w1, w2, . . . , wn} and all the edges e ∈ E are of the form
e = (vi, wj). Let X = {x11, . . . , xnn} be the set of n2 variables. If r is the size of maximum
matching in G and MG is the following n× n symbolic matrix.

(MG)i,j =

xij If (vi, wj) ∈ E

0 Otherwise

Then we have r = rankQ(X)(MG).

Proof. Suppose {(vi1 , wj1), (vi2 , wj2), . . . , (vir , wjr)} is a maximum matching of G. Con-
sider the r× r minor Mr of MG consisting of rows {i1, i2, . . . , ir} and columns {j1, j2,
. . . , jr}. It is easy to see that the monomial m = ∏r

k=1 xik ,jk appears in Mr. Since
{(vi1 , wj1), (vi2 , wj2), . . . , (vir , wjr)} are edges of G, we know that m is a non-zero mono-
mial by the definition of MG. Thus r ≤ rankQ(X)(MG). On the other hand if t =

rankQ(X)(MG) then there exists a non-zero t× t minor Mt consisting of rows rows {i1,
i2, . . . , it} and columns {j1, j2, . . . , jt}. Since Mt is non-zero, we get that for each a ∈ {i1,
i2, . . . , it} there exists a unique b ∈ {j1, j2, . . . , jt} such that (a, b) ∈ E. Therefore {i1,
i2, . . . , it} form a matching with {j1, j2, . . . , jt}. Thus t = rankQ(X)(MG) ≤ r. Hence
r = rankQ(X)(MG).

One can generalize Lemma 3.4 to general graphs using the so called Tutte matrix of a
graph. We state this connection between the maximum matching and rank of symbolic
matrices in Theorem 3.1.

Definition 3.4 (Tutte matrix [Tut47]). Tutte matrix AG of a simple undirected graph
G = (V, E) with V = [n] is an n× n symbolic matrix defined as below.

(AG)i,j =


xij If (i, j) ∈ E and i < j

−xji If (i, j) ∈ E and i > j

0 Otherwise

Theorem 3.1 ([MR95; RV89]). If r is the size of maximum matching in G then rank(AG) =

2r.

For the proof of Theorem 3.1, we refer the reader to [RV89]. Even the so-called linear
matroid parity problem is a special case of the commutative rank problem [Orl08].

3.2 matrix spaces 27

Now we demonstrate some of the connections to algebraic complexity theory. For
this, we first show that even if our matrix has affine linear forms as entries instead of
homogeneous linear forms, it makes no difference.

Lemma 3.5. Let B = B0 + x1B1 + · · ·+ xmBm be an n× n symbolic matrix with affine linear

forms in variables x1, x2, . . . , xm as entries. Define BH def
=== B0x0 + x1B1 + · · ·+ xmBm as the

homogenized symbolic matrix corresponding to B. If |F| > n + 1 then

rankF(x1,x2,...,xm)(B) = rankF(x0,x1,x2,...,xm)(BH).

Proof. It is clear that rank(B) ≤ rank(BH) because setting x0 = 1 can not increase
the rank of rank(BH). Now suppose r = rank(BH). Thus there exists a non-zero r× r
minor Mr of BH. We know that Mr is a non-zero homogeneous polynomial of degree
r ≤ n in variables x0, x1, x2, . . . , xm. Since |F| > n + 1, by using the Schwartz-Zippel
lemma (Lemma 3.1), we know that there exists λ 6= 0 such that Mr(λ, x1, x2, . . . , xm) is

a non-zero polynomial in x1, x2, . . . , xm. This also implies that M′r
def
=== Mr(1, x1, x2, . . . ,

xm) 6= 0, since Mr is homogeneous. Now observe that M′r is a non-zero r× r minor of B.
Thus rank(BH) = r ≤ rank(B). Hence rankF(x1,x2,...,xm)(B) = rankF(x0,x1,x2,...,xm)(BH).

Computing the rank of a symbolic matrix has surprising connections to polynomial
identity testing.

Problem 3.1 (FORMULAPIT). Given a formula F computing f∈ F[x1, x2, . . . , xm], is
f = 0?

Theorem 2.5 shows that symbolic matrix problem is useful in polynomial identity
testing of polynomials computed by polynomial size formulas.

We introduce the following problem, which was called PIT in [Gar+16].

Problem 3.2 (COMMSINGULAR). Given an n× n symbolic matrix B ∈ F[x1, x2, . . . , xm],
is B of full rank, i.e., is rank(B) = n?

It is not hard to see that if COMMSINGULAR can be solved in deterministic polyno-
mial time then so can be polynomial identity testing of formulas.

Lemma 3.6. If COMMSINGULAR ∈ P then FORMULAPIT ∈ P.

Proof. Let f∈ F[x1, x2, . . . , xm] be the polynomial for which we want to check if f = 0?
We are given a formula F computing f . We compute the projection in Theorem 2.5 to
construct a symbolic matrix B such that B has full rank iff f 6= 0. Note that the entries
of B need not be homogeneous. Thus we can use Lemma 3.5 to obtain a symbolic
matrix BH with homogeneous linear forms as entries. Therefore we have the following
condition.

f = 0⇐⇒ det(B) = 0⇐⇒ rank(B) < n⇐⇒ rank(BH) < n.

Hence the claim follows.

28 symbolic matrices and matrix spaces

In fact, one can show that the existence of a deterministic polynomial time algorithm
for COMMSINGULAR implies a deterministic polynomial time algorithm for the PIT of
algebraic branching programs (ABPs). ABPs are currently conjectured to be a stronger
model than formulas.

Problem 3.3 (ABPPIT). Given an ABP A computing f∈ F[x1, x2, . . . , xm], is f = 0?

In a similar vein to Lemma 3.6, the following Corollary 3.1 immediately follows by
using Theorem 2.6.

Corollary 3.1. COMMSINGULAR ∈ P if and only if ABPPIT ∈ P.

Due to it being a general case of so many combinatorial and algebraic problems, it
is not surprising that no efficient deterministic algorithms for COMMSINGULAR are
known. Although, an easy randomized algorithm is easy to formulate which we do so
below.

Problem 3.4 (COMMRANKCOMPUTE). Given an n× n symbolic matrix B ∈ F[x1, x2,
. . . , xm], compute rankF(x1,x2,...,xm)(B).

Algorithm 3.1 Randomized algorithm for COMMRANKCOMPUTE.

Input: An n× n symbolic matrix B ∈ F[x1, x2, . . . , xm] and |F| > n.
Output: rankF(x1,x2,...,xm)(B).

1: S ← Any subset of size n + 1 of F.
2: λ1, λ2, . . . , λm ← Random elements from S.
3: return rank(B(λ1, λ2, . . . , λm))

Lemma 3.7. Algorithm 3.1 computes rankF(x1,x2,...,xm)(B) with success probability at least
1

n+1 .

Proof. Suppose r = rankF(x1,x2,...,xm)(B). We know that there exists a non-zero r × r
minor Mr of B and Mr is a homogeneous polynomial of degree r in x1, x2, . . . , xm. By
using the Schwartz-Zippel lemma (Lemma 3.1), we get that Mr(λ1, λ2, . . . , λm) 6= 0
with probability at least 1− r

n+1 ≥
1

n+1 . This implies that rank(B(λ1, λ2, . . . , λm)) = r
with probability at least 1

n+1 .

Note that Lemma 3.7 only succeeds with probability 1
n+1 . But this is not a problem

because one can amplify this success probability to any desired constant by using
standard probability amplification arguments. Namely, we know that Lemma 3.7 fails
with probability at most 1− 1

n+1 . Thus if we use Lemma 3.7 independently n + 1 times,

the failure probability is at most
(
1− 1

n+1

)n+1 ≤ 1
e . Therefore by using this method, we

can compute rankF(x1,x2,...,xm)(B) with success probability at least 1
e and it can be further

amplified to any desired constant by running Algorithm 3.1 many times independently.

3.2 matrix spaces 29

Also, it is clear that Algorithm 3.1 takes poly(m, n) = poly(n) many arithmetic
operations over the field F. It can be shown that if F = Q then even the bit complexity
of Algorithm 3.1 is poly(n).

We have now seen the concept of commutative rank and why computing it is of
fundamental importance. There is a related notion of non-commutative rank of a matrix
space or symbolic matrix. Intuitively, it means that variables x1, x2, . . . , xm do not
commute anymore. We now give a brief introduction to the non-commutative rank and
its connection to the commutative rank.

3.2.2 Non-commutative rank

There are many equivalent ways to define the non-commutative rank of a matrix
space. We start with the following definitions first and then explore some equivalent
formulations. To this end, we need to define the notions of shrunk sub-spaces and
discrepancy. First we define some operations between vector spaces and matrix spaces.

Definition 3.5. For any matrix A, matrix space A ≤ Fn×n and vector space U ≤ Fn, we
define the following linear spaces.

1. A(U) = AU def
=== {Au | u ∈ U}.

2. A−1(U)
def
=== {v ∈ Fn | Av ∈ U}.

3. A(U) = AU def
=== 〈{Au | A ∈ A, u ∈ U}〉.

4. A−1(U)
def
=== ∩A∈AA−1(U) = {v ∈ Fn | ∀A ∈ A, Av ∈ U}.

Now the properties in the following Lemma 3.8 are easy to verify.

Lemma 3.8. For any A ≤ Fn×n and vector space U ≤ Fn, the following holds.

1. If U ≤W then A(U) ⊆ A(W) and A−1(U) ⊆ A−1(W).

2. U ≤ A−1(A(U)) and A(A−1(U)) ≤ U.

Definition 3.6 (c-shrunk subspace). A subspace U ≤ Fn is called a c-shrunk subspace
of a matrix space B ≤ Fn×n if dim(U)− dim(BU) ≥ c.

Definition 3.7 (Discrepancy). The discrepancy of a matrix space B ≤ Fn×n is defined
as the maximum c such that there exists a c-shrunk subspace of B. Namely,

disc(B) def
=== max{c ∈N | ∃ a c-shrunk subspace of B}.

Definition 3.8 (Non-commutative rank). The non-commutative rank ncrk(B) of a
matrix space B ≤ Fn×n is defined as:

ncrk(B) def
=== n− disc(B).

30 symbolic matrices and matrix spaces

It is easy to verify the following Fact 3.1.

Fact 3.1. For all invertible matrices P, Q ∈ Fn×n and all matrix spaces B ≤ Fn×n, we have
that crk(B) = crk(PBQ) and ncrk(B) = ncrk(PBQ).

It is not hard to see that crk(B) ≤ ncrk(B), as demonstrated below in Lemma 3.9.

Lemma 3.9. For all fields F and for all matrix spaces B ≤ Fn×n, crk(B) ≤ ncrk(B).

Proof. Let r = ncrk(B). This means that there exists V ≤ Fn such that dim(BV) =

dim(V) − (n − r). Therefore, for all B ∈ B, dim(BV) ≤ dim(V) − (n − r). Thus
crk(B) ≤ n− (n− r) = r = ncrk(B).

It will be useful in upcoming chapters to use an alternative characterization of the
non-commutative rank. For this, we need the notion of a “blow-up” of matrix spaces.

Definition 3.9 (Tensor blow-up, [IQS17b]). Given a matrix space B = 〈B1, B2, . . . ,
Bm〉 ≤ Fn×n, the dth tensor blow-up B[d] ≤ Fnd×nd of B is defined as below.

B[d] def
=== 〈A1 ⊗ B1 + · · ·+ Am ⊗ Bm | Ai ∈ Fd×d〉.

Lemma 3.10. For all matrix spaces B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n and for all d ∈ N+, we
have the following inequality:

crk(B[d]) ≥ d · crk(B).

Proof. Suppose crk(B) = r. Thus there exist λ1, λ2, . . . , λm ∈ F such that rank(A) = r

with A def
=== λ1B1 + λ2B2 + · · ·+ λmBm. Now consider the matrix A[d] ∈ B[d] defined as

below.
A[d] def

=== (λ1 Id)⊗ B1 + · · ·+ (λm Id)⊗ Bm.

Note that A[d] is an nd× nd block diagonal matrix with d blocks, each block being
the n× n matrix A. Thus rank(A[d]) = rd. Hence crk(B[d]) ≥ d · crk(B).

It was proved in [IQS17b] that for large enough fields, crk(B[d]) is divisible by d.

Lemma 3.11 (Lemma 5.6 in [IQS17b]). Assume that F is an infinite field. For any matrix
space B ≤ Fn×n, crk(B[d]) is divisible by d.

It is also known that for large enough d, crk(B[d])
d is equal to ncrk(B).

Theorem 3.2 ([IQS15]). Assume that F is an infinite field. For any matrix space B ≤ Fn×n,

ncrk(B) = max{crk(B[d])

d
| d ∈N+}.

3.2 matrix spaces 31

Lemma 3.12. Assume that F is an infinite field. For any matrix space B = 〈B1, B2, . . . ,
Bm〉 ≤ Fn×n,

ncrk(B) = max{
rankF(X1,X2,...,Xm)(X1 ⊗ B1 + · · ·+ Xm ⊗ Bm)

d
| d ∈N+}.

Here Xi’s are d× d matrices composed of variables xi
j,k for i ∈ [m] and j, k ∈ [d].

Proof. By using Lemma 3.3, we know that crk(B[d]) = rankF(X)(X1 ⊗ B1 + · · ·+ Xm ⊗
Bm). Now the result follows from Theorem 3.2.

Lemma 3.9 states that the non-commutative rank is at least as large as the commu-
tative rank. But how large it can be compared to the commutative rank? It is known
that the non-commutative rank is at most twice the commutative rank [FR04]. We shall
prove this using the r-decomposability criterion of [FR04]. We have shown above that
the the commutative rank of a matrix space is equal to the rank of the corresponding
symbolic matrix over the rational function field. Can we say something similar about
the non-commutative rank? It turns out that there is a similar formulation for the
non-commutative rank also, but the corresponding rational function field has to be
replaced by an algebraic object called the free skew field.

Let F〈x1, x2, . . . , xm〉 denote the the (free) algebra of non-commutative polynomials
in variables x1, x2, . . . , xm over F. The (free) algebra F〈x1, x2, . . . , xm〉 is similar to the
polynomial ring F[x1, x2, . . . , xm], the only difference is that variables x1, x2, . . . , xm

do not commute. To make a field out of F[x1, x2, . . . , xm], one just considers the field
of fractions of F[x1, x2, . . . , xm]. This is the usual field F(x1, x2, . . . , xm) of rational
functions. We want to do the same step for F〈x1, x2, . . . , xm〉 as well.

We want to construct a “skew field of fractions”, which contains F〈x1, x2, . . . , xm〉
and is a division ring, namely every non-zero element is invertible. It turns out that the
construction of this “skew field of fractions” is not as simple as in the case of F[x1, x2,
. . . , xm]. There are many ways of doing this step, but only one that is universal. This
was done by Amitsur in [Ami66]. We shall refer to this field by the notation F (x1, x2,
. . . , xm) , and we call it the free skew field. We refer the reader to [Ami66; KVV12] for a
detailed and precise description of the free skew field.

There are matrix spaces where the inequality in Lemma 3.9 is actually a strict
inequality. This motivates the following definition.

Definition 3.10 (Compression space). A matrix space B is said to be a Compression space
if ncrk(B) = crk(B).

Some special cases of matrix spaces are known to be compression spaces.

Theorem 3.3 ([AL81; EH88]). If a matrix spaces space C is generated by two matrices, i.e.,
C = 〈A, B〉 for some A, B ∈ Fn×n, then C is a compression space.

32 symbolic matrices and matrix spaces

Definition 3.11. Two matrix spaces B, C ≤ Fn×n are said to be equivalent if C = PBQ for
some invertible matrices P, Q ∈ Fn×n.

Definition 3.12 ([FR04], r-decomposable). A subspace B of Fn×n is said to be r-
decomposable if it is equivalent to a subspace C such that all the matrices C in C look like
below.

C =

(
C11 0

C21 C22

)
Here C21 is of size i× j with i + j = r.

Theorem 3.4 (Theorem 1 in [FR04]). Assume that F is an infinite field and let B be a symbolic
n× n matrix in variables x1, x2, . . . , xm. Its rank in the free field F (x1, x2, . . . , xm) is r if and
only if the corresponding matrix space B is r-decomposable but not (r− 1)-decomposable

Note that if a matrix space B is r-decomposable then crk(B) ≤ r because only the
rows and columns of C21 in Definition 3.12 can contribute to the rank of C and thus
also to the rank of B. Thus Theorem 3.4 also implies Lemma 3.9.

To prove that ncrk(B) ≤ 2 · crk(B), we need Lemma 3.13 which appears in [Fla62].
First we need to state the following folklore Fact 3.2 from linear algebra.

Fact 3.2 (Folklore). Let A be an n× n with entries from the field F. If r = rank(A) then
there exist invertible matrices P, Q ∈ Fn×n such that

0 0
Ir 0

[]
n− r rows

r rows

r columns

n− r columns

A =

where Ir is the r× r identity matrix.

One can prove Fact 3.2 by using elementary row and column operations.

Lemma 3.13 ([Fla62]). Assume that F is an infinite field and let B ≤ Fn×n be a matrix space
with crk(B) = r. Then there exist invertible matrices P, Q ∈ Fn×n such that all the matrices B
in PBQ look like below:

B11 0
B21 B22

[]
n− r rows

r rows

r columns

n− r columns

B =

Proof. Since crk(B) = r, by using Fact 3.2 we know that there exist invertible matrices

P, Q ∈ Fn×n such that A =

[
0 0

Ir 0

]
lies in B′ def

=== PBQ. By using Fact 3.1, we know

that crk(B) = crk(B′). We know that all the matrices B ∈ B′ look like below.

3.2 matrix spaces 33

B11 B12

B21 B22

[]
n− r rows

r rows

r columns

n− r columns

B =

We just need to prove that B12 is always zero. Suppose there exists a matrix B ∈ B′
where the corresponding B12 is not zero. Consider the set S of matrices defined as:

S def
=== {A + tB | A ∈ B′, t ∈ F}.

Since A, B ∈ B′, we get that S ⊆ B′. We shall show that the assumption B12 6= 0
implies the existence of a rank r + 1 matrix in S. This would contradict the fact that
crk(B) = crk(B′) = r. Let b be a non-zero entry of B12. Consider the following
(r + 1)× (r + 1) minor Mr+1 of a general matrix in S:

Mr+1
def
===

[
ut bt

Ir + tB21 vt

]

where u and v are the row (of B11) and column (of B22) corresponding to b. Now we
observe that det(Mr+1) is a non-zero polynomial in t of degree r + 1. This is because bt
is the only degree 1 term in det(Mr+1) and b 6= 0. Thus by using the Schwartz-Zippel
lemma (Lemma 3.1), we know that there exists a λ ∈ F such that rank(A + λB) ≥ r + 1.
Therefore B12 = 0.

Theorem 3.5 ([FR04]). If F is an infinite field then for all matrix spaces B ≤ Fn×n, we have
the following inequality:

crk(B) ≤ ncrk(B) ≤ 2 · crk(B).

Proof. The inequality crk(B) ≤ ncrk(B) follows from Lemma 3.9 and also from the
discussion after Theorem 3.4. Suppose crk(B) = r. We use Lemma 3.13 to find P, Q ∈
Fn×n such that all the matrices B in B′ def

=== PBQ look like below.

B11 0
B21 B22

[]
n− r rows

r rows

r columns

n− r columns

B =

This implies that B is 2r-decomposable. Thus by using Theorem 3.4, we get that
ncrk(B) ≤ 2r = 2 · crk(B).

34 symbolic matrices and matrix spaces

One can also show explicit examples where crk(B) < ncrk(B) is achieved. For
instance, see Example 3.2 below.

Example 3.2. We consider

B =

 0 x y

−x 0 z

−y −z 0


over Q. Let B be the matrix space corresponding to B. We have that det(B) = −xyz+ xyz =

0. Thus crk(B) < 3 and it is easy to see that crk(B) = 2 because

[
x y

0 z

]
is a non-zero 2× 2

minor. It can also be proved that ncrk(B) = 3.

3.3 A max-min characterization of ranks

We now propose a new characterization of both the notions of rank defined above. To
this end, we first give a brief introduction to the theory of matroids. All the matroids
we consider here will be assumed to be finite unless stated otherwise.

Definition 3.13 (Matroid). A finite matroid M is a pair (E, I), where E is a finite set
(called the ground set) and I is a family of subsets of E (called the independent sets)
with the following properties:

• Non-emptiness: The empty set is independent, i.e., ∅ ∈ I .

• Heredity: Every subset of an independent set is independent.

• Exchange: If X ∈ I and Y ∈ I are two independent sets in M where |X| > |Y|,
then there is an element x ∈ X \Y such that Y ∪ {x} ∈ I .

The rank of a subset X of the ground set E is the size of the largest independent subset
of X. We use the notation r(X) to denote the rank of X. We call r to be the rank function
of matroid M.

Problem 3.5 (Matroid Intersection). Given two matroids M1 = (E, I1) and M2 = (E, I2),
on the same ground set E, find the maximum cardinality common independent set J ∈ I1 ∩ I2.

The following Theorem 3.6 was proved by Edmonds in [Edm03] and it describes a
min-max formulation of the maximum cardinality of the common independent set of
two finite matroids.

Theorem 3.6 (Matroid Intersection theorem [Edm03]). For any matroids M1, M2 on the
same ground set E with corresponding rank functions r1 and r2, we have the following equality.

max
J∈I1∩I2

|J| = min
A⊆E
{r1(A) + r2(E \ A)}.

3.3 a max-min characterization of ranks 35

Theorem 3.6 implies the following Corollary 3.2 for linear matroids.

Corollary 3.2. Let a1, a2, . . . , ap ∈ Fk and b1, b2, . . . , bp ∈ F`. The maximum number
s of indices 1 ≤ i1 ≤ i2 ≤ . . . ≤ is ≤ p such that both sets of vectors {ai1 , ai2 , . . . , ais} and
{bi1 , bi2 , . . . , bis} are linearly independent is given by

s = min
J⊆[p]
{dim(〈aj | j ∈ J〉) + dim(〈bj | j ∈ [p] \ J〉)}.

Proof. Apply Theorem 3.6 for E = [p] and a set J ⊆ [p] being independent in matroid
M1 if vectors in a1, a2, . . . , ap ∈ Fk corresponding to indices in J are independent.
Similarly M2 is defined by vectors b1, b2, . . . , bp ∈ F`.

As an application of Corollary 3.2, we prove Lemma 3.14 which states if a matrix space
is generated by rank 1 matrices then the non-commutative rank and the commutative
rank are equal, that is, such matrix spaces are compression spaces.

Lemma 3.14. Let A ≤ Fn×n be a matrix space generated by rank 1 matrices. Then

ncrk(A) = crk(A) = min{n− dim U + dim(AU) | U ≤ Fn}.

Proof. Consider a set of rank 1 matrices generating the matrix space A: these can be
written as a1bT

1 , a2bT
2 , . . . , apbT

p for some ai, bi ∈ Fn. Let s be the largest integer such that
there are s linearly independent vectors among the ai’s such that the corresponding
bi’s are also linearly independent. Without the loss of generality, we may assume
that these are a1, a2, . . . , as and b1, b2, . . . , bs respectively. Now the matrix
a1bT

1 + a2bT
2 + . . . + asbT

s has rank s by elementary linear algebra, and so crk(A) ≥ s.
On the other hand, Corollary 3.2 implies that there exists a subset J ⊆ [p] such that

s = dim(〈aj | j ∈ J〉) + dim(〈bj | j ∈ [p] \ J〉).

Now define U def
=== {x ∈ Fn | bT

j x = 0 ∀j ∈ [p] \ J}. Then AU ≤ 〈aj | j ∈ J〉. Therefore
we have:

n− dim U + dimAU ≤ n− (n− dim(〈bj | j ∈ [p] \ J〉)) + dim(〈aj | j ∈ J〉) = s.

Hence U is an (n− s)-shrunk subspace for A. Thus we have obtained the following
inequalities:

crk(A) ≥ s

s ≥ n− dim U + dimAU ≥ ncrk(A) ≥ crk(A)

Thus it follows that

ncrk(A) = crk(A) = s = min{n− dim U + dim(AU) | U ≤ Fn}.

36 symbolic matrices and matrix spaces

Suppose we are given a matrix space A = 〈A1, A2, . . . , Am〉 ≤ Fn×n. And we
want to study its non-commutative rank. For a basis B = {b1, b2, . . . , bn} of Fn,

we define the following two linear matroids: MA,B
1

def
=== (E, I1) and MA,B

2
def
=== (E, I2),

where E = [m] × [n]. For a set I ⊆ E, I is independent in I1 if the (multi) set of

vectors SI
1

def
=== {bj | ∃i ∈ [m] : (i, j) ∈ I} is linearly independent. Similarly, I ⊆ E is

independent in I2 if the (multi) set of vectors SI
2

def
=== {Aibj | (i, j) ∈ I} are independent.

The notions of rank r1, r2 in MA,B
1 , MA,B

2 are defined analogously.
Now we consider the matroid intersection problem on these two matroids. First we

prove the following Lemma 3.15. We use the notation MatInt(M1, M2) to denote the
solution size of the matroid intersection problem on two matroids M1 and M2.

Lemma 3.15. The following equality holds for all matrix spaces A = 〈A1, A2, . . . ,
Am〉 ≤ Fn×n and all basis B = {b1, b2, . . . , bn} of Fn.

MatInt(MA,B
1 , MA,B

2) = max
C1,C2,...,Cn∈A

rank([C1b1; C2b2; . . . ; Cnbn]).

Proof. Let us use r and s to denote the two quantities in the statement, that is:

r def
=== max

C1,C2,...,Cn∈A
rank([C1b1; C2b2; . . . ; Cnbn])

s def
=== MatInt(MA,B

1 , MA,B
2)

We have 2s indices i1, i2, . . . , is, j1, j2, . . . , js such that both the sets {bi1 , bi2 , . . . , bis} and
{Aj1 bi1 , Aj2 bi2 , . . . , Ajs bis} are linearly independent. Thus if we assign Cik = Ajk for k ∈
[s] and assign other Ci’s to be zero then we have that rank([C1b1; C2b2; . . . ; Cnbn]) = s.
Thus r ≥ s. Now we prove the other direction. By Theorem 3.6, we know that:

MatInt(MA,B
1 , MA,B

2) = min
J⊆[m]×[n]

{dim(SJ
1) + dim(S[m]×[n]\J

2)). (3.1)

Let J ⊆ [m] × [n] be any set which achieves the minimum in Equation (3.1). Let

T def
=== {j | ∃i ∈ [m] : (i, j) ∈ J}. Note that t def

=== dim(SJ
1) = |T|. Now we define

U def
=== {bj | j ∈ [n] \ T}. Now note that dim(AU) ≤ dim(S[m]×[n]\J

2) = s− t. Thus for
any choice of C1, C2, . . . , Cn ∈ A, dim(〈{CiU | i ∈ [n]}〉) is at most s− t. Thus we have
the following inequality:

r = max
C1,C2,...,Cn∈A

rank([C1b1; C2b2; . . . ; Cnbn]) ≤ s− t + t = s.

3.3 a max-min characterization of ranks 37

Lemma 3.16. For all matrix spaces A = 〈A1, A2, . . . , Am〉 ≤ Fn×n , we have

ncrk(A) = min
B={b1,b2,...,bn} basis of Fn

MatInt(MA,B
1 , MA,B

2).

Proof. For brevity, define the following:

r def
=== ncrk(A) (3.2)

s def
=== min

B={b1,b2,...,bn} basis of Fn
MatInt(MA,B

1 , MA,B
2) (3.3)

We know that there exists an (n− r)-shrunk subspace U ≤ Fn for A. Let t def
=== dim(U).

Then we have that dim(AU) = t− (n− r). Let {u1, u2, . . . , ut} be a basis of U. We

extend this to a basis B def
=== {u1, u2, . . . , ut, ut+1, . . . , un} of Fn. For this basis B, we

have MatInt(MA,B
1 , MA,B

2) ≤ n− t + t− (n− r) = r. Thus s ≤ r.
For the other direction, let B = {b1, b2, . . . , bn} be any basis of Fn which achieves the

minimum in Equation (3.3). By Theorem 3.6, we know that:

MatInt(MA,B
1 , MA,B

2) = min
J⊆[m]×[n]

{dim(SJ
1) + dim(S[m]×[n]\J

2)). (3.4)

As in the proof of Lemma 3.15, let J ⊆ [m]× [n] be any set which achieves the minimum

in Equation (3.4). Let T def
=== {j | ∃i ∈ [m] : (i, j) ∈ J}. Note that t def

=== dim(SJ
1) = |T|.

Now we define U def
=== {bj | j ∈ [n] \ T}. Now note that dim(AU) ≤ dim(S[m]×[n]\J

2) =

s− t. Since dim(U) = n− t, we get that U is a n− s shrunk subspace of A. Hence r ≤ s.
Therefore r = s.

In light of above results, the following min-max characterization of the
non-commutative rank of matrix spaces can be easily proved.

Theorem 3.7. For all matrix spaces A = 〈A1, A2, . . . , Am〉 ≤ Fn×n , we have

ncrk(A) = min
B={b1,b2,...,bn} basis of Fn

max
C1,C2,...,Cn∈A

rank([C1b1; C2b2; . . . ; Cnbn]).

Proof. The claimed equality follows immediately by applying Lemma 3.15 and
Lemma 3.16.

Let us now consider the following well known inequality which was first considered
by John von Neumann.

Theorem 3.8 (Max-min inequality [BV04]). For any function f : X×Y → R, the following
inequality holds.

sup
x∈X

inf
y∈Y

f (x, y) ≤ inf
y∈Y

sup
x∈X

f (x, y).

38 symbolic matrices and matrix spaces

Theorem 3.8 essentially states that max-min of a function is bounded by min-max of it.
Theorem 3.7 states that min-max of a rank of a matrix is equal to the non-commutative
rank. So we can also ask what algebraic quantity is described by max-min of the rank
of the same matrix? Theorem 3.9 demonstrates that it is equal to the commutative rank.

Theorem 3.9. For all matrix spaces A = 〈A1, A2, . . . , Am〉 ≤ Fn×n , we have

crk(A) = max
C1,C2,...,Cn∈A

min
B={b1,b2,...,bn} basis of Fn

rank([C1b1; C2b2; . . . ; Cnbn]).

Proof. For brevity, define the following:

r def
=== crk(A) (3.5)

s def
=== max

C1,C2,...,Cn∈A
min

B={b1,b2,...,bn} basis of Fn
rank([C1b1; C2b2; . . . ; Cnbn]). (3.6)

Let A ∈ A be such that rank(A) = r, we assign C1 = C2 = · · · = Cn = A.
Then for any basis B = {b1, b2, . . . , bn} of Fn, we have

rank([C1b1; C2b2; . . . ; Cnbn]) = rank([Ab1; Ab2; . . . ; Abn])

= rank(A[b1; b2; . . . ; bn])

= rank(A) = r

Thus s ≥ r.
For the other direction, let {C1, C2, . . . , Cn} ⊆ A be a set of matrices which achieve

the maximum in Equation (3.6). We know that for all i ∈ [n]: rank(Ci) ≤ r. Choose
a vector b1 ∈ Ker(C1). We repeat this process for C2, C3, . . . , Cn as well. Namely, we
choose a vector b2 ∈ Ker(C2) such that b1 and b2 are independent. More generally, we
choose vectors b1, b2, . . . , bn−r such that bi ∈ Ker(Ci) and dim(b1, b2, . . . , bn−r) = n− r .
This can be done because the ranks of all the Ci’s are at most r. And now we extend b1,
b2, . . . , bn−r to a basis B = {b1, b2, . . . , bn} of Fn. In this basis, we know that Cibi = 0 for
all i ∈ [n− r]. Thus s ≤ rank([C1b1; C2b2; . . . ; Cnbn]) ≤ r.

Hence s = r.

4
P TA S F O R C O M M U TAT I V E R A N K

In Chapter 3, we motivated why the problem of computation of the commutative
rank is an essential problem. This chapter deals with algorithms to compute the
commutative rank. We also saw that the non-commutative rank is sandwiched between
the commutative rank and twice that of the commutative rank. This suggests that the
algorithms to compute the non-commutative rank can be used to find a 1

2 -approximation
of the commutative rank. But the problem of computing the non-commutative rank
appears even harder. Naively, even a randomized algorithm to compute the non-
commutative rank seems non-trivial. Thus, we first survey the known algorithms to
compute the non-commutative rank. To this end, we formalize the following problem.

Problem 4.1 (NONCOMMSINGULAR). Given an n× n symbolic matrix B ∈ F[x1, x2,
. . . , xm], is ncrk(B) = n? This problem was called SINGULAR in [Gar+16].

At first glance, it is not even clear whether NONCOMMSINGULAR is decidable.
Cohn [Coh75] proved that it is decidable.

Theorem 4.1 ([Coh75]). NONCOMMSINGULAR is decidable.

The next step was to show a definitive time bound on the complexity of
NONCOMMSINGULAR. It was shown in [CR99; Iva+15] that NONCOMMSINGULAR
can be solved in deterministic exponential time.

Theorem 4.2 ([CR99; Iva+15]). NONCOMMSINGULAR can be solved in deterministic
exponential time.

Even after [CR99; Iva+15], a polynomial time (even a randomized algorithm) algo-
rithm remained elusive for NONCOMMSINGULAR. Finally, it was shown in [Gar+16;
IQS17a] that NONCOMMSINGULAR can be solved in deterministic polynomial time.

Theorem 4.3 ([Gar+16; IQS17a]). NONCOMMSINGULAR ∈ P.

For an excellent exposition to the problem NONCOMMSINGULAR, we refer the
reader to [Gar+16; Gar+15]. Also, the tutorial [Wig17] given by Avi Wigderson at CCC17

is an excellent introduction to NONCOMMSINGULAR and much more. It was also

39

40 ptas for commutative rank

shown in [Gar+16; IQS17a] that we can even compute the non-commutative rank in
deterministic polynomial time. Therefore it follows from Theorem 3.5 that one can
compute a 1

2 -approximation of the commutative rank in deterministic polynomial time.
It was left as an open problem in [Gar+16] whether this approximation ratio can be
improved. This chapter answers this question affirmatively.

More specifically, this chapter develops an algorithm which can compute a (1− ε)-
approximation of the commutative rank in deterministic polynomial time, for any
arbitrary constant 0 < ε < 1.

It is useful first to see a simple algorithm which computes a 1
2 -approximation of

the commutative rank in deterministic polynomial time. In contrast to the algorithms
described in [Gar+16; IQS17a], this algorithm is much simpler.

To bound the commutative rank of a matrix space, we also need the following easy
fact from linear algebra.

Fact 4.1. Let M be a matrix of the following form:

L B
A 0

[]
r rows

n− r rows

r columns

n− r columns

M =

Also, let rank(A) = a and rank(B) = b. Then rank(M) ≤ r + min{a, b}.

4.1 1
2 -approximation algorithm for the commutative rank

Algorithm 4.2 computes a 1
2 -approximation for the commutative rank. This algorithm

looks for the first matrix that increases the rank of the current matrix and stops if it
does not find such a matrix. Its analysis is much easier than the general case.

Lemma 4.1. If |F| > n, then Algorithm 4.2 runs in polynomial time and returns a matrix
A ∈ B such that rank(A) ≥ 1

2 · crk(B).

Proof. Let A be the matrix returned by Algorithm 4.2. Assume that A has rank r. We
know that there exist non-singular matrices P, Q ∈ Fn×n such that

Ir 0
0 0

[]
r rows

n− r rows

r columns

n− r columns

PAQ =

(4.1)

4.1 1
2 -approximation algorithm for the commutative rank 41

Algorithm 4.2 Greedy algorithm for 1
2 -approximating the commutative rank.

Input: A matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, input is a list of matrices
B1, B2, . . . , Bm.

Output: A matrix A ∈ B such that rank(A) ≥ 1
2 · crk(B).

1: S ← An arbitrary subset of F of size n + 1. Rank increase is checked from this set.
2: A ← 0 . A is initialized to the zero matrix.
3: while Rank is increasing do
4: for each 1 ≤ i ≤ m do
5: Check if there exists a λ ∈ S such that rank(A + λBi) > rank(A).
6: if rank(A + λBi) > rank(A) then
7: A ← A + λBi
8: end if
9: end for

10: end while
11: return A

where Ir is the r× r identity matrix. Now consider the matrix space:

PBQ def
=== 〈PB1Q, PB2Q, . . . , PBmQ〉.

This does not change anything with respect to the commutative rank. Also the way
the algorithm works is not changed by such a transformation. So for the analysis, we
can replace B by PBQ. Consider any general matrix A + x1B1 + x2B2 + . . . + xmBm in
B. We decompose it as below:

Ir + B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

A + x1B1 + x2B2 + . . . + xmBm =

(4.2)

Here the matrices B11, B12, B21 and B22 have linear forms in variables x = (x1, x2, . . . ,
xm) as their entries.

Now we claim that the bottom right matrix B22 is the zero matrix. Assume otherwise.
Thus there exists a non-zero (s, t)-entry of the above matrix with s, t > r. Consider the
(r + 1)× (r + 1) sub-matrix of A + x1B1 + x2B2 + . . . + xmBm, obtained by adding the
sth row (this row comes from B21) and the tth column (this column comes from B12) to
Ir + B11. We shall denote this sub-matrix by C. C looks like below:

42 ptas for commutative rank

C =



1 + `11(x) `12(x) . . . `1r(x) b1(x)

`21(x) 1 + `22(x) . . . `2r(x) b2(x)
...

...
. . .

...
...

`r1(x) `r2(x) . . . 1 + `rr(x) br(x)

a1(x) a2(x) . . . ar(x) c(x)


. (4.3)

Here `i,j, ai, bj and c are homogeneous linear forms in x. By our choice, c(x) 6= 0. It is
not hard to see that

det(C) = c(x) + monomials of degree at least 2. (4.4)

Thus there exist λ ∈ F and i ∈ [m] such that det(C(α)) 6= 0, where α is the assignment
to the variables x = (x1, x2, . . . , xm) obtained by setting xk = 0 when k 6= i and xi = λ.
This follows from Lemma 3.2. Since the degree of det(C) is at most n, it also follows
that we have to check at most n + 1 values for λ to find an assignment of the type
α = (0, . . . , λ, . . . , 0) such that det(C(α)) 6= 0. In particular, the set S contains such λ.

These choices of i ∈ [m] and λ ∈ F would allow Algorithm 4.2 to find a matrix A
of larger rank in line 5. Thus Algorithm 4.2 would keep finding a matrix A of larger
rank as long as the matrix B22 is non-zero. Hence it can only stop when B22 is the zero
matrix. Notice that this is similar to as in Lemma 3.13. If B22 is the zero matrix, then by
using Fact 4.1 we know that crk(B) ≤ 2r. Thus when Algorithm 4.2 stops, it outputs a
matrix A such that rank(A) ≥ 1

2 · crk(B).
The running time is obviously polynomial since the while loop is executed at most n

times and we have to check at most n + 1 values for λ. The bit-size of the numbers that
occur in the rank check step is also polynomially bounded in the size of the entries of
B1, B2, . . . , Bm.

4.2 2
3 -approximation algorithm for the commutative rank

We saw in the proof of Lemma 4.1 that if one analyzes the degree one monomials of
the special minor C(Equation (4.5)) then one of the following conditions is satisfied:

1. The minor det(C) has degree one monomials.

2. The bottom right sub-matrix B22 is the zero matrix. In this case, the commutative
rank of the concerned matrix space B can be upper bounded.

In the proof of Lemma 4.1, we only analyzed the degree one monomials of det(C),
giving us a 1

2 -approximation for the commutative rank. This strategy extends naturally
by analyzing the higher degree monomials. The following Lemma 4.2 analyzes the
degree two monomials. In whatever follows, we use C to denote the following (r +
1)× (r + 1) matrix:

4.2 2
3 -approximation algorithm for the commutative rank 43

C =



1 + `11(x) `12(x) . . . `1r(x) b1(x)

`21(x) 1 + `22(x) . . . `2r(x) b2(x)
...

...
. . .

...
...

`r1(x) `r2(x) . . . 1 + `rr(x) br(x)

a1(x) a2(x) . . . ar(x) 0


. (4.5)

Here `ij, ai, bi are homogeneous linear forms in variables x = (x1, x2, . . . , xm). Note
that we have assumed c(x) to be zero in Equation (4.5) because otherwise det(C) has
degree one monomials, as proved in the proof of Lemma 4.1. We shall use the symbol

L def
=== (`ij) to denote the r× r matrix defined by linear forms `ij’s.

Lemma 4.2. Let C be as in Equation (4.5). Then we have:

det(C) =

(
−

r

∑
i=1

aibi

)
+ monomials of degree at least 3.

Proof. By using Laplace expansion, we know that the following equality holds for
det(C):

det(C) = − ∑
1≤i,j≤r

(−1)i+jaibj det(Ir + L)
ij
∧

Here det(Ir + L)
ij
∧ is the determinant of the matrix obtained from Ir + L by removing

ith column and jth row. Now observe that if i 6= j then det(Ir + L)
ij
∧ has a row (also a

column) composed only of homogeneous linear forms `ij’s, that is, there are no affine
entries in this row (resp. column). Thus if i 6= j then det(Ir + L)

ij
∧ has no constant term.

Also the constant term of det(Ir + L)
ii
∧ (the case when i = j) is 1. Therefore we have:

det(C) =

(
−

r

∑
i=1

aibi

)
+ monomials of degree at least 3.

As in the spirit of the strategy outlined above, we have analyzed the degree two
monomials of det(C) in Lemma 4.2. Suppose that there exists a choice of ai’s and bi’s
such that the corresponding degree two monomial contribution −∑r

i=1 aibi is non-zero.
Then we can efficiently find an assignment α to the variables x = (x1, x2, . . . , xm) such
that det(C(α)) 6= 0. This can be done similarly as was done in the proof of Lemma 4.1.
In Algorithm 4.2, we always set m− 1 variables to zero, now we need to set m− 2
variables to zero and then try to find an assignment to the remaining two variables
such that det(C(α)) 6= 0. This hints us to the following Algorithm 4.3. We prove in
Lemma 4.3 that Algorithm 4.3 outputs a 2

3 -approximation of the commutative rank.

44 ptas for commutative rank

Algorithm 4.3 Greedy algorithm for 2
3 -approximating the commutative rank.

Input: A matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, input is a list of matrices B1, B2,
. . . , Bm.

Output: A matrix A ∈ B such that rank(A) ≥ 2
3 · crk(B).

1: S ← An arbitrary subset of F of size n + 1. Rank increase is checked from this set.
2: A ← 0 . A is initialized to the zero matrix.
3: while Rank is increasing do
4: for each pair (i, j) ∈ ([m]

2) do
5: Check if there exist λ, µ ∈ S such that rank(A + λBi + µBj) > rank(A).
6: if rank(A + λBi + µBj) > rank(A) then
7: A ← A + λBi + µBj
8: end if
9: end for

10: end while
11: return A

Lemma 4.3. If |F| > n, then Algorithm 4.3 runs in polynomial time and returns a matrix
A ∈ B such that rank(A) ≥ 2

3 · crk(B).

Proof. Let A be the matrix returned by Algorithm 4.2. Assume that A has rank r. By a
similar argument as in the proof of Lemma 4.1, we can assume that any general matrix
A + x1B1 + x2B2 + . . . + xmBm in B can be decomposed as below:

Ir + B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

A + x1B1 + x2B2 + . . . + xmBm = .

(4.6)

Also, we can assume that B22 is the zero matrix. Otherwise we can use the proof of
Lemma 4.1, to claim that it was still possible to increase the rank of A in line 5 of
Algorithm 4.3. We consider a (r + 1)× (r + 1) minor C of A + x1B1 + x2B2 + . . . + xmBm

as in Equation (4.5). By using Lemma 4.2 we know that:

det(C) =

(
−

r

∑
i=1

aibi

)
+ monomials of degree at least 3.

Suppose there exists a choice of ai’s and bi’s such that (−∑r
i=1 aibi) 6= 0. Then there

exist λ, µ ∈ F and i, j ∈ [m] such that det(C(α)) 6= 0, where α is the assignment to
the variables x = (x1, x2, . . . , xm) obtained by setting xk = 0 when k 6= i, j and

4.3 (1− ε)-approximation algorithm for the commutative rank 45

xi = λ, xj = µ. This follows from Lemma 3.2. Since the degree of det(C) is at most n, it
also follows that we have to check at most n + 1 values for λ, µ to find an assignment
of the type α = (0, . . . , λ, . . . µ, 0 . . . , 0) such that det(C(α)) 6= 0. In particular, the set S
contains such λ, µ.

In this case, line 5 of Algorithm 4.3 succeeds in finding a matrix A of bigger rank.
Thus when Algorithm 4.3 terminates, for all choices of ai’s and bi’s we have that
(−∑r

i=1 aibi) = 0. Note that ai’s are chosen from the rows of B21 and bi’s are chosen
from the columns of B12. Thus we get the following equivalence :

For all choices of ai’s and bi’s :

(
−

r

∑
i=1

aibi

)
= 0⇐⇒ B21B12 = 0.

Thus we can assume the condition B22 = B21B12 = 0 to be true when Algorithm 4.3
terminates. By using the Rank-nullity theorem (Theorem 2.8), we know that

rank(B21) + dim(Ker(B21)) = r. (4.7)

Since B21B12 = 0, we get that Im(B12) is a subspace of Ker(B21). Thus rank(B12) ≤
dim(Ker(B21)). Thus Equation (4.7) implies that rank(B21) + rank(B12) ≤ r. In par-
ticular we get that rank(B21) ≤ r

2 or rank(B12) ≤ r
2 . Thus by using Fact 4.1, we get

that rank(x1B1 + x2B2 + . . . + xmBm) = crk(B) ≤ 3r
2 . Hence it follows that rank(A) ≥

2
3 crk(B). This proves that Algorithm 4.3 computes a 2

3 -approximation of crk(B). The
polynomial time running bound follows as in the proof of Lemma 4.1.

4.3 (1− ε)-approximation algorithm for the commutative rank

Now we have seen that analyzing the higher degree monomials of det(C) gives us a
method to approximate crk(B) with a better approximation ratio. Thus our strategy
considers the following two scenarios.

1. det(C) has “low” degree monomials. In this case, we can “easily” find an assign-
ment to xi’s such that det(C) 6= 0. This ensures that rank(Q(A + x1B1 + x2B2 +

. . . + xmBm)) > r. This is our rank increasing step.

2. det(C) has no non-zero monomials of “low” degree. In this case, we show that
r = rank(A) is already a good approximation of crk(B) .

We have shown above how to analyze degree one and two monomials of det(C).
Unfortunately, manually analyzing the higher degree terms seems to be tedious. We
managed to analyze the degree three monomials manually. We remark the following
equality for the degree three terms of det(C), which we shall prove later. Then we shall
describe a more unified way to analyze the higher degree terms of det(C). For the sake
of brevity, for the rest of this section we use the symbol a to denote the row vector

46 ptas for commutative rank

[
a1 a2 . . . ar

]
and the symbol b to denote the column vector

[
b1 b2 . . . br

]T
.

Claim 4.1 (Follows from results below). Let C be as in Equation (4.5). For det(C), we
have the following equality:

det(C) = −a · b + a · L · b− a · b · Tr(L) + monomials of degree at least 4.

Thus if for all choices of ai’s and bi’s, degree one, two and three terms are zero then by
using the ideas in the proof of Lemma 4.3, we get the following condition.

B22 = B21B12 = B21B11B12 = 0. (4.8)

If the above Equation (4.8) is not satisfied then it is easy to increase the rank of A as
in the line 5 of Algorithm 4.3, by just making coefficients of three matrices Bi, Bj, Bk
non-zero instead of two. On the other hand if Equation (4.8) is satisfied then one can
prove that rank(x1B1 + x2B2 + . . . + xmBm) = crk(B) ≤ 4r

3 , giving us an algorithm
which computes a 3

4 -approximation of crk(B).
Now we analyze the higher degree terms of det(C) by a unified approach, instead of

calculating manually like we have done till now. First we need a formulation for the
adjugate (also know as the adjoint) of a matrix.

Fact 4.2. For a square r × r matrix L, let pL(t)
def
=== det(tI − L) = ∑r

i=0 pr−i · ti be the

characteristic polynomial of L with p0 = 1. Define qL(t)
def
=== pL(t)−pL(0)

t . Then we have:

adj(L) = (−1)r+1qL(L).

Theorem 4.4. For a square r× r matrix L, let pL(t)
def
=== det(tI − L) = ∑r

i=0 pr−i · ti be the
characteristic polynomial of L with p0 = 1. Then we have:

adj(I + L) =
r−1

∑
j=0

(−1)jLj
r−j−1

∑
i=0

(−1)i pi.

Proof. First we compute the characteristic polynomial pI+L of I + L. We have:

pI+L(t) = det(tI − (I + L))

= det((t− 1)I − L))

= pL(t− 1).

4.3 (1− ε)-approximation algorithm for the commutative rank 47

Thus we have :

qI+L(t)
def
===

pI+L(t)− pI+L(0)
t

=
pL(t− 1)− pL(−1)

t
.

=
r

∑
i=0

pr−i · ((t− 1)i − (−1)i)

t

=
r

∑
i=1

pr−i ·
(

i−1

∑
j=0

(−1)j(t− 1)i−j−1

)
.

Therefore

adj(I + L) = (−1)r+1qI+L(I + L)

= (−1)r+1
r

∑
i=1

pr−i ·
(

i−1

∑
j=0

(−1)j(L)i−j−1

)

=
r−1

∑
j=0

(−1)jLj ·
(

r−j−1

∑
i=0

(−1)i pi

)
.

Lemma 4.4. Let pL(t)
def
=== det(tI − L) = ∑r

i=0 pr−i · ti be the characteristic polynomial of L
with p0 = 1. Then we have the following equality:

det(C) = −a ·
(

r−1

∑
j=0

(−1)jLj
r−j−1

∑
i=0

(−1)i pi

)
·b.

Proof. By using Laplace expansion, we know that the following equality holds for
det(C):

det(C) = − ∑
1≤i,j≤r

(−1)i+jaibj det(Ir + L)
ij
∧

Here det(Ir + L)
ij
∧ is the determinant of the sub-matrix obtained from Ir + L by removing

the ith column and the jth row. We also know that det(I + L)
ij
∧ = (−1)i+j(adj(I + L))ij.

Thus

det(C) = −∑
i,j
(−1)i+jaibj(−1)i+j(adj(I + L))ij

= −∑
i,j

aibj(adj(I + L))ij

= −a · adj(I + L) · b.

48 ptas for commutative rank

Now the result follows from Theorem 4.4.

Lemma 4.4 allows us to easily analyze the higher degree terms of det(C).

Lemma 4.5. Let C be as in Equation (4.5). Let k ∈ {−1, 0, . . . , r− 1} be the maximum integer
such that a · Li·b is zero for all i ∈ {0, 1, . . . , k} (If no such i exists then we set k = −1) and let
m ∈ {2, 3, . . . , r + 1} be the least integer such that det(C) has a non-zero monomial of degree
m. Then m = k + 3.

Proof. Note that all the monomials in det(C) are of degree at least two. We note that the
entries of Lj are homogeneous polynomials in variables x = (x1, x2, . . . , xm) of degree j.

If pL(t) = det(tI − L) = p0tr + p1tr−1 + · · ·+ pr is the characteristic polynomial of
L then we know that pj is also a homogeneous polynomial in variables x = (x1, x2,
. . . , xm) of degree j. Therefore it follows that the sum Ds of all degree s monomials in
det(C) is:

Ds
def
=== −a ·

s−2

∑
j=0

(−1)jLj(−1)s−2−j ps−2−j·b

= (−1)s−1
s−2

∑
j=0

ps−2−j · a · Lj·b

We have that a · Li · b is zero for all i ∈ {0, 1, . . . , k} but a · Lk+1·b 6= 0. This implies that
D2 = D3 = · · · = Dk+2 = 0. Also, we have:

Dk+3 = (−1)k+2 · a · Lk+1·b 6= 0.

Hence m = k + 3.

Now the strategy to find an arbitrary approximation of the commutative rank is
straight forward. If det(C) has “small” degree monomials then extend the Algorithm 4.3
such that now we check with a linear combination of “few” matrices, whether the
rank can be increased. Otherwise we get some conditions from Lemma 4.5 which can
be used to upper bound the commutative rank. To this end, we prove the following
Lemma 4.6.

Lemma 4.6. Let F be any field, B ∈ Fn×n and

B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

B =

(4.9)

4.3 (1− ε)-approximation algorithm for the commutative rank 49

Consider the sequence of matrices B22, B21B12, B21B11B12, . . . , B21Bj
11B12. If the first k ≥ 1

matrices in this sequence are equal to the zero matrix and B11 is non-singular, then rank(B) ≤
r
(
1 + 1

k

)
.

Proof. If rank(B12) ≤ r
k , then we are done by using the Fact 4.1. So we can assume

without loss of generality that rank(B12) >
r
k . Now suppose that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k− 1) rank(B12).

We note that Im(B12), Im(B11B12), . . . , Im(Bk−2
11 B12), are sub-spaces of Ker(B21). Further

using the Rank-nullity theorem (Theorem 2.8), we get rank(B21) < r− r·(k−1)
k = r

k . By
using Fact 4.1, we again get that rank(B) ≤ r

(
1 + 1

k

)
.

In the above discussion, we assumed that

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 ≥ (k− 1) rank(B12).

What if this is not the case? We still want to use the same idea as above but we want
to ensure this assumption. For this purpose, we use a series of elementary column
operations on B to transform it to a new matrix B∗, which satisfies the above assumption.
Since the rank of a matrix is invariant under elementary column operations, we obtain
the desired rank bound. Now we show how to obtain this matrix B∗ using a series
of elementary column operations on B. Whenever we apply these elementary column
operations on B, we also maintain the invariant that B22 = B21B12 = B21B11B12 = . . . =
B21Bk−2

11 B12 = 0.
Suppose

dim〈Im(B12) ∪ Im(B11B12) ∪ . . . ∪ Im(Bk−2
11 B12)〉 < (k− 1) rank(B12). (4.10)

Let ρ := rank(B12). First, we can assume that B12 has exactly ρ non-zero columns.
This can be achieved by performing elementary column operations on the last n−
r columns. This does not change the matrix B22 = 0. Furthermore, these column
operations correspond to replacing B12 by B12 · S for some invertible (n− r)× (n− r)-
matrix S. Since B22 = B21B12 = B21B11B12 = . . . = B21Bk−2

11 B12 = 0 implies B21B12S =

B21B11B12S = . . . = B21Bk−2
11 B12S = 0, so we maintain our invariant. We will call the

new matrix again B12.
Note that the image of a matrix is its column span. Since every matrix Bi

11B12 has
exactly ρ non-zero columns (since B12 has ρ non-zero columns and B11 is non-singular),
assumption in Equation (4.10) means that there is a linear dependence between these
columns. That means there are vectors y0, y1, . . . , yk−2 ∈ Fn−r, not all equal to zero,
such that ∑k−2

i=0 Bi
11B12 · yi = 0. Moreover, we can assume that these vectors only have

non-zero entries in the places that corresponds to non-zero columns of B12. First we
show that we can assume y0 6= 0. Suppose 0 ≤ j ≤ k − 2 is the least integer such
that yj 6= 0. So we left multiply the equation ∑k−2

i=0 Bi
11B12 · yi = 0 by (Bj

11)
−1, giving us

50 ptas for commutative rank

(Bj
11)
−1 ∑k−2

i=0 Bi
11B12 · yi = ∑k−2

i=j Bi−j
11 B12 · yi = 0. By renumbering the indices, this can be

re-written as ∑
k−2−j
i=0 Bi

11B12 · yi = 0. Thus we can assume that y0 6= 0. (The new sum
runs only up to k− 2− j, for the missing summands, we choose the corresponding yi
to be zero.)

By writing ∑k−2
i=0 Bi

11B12 · yi = 0 as B12 · y0 + B11 ·∑k−2
i=1 Bi−1

11 B12yi = 0, we see that there
is a linear dependence between the columns of B12 and B11. Let ` ∈ [n− r] be such
that `th entry of y0 is non-zero. Therefore, we can make the `th column of B12 zero by
adding a multiple of ∑k−2

i=1 Bi
11B12 · yi and maybe adding some multiple of some other

columns of B12 to it. This will decrease the rank of B12 by 1.
We claim that our invariant is still fulfilled. First, we add B11 ·∑k−2

i=1 Bi−1
11 B12 · yi to the

`th column of B12 and this will also add B21 ·∑k−2
i=1 Bi−1

11 B12 · yi to the `th column of B22.
Since the invariant was fulfilled before the operation, B22 will stay zero. As seen before,
column operations within the last n− r columns do not change B22. Thus, one of the
n− r columns on the right-hand side (namely the side composed of B12 and B22) of B
became zero. We can remove this column from our consideration. Let B′ and B′12 the
matrices obtained from B and B12 by removing this zero column. Since the columns
of B′12 are a subset of the columns of B12, B21B12 = B21B11B12 = . . . = B21Bk−2

11 B12 = 0
implies that B21B′12 = B21B11B′12 = · · · = B21Bk−2

11 B′12 = 0. Therefore, our invariant is
still valid.

We repeat this process until the Equation (4.10) is not true anymore. Note that this
happens for sure when rank(B12) = 0. At the end of this process we get a matrix B∗

such that

dim〈Im(B∗12) ∪ Im(B11B∗12) ∪ . . . ∪ Im(Bk−2
11 B∗12)〉 ≥ (k− 1) rank(B∗12).

Now the rank bound follows from the argument given above.

Now we are ready to give the final algorithm.

The following theorem proves the correctness of Algorithm 4.4. Let s be an upper
bound on the bit size of the entries of B1, . . . , Bm.

Theorem 4.5. Assume that |F| > n. Algorithm 4.4 runs in time O((mn)
1
ε ·M(n, s + log n) ·

n) and returns a matrix A ∈ B such that rank(A) ≥ (1− ε) · crk(B), where M(n, t) is the
time required to compute the rank of an n× n matrix with entries of bit size at most t.

Proof. Let A be the matrix returned by Algorithm 4.4. Assume that A has rank r. We
know that there exist non-singular matrices P, Q ∈ Fn×n such that

4.3 (1− ε)-approximation algorithm for the commutative rank 51

Algorithm 4.4 Greedy algorithm for (1− ε)-approximating commutative rank
Input: A matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, input is a list of matrices

B1, B2, . . . , Bm. An approximation parameter 0 < ε < 1 and |F| > n.
Output: A matrix A ∈ B such that rank(A) ≥ (1− ε) · crk(B).

1: S ← An arbitrary subset of F of size n + 1. Rank increase is checked from this set.
2: ` ← d 1

ε − 1e . ` = Number of matrices with which linear combination has to be
checked.

3: A ← 0 . A is initialized to the zero matrix.
4: while Rank is increasing do
5: for each {i1, i2, . . . , i`} ∈ ([m]

`) do . This means we try all combinations of
matrices Bi1 , Bi2 , . . . , Bi` .

6: Check if there exist λ1, λ2, . . . , λ` ∈ S such that rank(A + λ1Bi1 + λ2Bi2 +
. . . + λ`Bi`) > rank(A).

7: if rank(A + λ1Bi1 + λ2Bi2 + . . . + λ`Bi`) > rank(A) then
8: A ← A + λ1Bi1 + λ2Bi2 + . . . + λ`Bi`
9: end if

10: end for
11: end while
12: return A

Ir 0
0 0

[]
r rows

n− r rows

r columns

n− r columns

PAQ =

(4.11)

where Ir is the r× r identity matrix. Now consider the matrix space

PBQ def
=== 〈PB1Q, PB2Q, . . . , PBmQ〉.

This does not change anything with respect to the rank. Also the way the algorithm
works is not changed by such a transformation. So for the analysis, we can replace B by
PBQ. Consider any general matrix A + x1B1 + x2B2 + . . . + xmBm in B. As usual, we
decompose it as below:

52 ptas for commutative rank

Ir + B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

A + x1B1 + x2B2 + . . . + xmBm =

(4.12)

Now we claim that the first ` matrices in the sequence B22, B21B12, B21B11B12, . . . ,
B21Bj

11B12, . . . are equal to the zero matrix. Assume otherwise. If B22 6= 0 then line 6

will obviously increase the rank of A and thus Algorithm 4.4 could not have terminated
with A. This follows from exactly the same argument as in the proof of Lemma 4.1.
Thus B22 = 0. Therefore our assumption implies that there exists i ∈ {0, 1, . . . , `− 2}
such that B21Bi

11B12 6= 0. Thus there exists a row a of B21 and a column b of B12 such
that aBi

11b 6= 0. Now we use Lemma 4.5 with B11 = L. Thus det(C) in Equation (4.5) has
non-zero monomials of degree at most `− 3 + 3 = `. In this case, by using Lemma 3.2,
we know that there exists an assignment α to the xi’s such that det(C) 6= 0. Moreover,
Lemma 3.2 guarantees that at most ` of the xi’s are set to non-zero. Therefore line 6

will be able to increase the rank of A and thus Algorithm 4.4 could not have terminated
with A. Therefore our assumption is false. Thus, the first ` matrices in the sequence
B22, B21B12, B21B11B12, . . . , B21Bj

11B12. . . . are equal to the zero matrix. Now we apply
Lemma 4.6 to get that crk(B) = rank(B) ≤ r

(
1 + 1

`

)
. Since ` ≥ 1

ε − 1, we get that
1 + 1

` ≤ 1 + ε
1−ε = 1

1−ε . Thus r = rank(A) ≥ (1− ε) crk(B).
The desired running time can be proved easily. The outer while loop runs at most n

times, thus the total running time is at most n times the running time of one iteration.
One iteration of the outer loop has ([m]

`) = O(m
1
ε) iterations of the inner for loop. By

using the Schwartz-Zippel lemma (Lemma 3.1), one iteration of inner for loop needs
to try at most (n + 1)` = O(n

1
ε) possible values of λ1, λ2, . . . , λ` ∈ F. And then we

perform two instances of rank computation. The stated running time follows.

Remark 4.1. Algorithm 4.4 runs in time O((mn)
1
ε · n · M(n)) in the algebraic RAM

model. Here M(n) is the time required to compute the rank of an n× n matrix in the
algebraic RAM model. It is known that M(n) = O(nω) with ω being the exponent of
matrix multiplication. Since one can assume that m ≤ n2, Algorithm 4.4 runs in time
O(n

3
ε+ω+1) in algebraic RAM model.

Remark 4.2. With a more refined analysis, it can be seen that Algorithm 4.4 uses
O((mn)

1
ε · n ·M(n, s + log n)) bit operations if the entries of the input matrices B1, B2,

. . . , Bm have bit size at most s. Here M(n, t) is the bit complexity of computing the rank
of a matrix whose entries have bit size at most t. The additional log n in the bit size
comes from the fact that the entries of the final matrix A are by a polynomial factor (in
n) larger than the entries of the Bi due to the update steps.

4.4 wong sequences and wong index 53

4.4 Wong sequences and Wong index

We described above a PTAS for computing the commutative rank of matrix spaces. In
this section, we describe an alternative approach to prove that Algorithm 4.4 is a PTAS
for computing the commutative rank. This approach was used in our paper [BJP18].
To this end, we introduce the notion of Wong sequences. For a more comprehensive
exposition, we refer the reader to [Iva+15].

Definition 4.1 (Second Wong Sequence). Let B ≤ Fn×n be a matrix space and A ∈ B.
The sequence of sub-spaces (Wi)i∈N of Fn is called the second Wong sequence of (A,B),
where W0 = {0}, and Wi+1 = BA−1(Wi).

In [Iva+15], first Wong sequences are also introduced. But for our purpose, just the
notion of second Wong sequence is enough. The following Lemma 4.7 is easy to prove.

Lemma 4.7 (Proposition 7 in [Iva+15]). Let (Wi)i∈N be the second Wong sequence of (A,B).
Then following holds.

1. Wi ≤Wi+1 for all i ∈N. Also, Wi = Wi+1 if and only if A−1(Wi) ≤ B−1(Wi).

2. There exists a limit subspace W∗ of (Wi)i∈N. Also, the limit subspace W∗ = Wk is
realized by some k ≤ n.

3. The limit subspace W∗ is the smallest subspace T of Fn such that A−1(T) ≤ B−1(T).

Proof. We prove Wi ≤ Wi+1 by induction on i. It trivially holds true for i = 0 because
W0 = {0}. By induction hypothesis we have that Wi−1 ≤ Wi. This implies that Wi =

BA−1(Wi−1) ≤ BA−1(Wi) = Wi+1. Suppose A−1(Wi) ≤ B−1(Wi) for some Wi. Then
Wi+1 = BA−1(Wi) ≤ BB−1(Wi) ≤Wi. Thus Wi = Wi+1. For the other direction, assume
that Wi = Wi+1 = BA−1(Wi). Now we apply the second part of Lemma 3.8 with
U = A−1(Wi) and A = B. Thus A−1(Wi) ≤ B−1(BA−1(Wi)) = B−1(Wi+1)= B−1(Wi).

Since Wi is a subspace of Wi+1, we get that dim(Wi) ≤ dim(Wi+1). If dim(Wi) =

dim(Wi+1) then obviously W∗ = Wi. Also, the case of strict inequality dim(Wi) <

dim(Wi+1) can only occur at most n times because (Wi)i∈N are sub-spaces of Fn. Thus
W∗ exists and is realized as W∗ = Wk by some k ≤ n.

Consider an arbitrary T ≤ Fn such that A−1(T) ≤ B−1(T). By induction on i, we
first show that Wi ≤ T for all i ∈N. It trivially holds true for i = 0 because W0 = {0}.
By induction hypothesis we have that Wi−1 ≤ T. Thus Wi = BA−1(Wi−1) ≤ BA−1(T).
Since A−1(T) ≤ B−1(T), we get that BA−1(T) ≤ BB−1(T) ≤ T. Thus Wi ≤ T. In
particular if a subspace T ≤ Fn satisfies A−1(T) ≤ B−1(T) then W∗ ≤ T. The first item
of this lemma also proves that A−1(W∗) ≤ B−1(W∗). Thus W∗ is the smallest subspace
T of Fn such that A−1(T) ≤ B−1(T).

54 ptas for commutative rank

Lemma 4.7 implies that it is enough the consider the second Wong sequence (Wi)i∈N

till i ≤ n. Thus from now on, we shall consider the second Wong sequence only for
i ≤ n.

Next, we introduce the notion of pseudo-inverses. They are helpful in computing the
Wong sequences. We remark that we need the notion of Wong sequence only for the
analysis, our algorithm is completely oblivious to Wong sequences.

Definition 4.2 (Pseudo-Inverse). A non-singular matrix A′ ∈ Fn×n is called a pseudo-
inverse of a matrix A ∈ Fn×n if the restriction of A′ to Im(A) is the inverse of the
restriction of A to a direct complement of Ker(A).

Unlike the usual inverse of a non-singular matrix, a pseudo-inverse of a matrix is not
necessarily unique. But it always exists and if A is non-singular, then it is unique and
coincides with the usual inverse.

The following lemma demonstrates the role of pseudo-inverses in computing Wong
sequences. This lemma and its proof are implicit in the proof of Lemma 10 in [Iva+15].
We prove it here for the sake of completeness. The lemma essentially states that we
can replace the pre-image computation in the Wong sequence by multiplication with a
pseudo-inverse.

Lemma 4.8. Let F be any field and B ≤ Fn×n be a matrix space, A ∈ B, A′ be a pseudo-inverse
of A and (Wi)i∈[[n]] be the second Wong sequence of (A,B). Then for all 1 ≤ i ≤ n, we have
Wi = (BA′)i(Ker(AA′)) as long as Wi−1 ⊆ Im(A).

Proof. We prove the statement by induction on i. Since Ker(AA′) = (A′)−1(Ker(A)),
we get that

(BA′)(Ker(AA′)) = BA′(A′)−1(Ker(A)) = BKer(A) = W1.

This proves the base case of i = 1. To prove that Wi = (BA′)i(Ker(AA′)), we need
to prove that (BA′)i(Ker(AA′)) ⊆ Wi and Wi ⊆ (BA′)i(Ker(AA′)). By the induction
hypothesis, we just need to prove that (BA′)(Wi−1) ⊆Wi and Wi ⊆ (BA′)(Wi−1).

First we prove the easy direction, that is (BA′)(Wi−1) ⊆Wi. Since Wi−1 ⊆ Im(A), we
have that A′(Wi−1) ⊆ A−1(Wi−1). Thus (BA′)(Wi−1) ⊆ BA−1(Wi−1) = Wi.

Now we prove that Wi ⊆ (BA′)(Wi−1). Since Wi−1 ⊆ Im(A), we get that A−1(Wi−1) =

A′Wi−1 +Ker(A). Thus Wi = BA−1(Wi−1) ⊆ BA′Wi−1 +BKer(A). We have BKer(A) =

W1 ⊆Wi−1, this implies that Wi ⊆ BA′Wi−1 +Wi−1. Since A ∈ B and Wi−1 = AA′Wi−1,
we get that Wi−1 ⊆ BA′Wi−1. This in turn implies that Wi ⊆ BA′Wi−1 + BA′Wi−1 =

(BA′)(Wi−1).

Given a matrix space B and a matrix A ∈ B, how can one check that A is of maximum
rank in B, i.e., rank(A) = crk(B)? The following lemma in [Iva+15] gives a sufficient
condition for A to be of maximum rank in B.

4.5 relation between rank and wong index 55

Lemma 4.9 (Lemma 10 in [Iva+15]). Assume that |F| > n. Let A ∈ B ≤ Fn×n, and let A′

be a pseudo-inverse of A. If we have that for all i ∈ [n],

Wi = (BA′)i(Ker(AA′)) ⊆ Im(A), (4.13)

then A is of maximum rank in B.

Thus, Lemma 4.9 shows that if A is not of maximum rank in B, then we have
Wi * Im(A) for some i ∈ [n]. For our purposes, we need to quantify when exactly this
happens. Therefore we define:

Definition 4.3 (Wong Index). Let B ≤ Fn×n be a matrix space, A ∈ B and (Wi)i∈[[n]] be
the second Wong sequence of (A,B). Let k ∈ [[n]] be the maximum integer such that
Wk ⊆ Im(A). Then k is called the Wong index of (A,B). We shall denote it by w(A,B).

Using the above definition, another way to state Lemma 4.9 is that if the Wong index
w(A,B) of (A,B) is n, then A is of maximum rank in B. But can one say more? In next
section, we explore this connection. Consider a matrix space 〈A, B〉 generated by two
matrices A, B. We shall prove that the closer w(A, 〈A, B〉) is to n, the closer the rank of
A is to the commutative rank of 〈A, B〉.

The converse of Lemma 4.9 is not true in general. But the converse is true in the
special case when B is spanned by just two matrices. Fortunately, for the analysis of our
algorithm we only require the converse to be true in this special case. The following
fact from [Iva+15] formally states this idea.

Fact 4.3 (Restatement of Fact 11 in [Iva+15]). Assume that |F| > n and let A, B ∈ Fn×n. If
A is of maximum rank in 〈A, B〉, then the Wong index w(A, 〈A, B〉) of (A, 〈A, B〉) is n.

Now we establish a connection between the commutative rank and Wong index in
Section 4.5.

4.5 Relation between rank and Wong index

We prove that the natural greedy strategy of Algorithm 4.4 works, essentially by
showing that either of the following happens:

1. The Wong index of the matrix obtained by Algorithm 4.4 at a given step is high
enough, in which case, we show that the matrix already has the desired rank.
Lemma 4.12 formalizes this.

2. We can increase the rank by a greedy step. Lemma 4.14 formalizes this.

Notice that this is similar to the approach described at the beginning of Section 4.3.
Here Wong index is analogous to the degree of non-zero monomials of det(C).

56 ptas for commutative rank

In the above spirit, we quantify the connection between the commutative rank and
Wong index in this section, using a series of lemmas. First we need the following lemma
which demonstrates that the second Wong sequence remains “almost” the same under
invertible linear maps.

Lemma 4.10. Let F be any field, A ∈ B ≤ Fn×n and (Wi)i∈[[n]] be the second Wong sequence
of (A,B). If P ∈ Fn×n and Q ∈ Fn×n are invertible matrices, then the second Wong sequence
of (PAQ, PBQ) is (PWi)i∈[[n]]. In particular, w(A,B) = w(PAQ, PBQ).

Proof. Consider the ith entry W ′i in the second Wong sequence of (PAQ, PBQ). We
prove that W ′i = PWi for all i ∈ [[n]]. We use induction on i. The statement is trivially
true for i = 0. By the induction hypothesis, we have, W ′i = PBQ(PAQ)−1PWi−1 =

PBQQ−1A−1P−1PWi−1 = PBA−1(Wi−1) = PWi.

The following technical Lemma 4.11 relates the Wong index with a sequence of
vanishing matrix products. Note the similarity of Lemma 4.11 to Lemma 4.5 and
Lemma 4.6

Lemma 4.11. Let F be any field and A, B ∈ Fn×n. Assume A =

[
Ir 0

0 0

]
and express the

matrix B as

B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

B =

(4.14)

Let ` ≤ n be the maximum integer such that first ` elements of the sequence of matrices

B22, B21B12, B21B11B12, . . . , B21Bi
11B12, . . . (4.15)

are equal to the zero matrix. Then ` = w(A, 〈A, B〉).

Proof. Let k = w(A, 〈A, B〉), we want to show that k = `. Notice that In is a pseudo-
inverse of A, so we can assume A′ = In in the statement of Lemma 4.8. Consider the
second Wong sequence of (A, 〈A, B〉). By Lemma 4.8, it equals (〈A, B〉A′)i(Ker(AA′))
for i ≤ k. Since we can assume that A′ = In, this sequence is (〈A, B〉)i(Ker(A)).
Ker(A) ≤ Fn contains exactly the vectors having the first r entries equal to zero and
Im(A) contains exactly the vectors which have the last n− r entries equal to zero.

First we show that ` ≥ k. For this, we need to show that B22 = B21B12 = B21B11B12 =

. . . = B21Bk−2
11 B12 = 0. If k = 0 then we do not need to show anything. Otherwise k > 0.

4.5 relation between rank and wong index 57

Consider the first entry W1 of second Wong sequence of (A, 〈A, B〉). By Lemma 4.8, we
know that W1 = 〈A, B〉Ker(A). As Ker(A) ≤ Fn contains exactly the vectors which
have first r entries to be zero, if B22 was not zero then B Ker(A) would contain a
vector with a non-zero entry in the last n − r coordinates. This would violate the
assumption W1 ⊆ Im(A). Thus B22 = 0. Now we use induction on length of the
sequence B22, B21B12, B21B11B12, . . . , B21Bi

11B12. Our induction hypothesis assumes that
for i ≥ 1

Bi
11 + ∑i−2

j=0 Bj
11B12B21Bi−2−j

11 Bi−1
11 B12

B21Bi−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(4.16)

and B22 = B21B12 = B21B11B12 = . . . = B21Bi−2
11 B12 = 0. We just proved the base case of

i = 1. Consider the following evaluation of Bi+1 = B · Bi

Bi+1
11 + ∑i−2

j=0 Bj+1
11 B12B21Bi−2−j

11 + B12B21Bi−1
11 Bi

11B12

B21Bi
11 + ∑i−2

j=0 B21Bj
11B12B21Bi−2−j

11 B21Bi−1
11 B12


r rows

n− r rows

r columns

n− r columns

Bi+1 =

(4.17)

Since i + 1 ≤ k, we must have B21Bi−1
11 B12 = 0, otherwise we would have Wi+1 6⊆ Im(A).

Also we know by the induction hypothesis that B22 = B21B12 = B21B11B12 = . . . =
B21Bi−2

11 B12 = 0, this implies that

Bi+1
11 + ∑i−1

j=0 Bj
11B12B21Bi−1−j

11 Bi
11B12

B21Bi
11 0

 r rows

n− r rows

r columns

n− r columns

Bi+1 = B · Bi =

(4.18)

Now we show that k ≥ `. Since k = w(A, 〈A, B〉), for all 1 ≤ i ≤ k, Bi can be written as

58 ptas for commutative rank

Bi
11 + ∑i−2

j=0 Bj
11B12B21Bi−2−j

11 Bi−1
11 B12

B21Bi−1
11 0

 r rows

n− r rows

r columns

n− r columns

Bi =

(4.19)

Note that 〈A, B〉i is spanned by all matrices of the form M1M2 · · ·Mi with Mj = A or
Mj = B, 1 ≤ j ≤ i. Since we have that Wk ⊆ Im(A), we know M1M2 · · ·Mk Ker(A) ⊆
Im(A) holds for any product M1M2 · · ·Mk as above. Now let us see what condition
one needs such that Wk+1 6⊆ Im(A) is true. Since A is the identity on Im(A), only Bk+1

can take Ker(A) out of Im(A) for Wk+1 6⊆ Im(A) to be true. By a similar argument as
above, this happens only when B21Bk−1

11 B12 6= 0, thus ` ≤ k.

Now, having established the connection between the Wong index and the sequence of
vanishing matrix products, we prove another technical lemma establishing the relation
between the length of this sequence and the commutative rank.

Finally, combining the above three lemmas, the following lemma gives the desired
quantitative relation between the commutative rank and Wong index, essential to an
alternative analysis of our algorithm. It shows that higher the Wong index of the given
matrix, the better it approximates the rank of the space.

Lemma 4.12. Let F be any field, A ∈ B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n and B = ∑m
i=1 xiBi,

then

crk(B) = crk(〈A, B〉) ≤ rank(A)

(
1 +

1
w(A, 〈A, B〉)

)
. (4.20)

Proof. Let rank(A) = r. We use C to denote the matrix space 〈A, B〉, note that this space
is being considered over the rational function field F(x1, x2, . . . , xm).

We know that there exist matrices P, Q ∈ Fn×n such that

PAQ =

[
Ir 0

0 0

]
. (4.21)

Notice that Im(PAQ) = P Im(A). Thus by Lemma 4.10, w(A, C) = w(PAQ, PCQ). Also,
it follows from Fact 3.1 that rank(A) = rank(PAQ) and crk(C) = crk(PCQ). Hence it
is enough to show that

crk(PCQ) ≤ rank(PAQ)

(
1 +

1
w(PAQ, PCQ)

)
. (4.22)

For the sake of simplicity, we just write PCQ as C and PAQ as A. Thus we have

4.5 relation between rank and wong index 59

A =

[
Ir 0

0 0

]
. (4.23)

We write B as

B11 B12

B21 B22

[]
r rows

n− r rows

r columns

n− r columns

B =

(4.24)

We get that B11 is non-singular over the field F(x1, x2, . . . , xm) since A ∈ B. Also, we
get by Lemma 4.11 that the first w(A, C) entries of the sequence of matrices B22, B21B12,
B21B11B12, . . . , B21Bi

11B12. . . . are zero matrices. Now we apply Lemma 4.6 to obtain that

rank(B) = crk(B) = crk(C) ≤ rank(A)

(
1 +

1
w(A, C)

)
. (4.25)

Lemma 4.12 essentially states that for the matrix spaces C which are spanned by two
matrices, if the Wong index w(A, C) for any matrix A ∈ C is “large” then rank(A) is
close to crk(C). By using Theorem 3.3 and Lemma 4.12 we see that if C is generated by
two matrices then for any matrix A ∈ C, the following inequality holds.

ncrk(C) = crk(C) ≤ rank(A)

(
1 +

1
w(A, C)

)
. (4.26)

Now it it very natural ask whether Equation (4.26) also holds for general matrix spaces?
We prove that it does. Note that this does not help us in getting any algorithm exactly
but it strengthens Lemma 4.12.

Lemma 4.13. Let F be any field, A ∈ B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n. Then we have:

ncrk(B) ≤ rank(A)

(
1 +

1
w(A,B)

)
. (4.27)

Proof. Let rank(A) = r. We know that there exist matrices P, Q ∈ Fn×n such that:

PAQ =

[
Ir 0

0 0

]
. (4.28)

60 ptas for commutative rank

By using Lemma 4.10, we know that w(A,B) = w(PAQ, PBQ). By Fact 3.1, we know
that ncrk(B) = ncrk(PBQ). Hence it is enough to show that:

ncrk(PBQ) ≤ rank(PAQ)

(
1 +

1
w(PAQ, PBQ)

)
. (4.29)

For the sake of simplicity, we again write PBQ as B and PAQ as A. Thus we can
assume that:

A =

[
Ir 0

0 0

]
. (4.30)

Fix an arbitrary d ∈N+. Now consider the following matrix A[d] ∈ B[d] defined as:

A[d] def
=== Id ⊗ A

Consider the symbolic matrix B[d] def
=== X1 ⊗ B1 + · · ·+ Xm ⊗ Bm in variables xi

j,k for
i ∈ [m] and j, k ∈ [d]. Here the matrix Xi is composed of variables xi

j,k. First we want to

show that w(A,B) ≤ w(A[d], 〈A[d], B[d]〉). Now observe that Ind is a pseudo inverse of
A[d]. Suppose k = w(A,B). Now we observe the following facts.

1. A′ def
=== In is a pseudo inverse of A and thus (BA′)j = (B)j for all j ∈N.

2. (B)j is spanned by the matrices {Bi1 · Bi2 · · · · · Bij | 1 ≤ i1, i2, . . . , ij ≤ m}.

By using Lemma 4.9 and the above facts, we conclude the following:

∀t ≤ k, ∀i1, i2, . . . , it ∈ [m] : Bi1 · Bi2 · · · · · Bit ·Ker(A) ⊆ Im(A). (4.31)

Now we observe the following equality:

(B[d])j = ∑
1≤i1,i2,...,ij≤m

(Xi1 · Xi2 · · · · · Xij)⊗ (Bi1 · Bi2 · · · · · Bij) (4.32)

Equation (4.31) and Equation (4.32) imply that w(A[d], 〈A[d], B[d]〉) ≥ k. Now we apply
Lemma 4.12 to A[d] and B[d] to obtain the following inequality:

crk(B[d]) = rank(B[d]) = crk(〈A[d], B[d]〉) ≤ rank(A[d])

(
1 +

1
w(A[d], 〈A[d], B[d]〉)

)
.

(4.33)
The first equality in Equation (4.33) follows from Lemma 3.12. Thus Equation (4.33)
implies crk(B[d]) ≤ rd

(
1 + 1

k

)
. Now we choose d to be the positive integer which

achieves the maximum in Theorem 3.2. This implies that:

4.5 relation between rank and wong index 61

ncrk(B) = crk(B[d])

d
≤ r

(
1 +

1
k

)
.

Lemma 4.14. If |F| > n, A ∈ B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, B = ∑m
i=1 xiBi and

w(A, 〈A, B〉) < k for some k ∈ [n], then there exist 1 ≤ i1, i2, . . . , ik ≤ m and λ1, λ2, . . . ,
λk ∈ F such that w(A, 〈A, C〉) < k, where C = λ1Bi1 + λ2Bi2 + . . . + λkBik .

Proof. Let rank(A) = r. We know that there exist matrices P, Q ∈ Fn×n such that

PAQ =

[
Ir 0

0 0

]
. (4.34)

Let A′ = PAQ , B′ = PBQ and B′ = ∑m
i=1 xiPBiQ. We write B′ as

B′11 B′12

B′21 B′22

[]
r rows

n− r rows

r columns

n− r columns

B′ =

(4.35)

By using Lemma 4.10, we know that w(A, 〈A, B〉) = w(A′, 〈A′, B′〉) < k. By using
Lemma 4.11 we get that there exists t ≤ k such that B′21(B′11)

t−2B′12 6= 0 and

B′′11 B′′12

B′′21 B′21(B′11)
t−2B′12

[]
r rows

n− r rows

r columns

n− r columns

(B′)t =

(4.36)

for some matrices B′′11, B′′12, B′′21. Since the entries of the matrix B′21(B′11)
t−2B′12 are polyno-

mials in the variables x1, x2, . . . , xm of degree at most t ≤ k, there exists an assignment
to these variables by field constants, assigning at most k variables non-zero values
such that B′21(B′11)

t−2B′12 evaluates to a non-zero matrix. By using Lemma 4.11 again,
this assignment gives us a matrix C′ ∈ B′ such that w(A′, 〈A′, C′〉) < k. By using
Lemma 4.10, the same assignment of the variables gives us a matrix C ∈ B such that
w(A, 〈A, C〉) < k.

62 ptas for commutative rank

4.6 An Alternative proof of correctness of Algorithm 4.4

Here we give an alternative proof of correctness of Algorithm 4.4. This proof will be
analogous to the proof of Theorem 4.5. The minimum degree of non-zero monomials in
det(C) in Theorem 4.5 is analogous to the Wong index of A in the ensuing discussion.

We have a matrix space B = 〈B1, B2, . . . , Bm〉 ≤ Fn×n, B = ∑m
i=1 xiBi and a matrix

A ∈ B. Our goal is find a matrix D in B such that its rank is “close” to the commutative
rank of B. If the Wong index w(A, 〈A, B〉) of A in 〈A, B〉 is “large”, then we know by
Lemma 4.12 that rank of of A is “close” to the commutative rank of B, which is equal to
the commutative rank of 〈A, B〉. What if this Wong index w(A, 〈A, B〉) is “small”? Then
we know by Lemma 4.14 that by trying out a small number (that means, mw(A,B)+1) of
possibilities of combinations of Bi, we can find a matrix C ∈ B such that Wong index
w(A, 〈A, C〉) of A in 〈A, C〉 is also “small”. Using Fact 4.3 we obtain that rank of A is
not maximum in 〈A, C〉. Thus there exists λ ∈ F such that rank(A + λC) > rank(A).
And we can find this λ quite efficiently. Also, A + λC ∈ B. Thus we can efficiently
find a matrix of bigger rank if we are given a matrix of “small” Wong index. This idea
essentially implies that Algorithm 4.4 is a PTAS for computing the commutative rank.

The following Theorem 4.6 gives a different proof of the correctness of Algorithm 4.4.
Let s be an upper bound on the bit size of the entries of B1, . . . , Bm.

Theorem 4.6. Assume that |F| > n. Algorithm 4.4 runs in time O((mn)
1
ε ·M(n, s + log n) ·

n) and returns a matrix A ∈ B such that rank(A) ≥ (1− ε) · crk(B), where M(n, t) is the
time required to compute the rank of an n× n matrix with entries of bit size at most t.

Proof. Suppose B = ∑m
i=1 xiBi and A be the rank r matrix returned by Algorithm 4.4.

Let k be the Wong index w(A, 〈A, B〉) of (A, 〈A, B〉). By Lemma 4.12 we know that
crk(B) ≤ r

(
1 + 1

k

)
. Thus r ≥ (1− 1

k+1) crk(B). If ε ≥ 1
k+1 , then we are done. Otherwise

we have that ε < 1
k+1 , i.e., k < 1

ε − 1. Since ` = d 1
ε − 1e, we also have w(A, 〈A, B〉) < `.

By using Lemma 4.14, we get that there exist 1 ≤ i1, i2, . . . , i` ≤ m and λ1, λ2, . . . ,
λm ∈ F such that that w(A, 〈A, C〉) < `, where C = λ1Bi1 + λ2Bi2 + . . . + λ`Bi` . By
using Fact 4.3, we get that A is not of maximum rank in 〈A, C〉. Thus there exists λ ∈ F

such that rank(A + λC) > rank(A), and we shall detect this in Algorithm 4.4, since we
try all possible choices of i1, i2, . . . , i`.

The running time proof is exactly the same as in the proof of Theorem 4.5.

4.7 tight examples 63

4.7 Tight examples

We conclude by giving some tight examples, which show that the analysis of the ap-
proximation performance of Algorithm 4.4 cannot be improved. Consider the following
matrix space of n× n-matrices:

∗ 0 . . . 0 ∗ 0 . . . 0

0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 ∗ 0 . . . 0

0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . ∗


(4.37)

Each block has size n
2 ×

n
2 . This space consists of all matrices where we can substitute

arbitrary values for the ∗ and the basis consists of all matrices where exactly one ∗
is replaced by 1 and all others are set to 0. Assume that ε = 1

2 , that means, that the
greedy algorithm only looks at sets of size ` = 1. Furthermore, assume that the matrix
A constructed so far is:

A =

(
0 I n

2

0 0

)
. (4.38)

Any single basis matrix cannot improve the rank of A, since either its non-zero column
is contained in the column span of A or its non-zero row is contained in the row span

64 ptas for commutative rank

of A. On the other hand, the matrix space contains a matrix of full rank n, namely, the
identity matrix. The next space for the case ` = 2 looks like this:

∗ 0 . . . 0 ∗ 0 . . . 0 0 0 . . . 0

0 ∗ . . . 0 0 ∗ . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 . . . ∗ 0 0 . . . ∗ 0 0 . . . 0

0 0 . . . 0 ∗ 0 . . . 0 ∗ 0 . . . 0

0 0 . . . 0 0 ∗ . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . ∗ 0 0 . . . ∗
0 0 . . . 0 0 0 . . . 0 ∗ 0 . . . 0

0 0 . . . 0 0 0 . . . 0 0 ∗ . . . 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 . . . 0 0 0 . . . 0 0 0 . . . ∗



(4.39)

and the corresponding matrix A is

A =

 0 I 2n
3

0 0

 . (4.40)

By an argument similar to above, it is easy to see that we need at least three matrices to
improve the rank of A, so the algorithm gets stuck with a 2

3 -approximation. The above
scheme generalizes to arbitrary values of ` in the obvious way.

Part II

R E A L R O O T C O M P U TAT I O N O F S PA R S E P O LY N O M I A L S

5
C O M P U T I N G T H E R O O T S O F P O LY N O M I A L S

Computing the roots of a uni-variate polynomial is an important problem in theory
and practice. For instance, the roots of the characteristic polynomial of a matrix A are
exactly the eigen-values of A. In general, many computational tasks from mathematics,
engineering and computer science reduce to solving a system of polynomial equations.
It is well known that solving a system of polynomial equations can be reduced to
solving a polynomial equation in one variable. For example, the authors in [BS16]
achieve this by using the concept of separating linear forms. There are many other
methods known to solve a system of polynomial equations, but all of them reduce to
uni-variate root finding. Therefore, the problem of computing the roots of a uni-variate
polynomial has been studied extensively in the literature.

In this chapter, we consider only the real polynomials. In a lot of applications, one
wants to only compute all the real roots of a real polynomial. In addition, in some
applications, one only wants to compute the real roots of a real sparse polynomial, i.e.,
only few monomials have non-zero coefficients.

It might happen that a given real uni-variate polynomial has very few real roots but
the fundamental theorem of algebra states that any complex polynomial (in particular
a real polynomial) of degree n has exactly n complex roots, i.e., the field C of complex
numbers is algebraically closed, a result that was already proved by Gauss in 1816. We
give a folklore algebraic proof of the fundamental theorem of algebra in Section 5.1. In
contrast, a real sparse polynomials can not have too many real roots (see Theorem 5.3).

This chapter can be read as follows. Section 5.1 gives an algebraic proof of the
fundamental theorem of algebra, and we provide bounds on the magnitude of roots
of complex polynomials (Cauchy’s root bound). Section 5.2 introduces the various
definitions and notations which are commonly used in this chapter. Section 5.3 focuses
on the structure of real roots of real polynomials. Here we prove the well known
Descartes’s rule of signs. We also introduce the notions of Obreshkoff lens. This helps us
to prove that the cone Cn (Figure 5.2) contains at most k− 1 roots of any (n, k, τ)-nomial
(Definition 5.2). This observation is crucial in the analysis of the main contribution of
this chapter. Section 5.4 proves that the roots of trinomials are well separated. Using
our algorithm (Theorem 5.13) to compute a strong covering, results of Section 5.4 imply
that the real roots of trinomials can be computed in polynomial time.

67

68 computing the roots of polynomials

Next we prove that the root separation result of trinomials can not be generalized
to 4-nomials. More specifically, Section 5.5 demonstrates that the roots of the well
known Mignotte like polynomials are not well separated. Moreover, we also show
that any algorithm which isolates the real roots of such polynomials, is of exponential
complexity (Theorem 5.10).

Thereafter, we give a very brief survey of the history of polynomial root computation
algorithms. Section 5.7 introduces the notion of fractional derivatives, which is a crucial
ingredient of our algorithm. We use this notion of fractional derivatives to expound a
classical result of [CKS99], which states that the integer roots of integer (n, k, τ)-nomials
can be computed in polynomial time.

Next we introduce the notion of weak and strong coverings. To give some intuition,
we first give a brief description of algorithm claimed in Theorem 5.13, omitting the
technical details. Section 5.10 contains several key results on polynomial arithmetic
concerning the value of (n, k, τ)-nomials at admissible points and also computing the
sign of an (n, k, τ)-nomial at a given point.

We also describe a refinement routine, which refines a isolating interval to a desire
length. This refinement routine (Algorithm 5.11) is a key component of our algorithm
to compute a weak covering.

Afterwards, we describe an algorithm (Algorithm 5.12) to compute a weak covering of
any (n, k, τ)-nomial. Section 5.13 describes the so called T̃l-test, which essentially counts
the number of roots of a (n, k, τ)-nomial F in a given disk ∆. The novel contribution of
Section 5.13 is that to perform the T̃l-test, we only need to be concerned with first k2

coefficients of the polynomial F∆. Finally, we combine the T̃l-test and Algorithm 5.12 to
prove our main result of this chapter (Theorem 5.13).

5.1 Complex Roots of Complex Polynomials

Lemma 5.1. Let f (x) ∈ R[x] be a polynomial such that f (a) f (b) < 0 for two real numbers a
and b where a < b, then there exists a root x0 of f (x) in interval (a, b), i.e., there exists a real
number x0 such that f (x0) = 0 and a < x0 < b.

Proof. This directly follows from Rolle’s Theorem.

Corollary 5.1. Let f (x) ∈ R[x] be a polynomial of odd degree then f (x) has a real root.

Proof. This follows by applying Lemma 5.1 on a = −∞ and b = +∞.

We use ei to denote the ith elementary symmetric polynomial ei
n in n variables x1, x2,

. . . , xn (see Chapter 6).

Lemma 5.2 ([DF04]). Let K be any field and f (x) ∈ K[x] be a monic polynomial of degree
n, then there exists a field extension L | K such that in L, f (x) splits in linear factors. More
specifically, f (x) = ∏n

i=1(x− zi) with zi ∈ L.

5.1 complex roots of complex polynomials 69

Note that the zi’s in Lemma 5.2 may not be necessarily distinct. L is also called the
splitting field of f (x) over K.

Lemma 5.3. Let g(x) ∈ R[x] be any non-constant real monic polynomial, then there exists a
z ∈ C such that g(z) = 0.

Proof. Let n = deg(g(x)). We factorize n in the form n = 2k · q, where q is an odd
number. We now prove the Lemma by induction on k. The base case k = 0 follows from
Corollary 5.1. For the induction step, assume that k ≥ 1. By using Lemma 5.2, we know
that there exists a field extension L | R such that g(x) = ∏n

i=1(x− zi) with zi ∈ L. We
want to prove that there exists an i ∈ [n] such that zi ∈ C, in fact we shall prove that
there exist i, j with i 6= j such that zi, zj ∈ C. Fix a real number c ∈ R. For {i, j} ∈ ([n]2),
we define:

wij
def
=== zi + zj + czizj.

Note that wij ∈ L. Now let us define the polynomial h(x) ∈ L[x] as below.

h(x) def
=== ∏

{i,j}∈([n]2)

(x− wij).

Note that the coefficients of h(x) are elementary symmetric polynomial in wij’s, hence
these coefficients are real symmetric polynomials in zi’s as well. By using Theorem 6.1,
we know that these coefficients are real polynomial functions of the n elementary
symmetric polynomials e1, e2, . . . , en of z1, z2, . . . , zn. But the elementary symmetric
polynomials in variables z1, z2, . . . , zn are coefficients of g(x) and hence they are real.
This implies that coefficients of h(x) are also real. Thus h(x) ∈ R[x]. We have that
deg(h(x)) = (n

2) = 2k−1 · q(n − 1). By using the fact that k ≥ 1, we conclude that
q(n− 1) is odd. Now we can apply induction hypothesis to conclude that there exists
{i, j} such that wij ∈ C. Until now, we performed the above argument for a fixed c ∈ R.
Let {i, j} be the lexicographically smallest pair such that wij ∈ C. This defines a function
τ : R→ ([n]2) as below.

τ : R→
(
[n]
2

)
c 7→ {i, j} such that {i, j} is the lexiographically smallest pair with wij ∈ C

Since ([n]2) is a finite set and R is infinite, we get that there exists distinct real numbers c
and c′ such that τ(c) = τ(c′). Thus there exists a pair {i, j} such that both zi + zj + czizj
and zi + zj + c′zizj are in C. Hence there difference (c− c′)zizj is also in C. Since (c− c′)
is a non-zero real number, we conclude that zizj ∈ C as well. This implies that zi + zj ∈ C

as well. Since zi and zj are the roots of quadratic equation x2 − (zi + zj)x + zizj and
square root of complex numbers are complex, we get that zi and zj are also complex
numbers.

70 computing the roots of polynomials

Corollary 5.2. Let f (x) ∈ C[x] be any non-constant polynomial, then there exists a z ∈ C

such that f (z) = 0.

Proof. We can assume f (x) to be monic. Define g(x) to be the polynomial f (x) · f (x).
Here f (x) is the complex conjugate of f (x), i.e., we obtain f (x) from f (x) by taking the
complex conjugate of each coefficient of f (x). Note that g(x) = f (x) f (x) = f (x) f (x) =
g(x), hence g(x) is a real polynomial. By using Lemma 5.3, we know that g(x) has a
complex root z. Therefore g(z) = f (z) · f (z) = f (z) · f (z) = 0. Thus either f (z) = 0 or
f (z) = 0. Thus z or z is a root of f (x).

Theorem 5.1 (Fundamental theorem of algebra). The field C of complex numbers is
algebraically closed, i.e., any non-zero polynomial f (x) ∈ C[x] of degree n has exactly n
complex roots.

Proof. We prove it by induction on the degree n of f (x) ∈ C[x]. The base case of n = 1
is trivially true. By using Corollary 5.2, we know that there there exists a z ∈ C such
that f (z) = 0. By Little Bezout’s Theorem (Factor Theorem) [Rud04] we know that
f (x) = (x − z)g(x), here g(x) ∈ C[x] is a polynomial of degree n− 1. By using the
induction hypothesis, we know that g(x) has exactly n− 1 complex roots. Therefore
f (x) has exactly n complex roots.

For a more concise and analytical proof of Theorem 5.1, the reader is referred to
Chapter 19 in [AZ09]. The magnitude of roots of a polynomial can also be bounded in
terms of magnitude of coefficients using Cauchy’s bound.

Theorem 5.2 (Cauchy root bound [Yap00]). Let f (x) = ∑n
i=0 fixi ∈ C[x] be a complex

polynomial of degree n. For every root α of f , the following inequality holds true.

|α| ≤ 1 + max
(∣∣∣∣ f0

fn

∣∣∣∣ ,
∣∣∣∣ f1

fn

∣∣∣∣ , . . . ,
∣∣∣∣ fn−1

fn

∣∣∣∣) .

Proof. By way of contradiction, assume that there exists a root α of f (x) such that

|α| > 1 + max
(∣∣∣ f0

fn

∣∣∣ ,
∣∣∣ f1

fn

∣∣∣ , . . . ,
∣∣∣ fn−1

fn

∣∣∣). Since f (α) = ∑n
i=0 fiα

i = 0, we have that:

−αn =
n−1

∑
i=0

fi

fn
αi.

5.2 definitions and notations 71

Therefore, we have:

|−αn| = |α|n =

∣∣∣∣∣n−1

∑
i=0

fi

fn
αi

∣∣∣∣∣
≤

n−1

∑
i=0

(∣∣∣∣ fi

fn

∣∣∣∣ · |α|i)

≤ max
i

{∣∣∣∣ fi

fn

∣∣∣∣} ·
(

n−1

∑
i=0
|α|i
)

< (|α| − 1) ·
(
|α|n − 1
|α| − 1

)
= |α|n − 1. (5.1)

Equation (5.1) above is obviously a contradiction, hence any root α of f (x) satisfies

|α| ≤ 1 + max
(∣∣∣ f0

fn

∣∣∣ ,
∣∣∣ f1

fn

∣∣∣ , . . . ,
∣∣∣ fn−1

fn

∣∣∣) .

5.2 Definitions and Notations

1. For a complex polynomial f (x) ∈ C[x], the root separation σ(f) of f (x) is defined
as the minimal distance between any two distinct roots of f (x).

2. For a complex number c and a positive real number r, ∆r(c) is used to denote the
open disk in the complex plane with center c and radius r.

3. For a real interval I = (a, b), w(I) is used to denote the width b− a of I.

4. For a real interval I = (a, b), m(I) is used to denote the center a+b
2 of I.

5. For a real interval I = (a, b), we use ∆(I) to denote the once circle region of I.

That is, ∆(I) def
=== ∆ w(I)

2
(m(I)).

6. We use max1 (x1, x2, . . . , xm) to denote max(1, |x1| , |x2| , . . . , |xm|) for arbitrary
x1, x2, . . . , xm ∈ C, log is used to denote log2 (the binary logarithm) and
log (x1, x2, . . . , xm) is used to denote the quantity
max1 (dlog (max1 (x1, x2, . . . , xm))e).

7. For a complex polynomial F(x) = ∑n
i=0 Aixi with roots ξ1, ξ2, . . . , ξn, we define:

a) σi
def
=== σ(ξi, F) def

=== minj 6=i
∣∣ξi − ξ j

∣∣ the separation of the root ξi.

b) σF
def
=== mini σi.

Whenever we encounter degree n polynomials in this chapter, we always assume that
n > 1.

72 computing the roots of polynomials

5.3 Real Roots of (Sparse) Real Polynomials

We have seen that any complex polynomial (in particular a real polynomial) of degree n
has exactly n complex roots. But the number of real roots of a real polynomial of degree
n may be far less than n. For instance, it is known that a real “random”1 polynomial
of degree n has Θ(log n) real roots in expectation[Kac43; EK95]. In a lot of real world
applications, we want to find the (real) roots of a given (real) polynomial. And usually
the given polynomial is “sparse”. Here “sparse” means that only a very few coefficients
of the polynomial are non-zero. In this case, it is reasonable to describe the polynomial
by listing only the non-zero coefficients and the corresponding monomials. To this end,
we define the notion of k-sparse polynomials or simply k-nomials.

Definition 5.1 (k-sparse or k-nomial). A polynomial f (x) ∈ C[x] is said to be k-sparse
or k-nomial if the number of non-zero coefficients in f (x) is at most k, i.e., f (x) can be
written as in Equation (5.2).

f (x) =
k

∑
i=1

fixei with fi ∈ C and 0 ≤ e1 < e2 < < ek ≤ n, ei ∈N. (5.2)

In whatever follows, we are primarily concerned with sparse real polynomials and
their roots. To study the computation of the real roots of real k-nomials, we define the
notion of (n, k, τ)-nomials.

Definition 5.2 ((n, k, τ)-nomial). A real polynomial f (x) ∈ R[x] is said to be an (n, k, τ)-
nomial if it can be written as in Equation (5.3) below.

f (x) =
k

∑
i=1

fixei . (5.3)

Here 0 ≤ e1 < e2 < · · · < ek ≤ n and 2−τ ≤ | fi| ≤ 2τ.

Notice that, for an integer (n, k, τ)-nomial f (x), the sparse representation of f can be
described using O(k(log n + τ)) bits.

If we want to “compute” the complex roots of f (x) then we obviously need Ω(n)
time to “compute” these roots as there are exactly n complex roots. Thus there is no
hope for an algorithm which computes all the complex roots in time polynomial in the
“input size” O(k(log n + τ)).

But Descartes’s rule of sign (Theorem 5.3) implies that any (n, k, τ)-nomial has at
most k− 1 positive real roots. This also implies that f (x) has at most k− 1 negative
real roots because the positive real roots of f (−x) correspond to the negative real roots
of f (x). Thus, one can hope for an algorithm which “computes” all the real roots in

1 It has Θ(log n) real roots in expectation when the coefficients are independent standard normals. If the
coefficients fi’s are independent normals with variances (n

i) then the number of expected real roots is
√

n.

5.3 real roots of (sparse) real polynomials 73

time poly(k, log n, τ). For the sake of completeness, we prove Descartes’s rule of sign
here. We use the notation var(f) to denote the number of sign changes in the coefficient
sequence of a real polynomial f (x) ∈ R[x]. More specifically, if f (x) = ∑k

i=1 fixei with
e1 < e2 < · · · < ek then:

var(f) def
=== Number of signs changes in the sequence (f1, f2, . . . , fk).

For example, we have:

var(2 + 3x2 − 5x6 − 6x10 + 20x20) = 2

var(−1− 13x10 + 5x11 + 7x16 + 2x30) = 1

For a real polynomial f (x) ∈ R[x], we use the notation N+(f) to denote the number of
positive real roots of f (counted with multiplicity).

Theorem 5.3 (Descartes’s rule of signs, [Wan04; Eig08]). For any polynomial f (x) ∈ R[x],
var(f)− N+(f) is a non-negative even integer.

Proof. Suppose f (x) = ∑k
i=1 fixei with e1 < e2 < · · · < ek. First note that we can

assume e1 = 0 because if e1 > 0 then we can divide f (x) by xe1 and the positive real
roots remain the same. Thus we assume e1 = 0. Moreover, we assume that f1 > 0
because if f1 < 0 then we can just consider − f (x). We first show that var(f)− N+(f)
is always even. We use the following observations for the multiplicities of the roots of
polynomials.

• If f (x) touches (but does not cross) the x-axis at some point a ∈ R+ then a is a
root of f (x) of even multiplicity.

• If f (x) crosses the x-axis at some point a ∈ R+ then a is a root of f (x) of odd
multiplicity.

Now consider the following two cases.

Case 1. fk > 0. In this case, var(f) is even because f1 > 0. Also, we have f (0) = f1 > 0
and f (∞) = ∞. Using the above observations about the multiplicities of the
roots of f (x), we see that N+(f) is also even.

Case 2. fk < 0. In this case, var(f) is odd because f1 > 0. Also, we have f (0) = f1 > 0
and f (∞) = −∞. Using the above observations about the multiplicities of the
roots of f (x), we see that N+(f) is also odd.

Thus var(f) − N+(f) is always even. Now, we prove N+(f) ≤ var(f) by applying
induction on the degree of f (x). This inequality is trivially true for the degree one
polynomials. Now consider the following cases.

74 computing the roots of polynomials

Case 1. f1 and f2 are of same sign. In this case, var(f) = var(f ′). By using Rolle’s
theorem, we know that N+(f ′) ≥ N+(f)− 1. Therefore:

N+(f) ≤ N+(f ′) + 1

≤ var(f ′) + 1 ≤ var(f) + 1.

Since var(f)−N+(f) is even, we get that N+(f) < var(f) + 1. Thus N+(f) ≤
var(f) .

Case 2. f1 and f2 are of different sign. In this case, var(f ′) = var(f)− 1. By again
using Rolle’s theorem, we obtain that:

N+(f) ≤ N+(f ′) + 1

≤ var(f ′) + 1 = var(f).

Descartes’s rule of signs (Theorem 5.3) also implies a bound on the number of all
real roots of a real k-nomial.

Corollary 5.3. For any real k-nomial f (x) ∈ R[x], the number of non-zero real roots (counted
with multiplicity) of f (x) is at most 2k− 2.

Proof. For any real k-nomial f (x) ∈ R[x], observe that var(f) ≤ k− 1. Thus by using
Descartes’s rule of signs (Theorem 5.3), we obtain that number of positive real roots
of f (x) is at most k− 1. It is also easy to see that the negative real roots of f (x) are in
bijection with the positive real roots of f (−x). Note that f (−x) is also a real k-nomial.
Thus the number of negative real roots of f (x) is also at most k− 1. Hence the total
number of non-zero real roots of f (x) is at most 2k− 2.

In general, a k-nomial can have zero as a root with arbitrary multiplicity. Since we
can easily check if zero is the root of a given polynomial, we are only concerned with
non-zero roots. There are generalizations of Descartes’s rule of signs which demonstrate
that the roots of k-nomials have some additional geometry. To describe this geometry
of roots of polynomials, we define:

Definition 5.3. Let I = (a, b) ⊆ R be an interval. For a real polynomial f (x) ∈ R[x] of
degree n, we define :

f I
def
=== (x + 1)n f

(
ax + b
x + 1

)
var(f , I) def

=== var(f I)

5.3 real roots of (sparse) real polynomials 75

There is a one-to-one correspondence between the roots of f in the interval (a, b)
and the positive real roots of via f I the Möbius transformation that maps a point
x ∈ C \ {−1} to ax+b

x+1 ∈ C. Therefore, var(f I) is an upper bound on the number of roots
of f in I. In fact, var(f I) is also an upper bound on the number of roots of f (x) in a
well defined complex region. To formally state this result, we define the notion of the
Obreshkoff lens Lm of any interval I.

The mth Obreshkoff lens Lm of I is defined as the intersection Lm
def
=== Cm ∩ Cm of the

two open disks Cm, Cm ⊂ C that intersect the real axis in the endpoints a and b of
I, and whose centers see the line segment (a, b) under the angle θ = 2π

m+2 . Also, the
mth Obreshkoff area Am is defined as the interior of Cm ∪ Cm . For an illustration, see
Figure 5.1. The following Theorem 5.4 gives an upper bound on the number of roots of
a real polynomial in the nth Obreshkoff lens Ln.

Theorem 5.4 ([Eig08; Obr63; Obr03]). Let I = (a, b) be an open interval. Let Lm and Am,
with m = 0, 1, . . . , n, be the Obreshkoff regions in C as defined in Figure 5.1. Then, for all real
polynomials f (x) ∈ R[x] of degree n, it holds that (all roots are counted with multiplicity):

1. Number of roots of f in Ln ≤ var(f I) ≤ Number of roots of f in An.

2. If I1 and I2 are two disjoint sub-intervals of I, then var(f I1) + var(f I2) ≤ var(f I) .

Lemma 5.4 ([Eig08]). For any interval I = (0, b) on the positive real axis and any real
polynomial f (x) ∈ R[x], var(f I) ≤ var(f).

Proof. Let f = ∑k
i=1 fixei , here we arrange ei’s such that e1 < e2 < . . . < ek. Let β ≥ b

be a real number, which would be chosen suitably to prove this claim. For the interval
I′ = (0, β), we have:

f I′(x) =
k

∑
i=1

fiβ
ei(x + 1)ek−ei .

The coefficient of xj in f I′(x) is ∑k
i=1 fiβ

ei(ek−ei
j). It is not hard to see that there is a

choice of β ≥ b such that the sign of the constant term in f I′(x) is same as the sign
of fk. Similarly one can choose a large enough β ≥ b such that for 1 ≤ j ≤ ek − ek−1,
the sign of coefficient of xj is the same as the sign of fk−1. By similar reasoning, we
can also choose large enough β ≥ b such that for ek − ei < j ≤ ek − ei−1, the sign of
the coefficient of xj is the same as the sign of fi−1. Thus var(f I′) = var(f). By Using
Theorem 5.4(2), we get that var(f I) ≤ var(f I′) = var(f).

If we apply Lemma 5.4 for a k-nomial f then we obtain that var(f I) ≤ var(f) ≤ k− 1
for any interval I ⊂ R+. Using Theorem 5.4(1) and Lemma 5.4, we see that the
Obreshkoff lens Ln of any open interval I = (0, b) contains at most k− 1 roots, where k
is the sparsity of given polynomial. Let us record this as a fact.

76 computing the roots of polynomials

a b

θ

θ

Cm

Cm

Lm

Here m = 2 and θ = 2π
m+2 = π

2

Figure 5.1: For any m, 0 ≤ m ≤ n, the Obreshkoff discs Cm and Cm for I = (a, b) have the
endpoints of I on their boundaries; their centers see the line segment (a, b) under
the angle θ = 2π

m+2 . The Obreshkoff lens Lm is the interior of Cm ∩ Cm , and the
Obreshkoff area Am is the interior of Cm ∪ Cm . We have Ln ⊂ . . . ⊂ L1 ⊂ L0 and
A0 ⊂ A1 ⊂ . . . ⊂ An. The cases k = 0 and k = 1 are of special interest: The circles C0
and C0 coincide. They have their centers at the midpoint of I. The circles C1 and C1
are the circumcircles of the two equilateral triangles having I as one of their edges.
We call A0 and A1 the one and two-circle regions for I, respectively.

5.3 real roots of (sparse) real polynomials 77

π
n+2

This region contains at most k− 1 roots of f

x-axis

y-
ax

is

Figure 5.2: The two solid lines in the figure above meet the x-axis at the origin at an angle π
n+2 .

Cn denotes the region enclosed between these two solid lines. The cone Cn contains
at most k− 1 roots of f .

Fact 5.1. For any k-nomial, the Obreshkoff lens Ln of any open interval on the positive real axis
contains at most k− 1 roots.

For b 7→ ∞, the Obreshkoff lens Ln of any interval I = (0, b) converges to the cone Cn

whose boundary are the two half-lines starting at the origin and intersecting the real
axis at an angle ± π

n+2 ; see Figure 5.2. Hence, it follows that the interior of Cn contains
at most k− 1 roots of any given real k-nomial of degree n. We prove this fact below in
Theorem 5.5.

Theorem 5.5. The cone Cn contains at most k− 1 roots of any k-sparse real polynomial of
degree n.

Proof. Let f be a k-nomial of degree n. Assume that Cn contains more than k− 1 roots
of f . For a positive real number β, let Lβ,n be the Obreshkoff lens Ln of the open
interval I = (0, β). It is not hard to see that Lβ,n ⊆ Cn for all β. It can also be seen that
limβ→∞ Lβ,n = Cn. But this contradicts the Fact 5.1.

The real roots of a given (rational) polynomial may be arbitrary algebraic numbers
and thus it might not be possible to output an explicit binary representation of all
the real roots. Therefore, it is reasonable to ask only for some approximations of real
roots. In particular, one wants to compute a set of disjoint “isolating” intervals for all
the real roots. An interval Iα is called isolating for a real root α of a real polynomial
f (x) ∈ R[x] if α ∈ I and I contains no other root of f (x). Note that, if two real roots
are very close, then the isolating intervals have to have end points which are also very
close. This imposes a running time lower bound on any algorithm which computes
such isolating intervals. We shall show that there exist integer 4-nomials which have

78 computing the roots of polynomials

real roots which are very “close”. In contrast, we also show that the roots of 3-nomials
(also called trinomials) can not be very close.

5.4 Root Separation of Trinomials

In this section, we prove that the roots of any integer trinomial are “well-separated”.
We study the trinomials f (x) of the form f (x) = a1xe1 + a2xe2 + a3 with e1 > e2 and
a1, a2, a3 all being non-zero integers. Let α1, α2 be two distinct roots of f (x). We want
to show that |α2 − α1| is “large”. We remark that this was independently proven by
Koiran [Koi17].

The overall strategy of the proof is as follows. First we shall show that any two
distinct rational radicals k

√ a
b and

√̀
p
q are “well-separated” (Lemma 5.6). Then, we

shall complete the proof by way of contradiction. Namely, we assume that |α2 − α1| is
“small”. By using Rolle’s theorem (equivalently Lemma 5.7 for complex polynomials),
we obtain a root β of f ′(x) which is “close” to α1 and α2. We see that f ′(x) is a binomial,
thus β is either a radical or it is zero. The case of β being zero is easy to handle. So we
assume that β is a radical. Then, we prove that | f (β)| is “small” (Lemma 5.8). Thereafter,

we define a new binomial g(x) as: g(x) def
=== f (x)− x f ′(x)

e2
= (a1− a1e1

e2
)xe1 + a3. By using

the fact that | f (β)| is “small”, we conclude that |g(β)| = | f (β)| is also “small”. By
using Lemma 5.9, we obtain a root γ of g(x) which is “close” to β. Now we note that
β, γ are radicals multiplied with a root of unity. Thus they can not be “close” because
any two distinct rational radicals are “well-separated”.

In contrast to [Koi17], we also give an explicit bound on the root separation of
trinomials. The first step of this proof strategy relies crucially on Theorem 5.6, which
lower bounds the absolute value of a linear combination of logarithms of algebraic
numbers. This is also a crucial ingredient in the proof in [Koi17]. The proof in [Koi17]
proceeds by showing that a function of the form a1xβ + a2 can not be too small when
evaluated on a rational number p

q . The analogous ingredient in our proof is that any

two distinct rational radicals k
√ a

b and
√̀

p
q are “well-separated”. The rest of the proof

in [Koi17] follows a similar structure to that of our proof. We need the following
definitions.

Definition 5.4 (Mahler’s measure). Given a non-zero polynomial f (x) = fn ∏n
j=1(x−

αi) ∈ C[x], its Mahler’s measure (denoted by M(f)) is defined as:

M(f) def
=== | fn|

n

∏
j=1

max
(∣∣αj

∣∣ , 1
)
= | fn|

n

∏
j=1

max
1

(
αj
)

.

A related measure is the (logarithmic) height of any algebraic number α defined as
below.

5.4 root separation of trinomials 79

Definition 5.5 (Height). Let α be an algebraic number of degree n = [Q(α) : Q] with
fα(x) being its minimal polynomial over Z. If fα(x) = fn ∏n

j=1(x − αi) ∈ Z[x] with
αi ∈ C, then the absolute logarithmic (denoted by h(α)) height of α is defined as:

h(α) def
===

1
n

ln M(fα).

Corollary 5.4 (Height of rational numbers). For a non-zero rational number a
b , where a and

b are co-prime, h
(a

b

)
= max{ln |a| , ln |b|}.

Theorem 5.6 (Theorem 9.1 in [Wal00]). For each m ≥ 1, there exists a positive number C(m)

with the following property. Let λ1, λ2, . . . , λm be Q-linearly independent natural logarithms of

algebraic numbers; define αj
def
=== eλj (1 ≤ j ≤ m). Let β0, β1, β2, . . . , βm be algebraic numbers,

not all of which are zero. Denote by D the degree of the number field Q(α1, α2, . . . , αm, β0, β1,
β2, . . . , βm) over Q. Further, let B, E, E∗, A1, A2, . . . , Am be positive real numbers, satisfying
the following conditions.

min(B, E, E∗) ≥ e

ln Aj ≥ max

(
h(αj),

E
∣∣λj
∣∣

D
,

ln E
D

)

ln E∗ ≥ max
(

ln D− ln ln E,
ln E
D

)
B ≥ E∗

B ≥ max
1≤i≤m

D ln Ai

ln E
ln B ≥ max

0≤i≤m
h(βi)

Then, the number
Λ

def
=== β0 + β1λ1 + . . . βmλm

is non-zero and has absolute value bounded from below by

|Λ| ≥ exp{−C(m)Dm+1(ln B)(ln A1)(ln A2) . . . (ln Am)(ln E∗)(ln E)−m−1}.

One can assign C(m) = 226mm3m.

Now we demonstrate that Theorem 5.6 can be used to lower bound the distance
between two rational radicals.

Consider α = k
√ a

b for positive integers a and b and similarly β =
√̀

p
q for positive

integers p and q. We assume here that α 6= β.

Lemma 5.5. Let α = k
√ a

b and β =
√̀

p
q with αβ 6= 1 and a, b, p, q, k, ` being positive integers.

If log(max(a, b, p, q, k, `)) ≤ τ, then |ln(α · β)| ≥ e−c·τ3
for some real constant c < 263.

80 computing the roots of polynomials

Proof. We have:

ln(α · β) =
1
k

ln
a
b
+

1
`

ln
p
q

.

To lower bound this, we apply Theorem 5.6 with m = 2, β0 = 0, β1 = 1
k , β2 =

1
` , α1 = a

b , α2 = p
q . By using Corollary 5.4, we know that h(α1) = max(ln a, ln b)

and h(α2) = max(ln p, ln q). The value of D is 1. We choose E = e. We choose
A1 = (max(a, b))e, A2 = (max(p, q))e and E∗ = e. If we choose
B ≥ max(k, `, e ln p, e ln q, e ln a, e ln b), then all the conditions of Theorem 5.6 are satis-
fied. Thus we have:

|Λ| def
=== |β0 + β1λ1 + β2λ2| = |ln(α · β)| ≥ exp{−c′τ3}. (5.4)

Here c in the above Equation (5.4) is the constant provided by Theorem 5.6. By using
Theorem 5.6 more precisely, it can be seen that any c ≤ 258 · e3 is a valid choice for c. In
particular, c < 263. This completes the proof.

Lemma 5.6. Let α, β be as in Lemma 5.5 with α 6= β, then |α− β| ≥ 2−c′τ3
for some real

constant c′ ≤ 264.

Proof. Without loss of generality, assume that α > β. We shall show (α− β) ≥ e−c·τ3
β

where the constant c is the same constant as in Lemma 5.5. Let us use t to denote e−c·τ3
.

By way of contradiction, assume that (α− β) < tβ. This implies that
(

α
β − 1

)
< t, and

hence α
β < 1 + t. This implies that ln α

β < ln(1 + t). Since ln(1 + x) ≤ x for x ≥ −1,

we obtain that ln α
β < t. Since 1

β is also a radical, the inequality ln α
β < t contradicts

Lemma 5.5. Hence (α− β) ≥ e−c·τ3
β . If β > 1 then (α− β) ≥ e−c·τ3

> 2−2cτ3
is trivially

true. If β ≤ 1 then (α − β) ≥ 2−(2c·τ3+log(1
β)) . We have that log(1

β) = 1
` log q

p . Since

p, q, ` ≥ 1, it follows that log(1
β) ≤ τ. Therefore (α− β) ≥ 2−(2c·τ3+τ) ≥ 2−(2c+1)·τ3 ≥

2−264τ3
.

Remark 5.1. We have only proved that two positive radical rationals are “well-separated”
but it also holds for any two rational radicals. Because if two radicals are of different
sign, we can just show that they are “well-separated” from zero. More precisely, if
α = − k

√ a
b and β =

√̀
p
q , then we have that |α− β| ≥ max{|α| , |β|} ≥ 2−τ.

Corollary 5.5. Lemma 5.6 has an easy application. Suppose we want to check whether two
given radicals α = k

√ a
b and β =

√̀
p
q (as in Lemma 5.5) are equal or not. Then by using

Lemma 5.6, α 6= β implies that |α− β| ≥ 2−264τ3
. Since α = k

√ a
b is a solution of bxk = a,

we can compute k
√ a

b to an error of less than 2−L in time polynomial in the size of α. We can

5.4 root separation of trinomials 81

approximate β =
√̀

p
q in a similar way. Thus we can compute sufficiently good approximations

of α and β until we know for sure that either |α− β| < 2−264τ3
or |α− β| > 0.

5.4.1 Complex root separation

Now, we demonstrate the second step of the proof strategy described above. Recall the
setup: we have an integer trinomial f (x) = a1xe1 + a2xe2 + a3 . Let α1 and α2 be two
distinct roots of f (x) with minimum separation. First we recall a complex version of
Rolle’s theorem. To this end, we need the following theorem from [Mar85].

Theorem 5.7 (Theorem 5.1 in [Mar85]). If z1 and z2 are any two distinct zeros of a polynomial
f of degree n, then at least one critical point (root of f ′) of f lies on the circular disk |z− c| < r,
where c = z1+z2

2 and r = |z1−z2|
2 · cot(π

n).

Lemma 5.7. If z1 and z2 are any two distinct zeros of a polynomial f of degree n with
|z1 − z2| ≤ ε, then there exists a root z′ of f ′ such that |z′ − zi| ≤ ε

2 (1 +
n
π) for i ∈ {1, 2}.

Proof. Let |z1 − z2| = R. By Theorem 5.7, we know that there exists a root of z′ in
the complex disc centered at z1+z2

2 and of radius r = R
2 · cot(π

n). Thus |z′ − zi| ≤
R
2 + R

2 · cot(π
n) for i ∈ {1, 2}. We know that cot(x) ≤ 1

x for 0 ≤ x ≤ π. Thus |z′ − zi| ≤
R
2 (1 +

n
π) ≤

ε
2 (1 +

n
π).

The following Lemma 5.8 demonstrates that if we evaluate an (n, k, τ)-nomial at
some point z which is “close” to a root z0 of polynomial f then | f (z)| is “small”.

Lemma 5.8. Let f ∈ R[x] be an (n, k, τ)-nomial and let z ∈ C be such that there exists a root
z0 of f with |z− z0| ≤ ε, then | f (z)| ≤ ε · 2n·log max(1,|z|,|z0|)+τ+log k+log n.

Proof. Define M := max(1, |z| , |z0|). For every positive integer m, we have:

zm − zm
0 = (z− z0)(

m−1

∑
j=0

zjzm−1−j
0).

Thus |zm − zm
0 | ≤ ε ·m ·Mm−1. If f (x) = ∑k

i=1 aixei then,

f (z)− f (z0) = f (z) =
k

∑
i=1

ai(zei − zei
0).

By using ai ≤ 2τ and |zm − zm
0 | ≤ ε ·m ·Mm−1, we get that:

| f (z)| ≤ ε · k · n · 2τ ·Mn−1.

Thus the claimed bound follows.

82 computing the roots of polynomials

To complete our proof of separation of complex roots of Trinomials, we also need the
converse of Lemma 5.8 for binomials.

Lemma 5.9. Let f (x) = a + bxn be an integer binomial with complex roots z1, z2, . . . , zn

and r =
∣∣ a

b

∣∣ 1
n . Let t ≥ 1 be any real number. If z ∈ C satisfies mink |z− zk| > 2r

nt , then
| f (z)| ≥ 1

nt .

Proof. All the roots z1, z2, . . . , zn of f (x) lie on the circle in the complex plane with

radius r =
∣∣ a

b

∣∣ 1
n , separated equally by angles of 2π

n . Now define the n disks ∆1, ∆2, . . . ,

∆n: ∆i
def
=== ∆ 2r sin(π

n)
nt

(zi). Therefore for any root zi of f (x), we have σ(zi, f) = 2r sin(π
n).

We note that f is holomorphic on C \ ∪i∈[n]∆i. Hence | f (z)| can attain minimum only
at the boundary of C \ ∪i∈[n]∆i. Therefore the minimum of | f (z)| for z ∈ C \ ∪i∈[n]∆i is
achieved when z is on the boundary of some ∆i. Since z ∈ C \ ∪i∈[n]∆i, we obtain that
| f (z)| ≥ | f (y)| for all y lying on the boundaries of ∆i’s. Hence to prove the claim, we
only need to prove that | f (y)| ≥ 1

nt whenever y is on the boundary of some disc ∆k.
We have that f (x) = b ∏1≤i≤n(x− zi). Suppose y is on the boundary of some disc ∆k.
Therefore:

| f (y)| = |b| · ∏
1≤i≤n

|y− zi| = |b| · |y− zk| ∏
1≤i≤n,i 6=k

|y− zi|

= |b| ·
(

∏
1≤i≤n,i 6=k

|zk − zi|
)
· |y− zk| · ∏

1≤i≤n,i 6=k

|y− zi|
|zk − zi|

=
∣∣ f ′(zk)

∣∣ · |y− zk| · ∏
1≤i≤n,i 6=k

|y− zi|
|zk − zi|

≥ |b| · n · |zk|n−1 ·
2r sin(π

n)

nt
· ∏

1≤i≤n,i 6=k

|zk − zi| − |y− zk|
|zk − zi|

≥ |a| ·
2r sin(π

n)

t · |zk|
·
(

1− 1
tn

)n−1

≥
2 sin(π

n)

et

≥ 1
2
· 2

π
· π

n
· 1

t
≥ 1

nt
. (2

π x ≤ sin(x) ≤ x for 0 ≤ x ≤ π
2)

Now we are ready to prove that even the complex roots of an integer trinomial are
well separated.

Theorem 5.8. Let f (x) = a1xe1 + a2xe2 + a3 be an integer trinomial satisfying the condition:
log max(e1, e2, |a1| , |a2| , |a3|) ≤ τ and e2 ≤ e1 = n. If z1 and z2 are two distinct roots of
f (x) then |z1 − z2| ≥ 2−cτ3

for some c < 268.

Proof. We first assume that |z1| ≤ 1 or |z2| ≤ 1, with |z1 − z2| = δ. Without loss
of generality, assume that |z1| ≤ 1. We want to prove that δ ≥ 2−cτ3

. By way of
contradiction, assume that δ < 2−cτ3

.

5.4 root separation of trinomials 83

By using Lemma 5.7, we know that there exists a root z′ of f ′(x) such that:

∣∣z′ − zi
∣∣ ≤ δ

2
(1 +

n
π
) for i ∈ {1, 2}.

Thus |z′| ≤ |z1| + δ
2 (1 + n

π). Since δ < 2−cτ3
, we get that δ ≤ 1

2n3 , thus |z′| ≤ 1 + 1
n .

Therefore
n · log max(1,

∣∣z′∣∣ , |z1|) ≤ 2.

By using Lemma 5.8 on z1 and z′, we know that:

∣∣ f (z′)∣∣ ≤ δ

2
(1 +

n
π
) · 2n·log max(1,|z′|,|z1|)+τ+log 3+log n.

≤ δ

2
(1 +

n
π
) · n · 22+τ+log 3 <

δ

2
(1 +

n
π
) · n · 24+τ.

< δ · n2.24+τ < 2−cτ3+4+τ+2 log n < 2−(c+7)τ3
.

Now define g(x) def
=== f (x)− x f ′(x)

e2
= (a1 − a1e1

e2
)xe1 + a3. Since, f ′(z′) = 0, we get that

|g(z′)| = | f (z′)| < 2−(c+7)τ3
. We choose a positive real number t such that | f (z′)| < 1

nt ,
i.e., we want that the condition | f (z′)| ≥ 1

nt of Lemma 5.9 is false. Since | f (z′)| <
2−(c+7)τ3

, we choose t = 2(c+7)τ3

2n .
We now apply Lemma 5.9 on g(x) , t and z′. This gives us a root z′′ of g(x) such that

|z′ − z′′| < 2r
e1t , with r =

∣∣∣ a3e2
a1e1−a1e2

∣∣∣ 1
e1 . In particular

∣∣z′ − z′′
∣∣ < 4rn

e1
· 2−(c+7)τ3

< 2−(c+7)τ3+2+τ+2τ < 2−267τ3
.

Now note that z′′ = ζr, where ζ is a root of unity. Also, z′ = 0 or z′ = ξr′ with

r′ =
∣∣∣ a2e2

a1e1

∣∣∣ 1
e1−e2 and ξ being a root of unity. Lemma 5.6 shows that difference of two

real rational radicals is at least 2−c′(2τ)3
for some c′ < 264. But this also implies that

|z′ − z′′| ≥ 2−c′′τ3
for some c′′ < 267. Thus our assumption was wrong. Hence δ ≥ 2−cτ3

.
Here we assumed that |z1| ≤ 1 or |z2| ≤ 1. Suppose we have |z1| ≥ 1 and |z2| ≥ 1.

Then we look at the polynomial:

h(x) = xe1 f (
1
x
) = a1 + a2xe1−e2 + a3xe1 .

Corresponding to z1 and z2, 1
z1

and 1
z2

are roots of h(x). Also,
∣∣∣ 1

z1

∣∣∣ ≤ 1 or
∣∣∣ 1

z2

∣∣∣ ≤ 1. Thus
applying first part of proof of h(x), we get that∣∣∣∣ 1

z1
− 1

z2

∣∣∣∣ = ∣∣∣∣ z2 − z2

z1z2

∣∣∣∣ ≥ 2−cτ3
.

84 computing the roots of polynomials

Since |z1| ≥ 1 and |z2| ≥ 1 , we get that |z1 − z2| ≥ 2−cτ3
.

5.5 Root separation for 4-nomials

We have shown that the roots of integer trinomials are well-separated. This might
lead one to hope that the roots of other integer fewnomials are also well-separated.
We demonstrate an example of 4-nomials which shows that this is not the case in
general. Moreover we also prove that to isolate real roots of these 4-nomials, we need
exponentially many bits. We need the Rouché’s Theorem (Theorem 5.9).

Theorem 5.9 (Rouché’s Theorem, Theorem 3.8 in [Con78]). Let f and g be holomorphic
inside some region ∆ with boundary ∂∆. If | f (z)| > | f (z)− g(z)| on ∂∆, then f and g have
the same number of zeros inside ∆.

The following Lemma 5.10 and Lemma 5.12 were already proved in [Sag14] but we
simplify the proofs of [Sag14] here. Lemma 5.12 was proved using continued fractions
in [Sag14]. We give here a much simpler proof of Lemma 5.12 .

Lemma 5.10. If a > 16 and n > 4 are positive integers, then there exist exactly two roots of

the 4-nomial xn − (ax2 − 1)2 in ∆r

(
1√
a

)
for r =

(
2√
a

) n
2 .

Proof. We use Theorem 5.9 on f = −(ax2 − 1)2 and g = xn − (ax2 − 1)2 with ∆ def
===

∆r

(
1√
a

)
. We have that f − g = −xn. Thus we need to prove that

∣∣(az2 − 1)2
∣∣ > |zn|

for all z ∈ ∂∆. First, we show that r < 1√
a . We have that r = 1√

a · 2
n
2 ·
(

1√
a

) n
2−1

. The

condition a > 16, n > 4 implies that 2
n
2 ·
(

1√
a

) n
2−1

< 1. Thus r < 1√
a .

The maximum value of |zn| for z ∈ ∂∆ is achieved when z = r + 1√
a . Since r < 1√

a ,

we get that |zn| =
(

r + 1√
a

)n
<
(

2√
a

)n
. Similarly, the minimum value of

∣∣(az2 − 1)2
∣∣

on ∆ is achieved when z = r − 1√
a . For z = r − 1√

a , we have that
∣∣(az2 − 1)2

∣∣ =

ar2(−2 +
√

ar)2 ≥ ar2 ≥ a
(

2√
a

)n
. Thus

∣∣(az2 − 1)2
∣∣ > |zn| for all z ∈ ∂∆. Since f

has the zero 1√
a inside ∆ with multiplicity two, by using Theorem 5.9 we get that

xn − (ax2 − 1)2 also has exactly two roots inside ∆.

Lemma 5.10 shows that there exist exactly two roots of xn − (ax2 − 1)2 in ∆r(
1√
a).

But it does not say anything about the nature of these roots. We prove that these roots
are real.

Lemma 5.11. If a > 16 and n > 4 are positive integers then there exist two distinct real roots

of the 4-nomial xn − (ax2 − 1)2 in ∆r

(
1√
a

)
for r =

(
2√
a

) n
2 .

5.5 root separation for 4-nomials 85

Proof. Let g def
=== xn − (ax2 − 1)2. It is easy to check that g

(
1√
a

)
=
(

1√
a

)n
> 0. First we

check the sign of g at 1√
a − r. We have:

g
(

1√
a
− r
)
=

(
1√
a
− r
)n

−
(

a
(

1√
a
− r
)2

− 1

)2

=

(
1√
a
− r
)n

− ar2 (−2 +
√

ar
)2

<

(
1√
a

)n

− ar2 < 0. (By using r < 1√
a and r =

(
2√
a

) n
2
)

Thus g has a real root α ∈
(

1√
a − r, 1√

a

)
.

Now we check the sign of g at 1√
a + r. We have the following equality:

g
(

1√
a
+ r
)
=

(
1√
a
+ r
)n

−
(

a
(

1√
a
+ r
)2

− 1

)2

=

(
1√
a
+ r
)n

− ar2 (2 +√ar
)2

<

(
2√
a

)n

− 4a
(

2√
a

)n

< 0. (By using r < 1√
a and r =

(
2√
a

) n
2
)

Thus g has a real root β ∈
(

1√
a , 1√

a + r
)

. Hence there exists two real roots of g in(
1√
a − r, 1√

a + r
)

.

Now we prove that 1√
a can not be approximated by a rational number of small bit

length.

Lemma 5.12. If a is a positive integer such that
√

a 6∈ Z, then
∣∣∣ 1√

a −
p
q

∣∣∣ > 1
4apq2 for any

p, q ∈ Z and q 6= 0.

Proof. Let ε = 1√
a −

p
q and suppose that ε ≥ 0. We can assume that ε > 0 because

otherwise 1√
a −

p
q = 0. This implies that

√
a ∈ Z, a contradiction. We also observe that

we can assume p
q > 0. Otherwise,

∣∣∣ 1√
a −

p
q

∣∣∣ > 1√
a > 1

4apq2 . Therefore it can be assumed
that p, q > 0. We have the following equality:

1
a
− p2

q2 =

(
1√
a
− p

q

)
·
(

1√
a
+

p
q

)
= ε ·

(
ε +

2p
q

)
= ε2 +

2pε

q

86 computing the roots of polynomials

This implies:
q2 − ap2 = aq2ε2 + 2apqε.

Note that q2 − ap2 is an integer. If ε < 1
4apq , then

∣∣aq2ε2 + 2apqε
∣∣ < 1. Thus 1√

a −
p
q ≥

1
4apq .

Now we look at the case when p
q −

1√
a > 0. Let δ = p

q −
1√
a . By applying the similar

calculations as above we obtain the following equality:

ap2 − q2 = aq2δ2 + 2
√

aδq2.

If δ < 1
4
√

aq2 then aq2δ2 + 2
√

aεδq < 1. Thus p
q −

1√
a ≥

1
4
√

aq2 . Hence
∣∣∣ 1√

a −
p
q

∣∣∣ >
min

(
1

4apq , 1
4
√

aq2

)
≥ 1

4apq2 .

Theorem 5.10. Any algorithm which isolates the real roots of f (x) = xn − (22τx2 − 1)2

requires Ω(nτ) bit operations, here τ > 4.

Proof. By using Lemma 5.10 on a = 22τ, we get that f has two real roots inside
∆ = ∆r(2−τ) for r = (21−τ)

n
2 . Any algorithm which outputs an isolating interval

which separates roots inside ∆ will have as an end point a rational number p
q such

that
∣∣∣ 1√

a −
p
q

∣∣∣ < r. By using Lemma 5.12, we know that 1
4apq2 < r. Thus pq2 > 1

4ar =

2
n
2 (τ−1)−2τ−2. Thus max(p, q) = 2Ω(nτ). Hence even to encode p, q, any such isolating

algorithm would need Ω(nτ) many bit operations.

5.6 Introduction and History of Root Computation

We saw above that even in the case of 4-nomials, there is no hope for a polynomial
time (in the “input size” O(k(log n + τ))) algorithm for isolating its real roots. Thus,
we shall define a more relaxed notion of the computation of roots for k-nomials and
demonstrate a polynomial time algorithm for computing such a relaxation.

How does one specify the input polynomial to root computation algorithms? If
the input polynomial is an integer polynomial then the list of coefficients can be
provided as an input. Otherwise, we assume that the coefficients are given by aid
of an oracle. More specifically, we assume the existence of an oracle that provides
arbitrary good approximations of the given (n, k, τ)-nomial f : Let L ≥ 1 be an integer.
We call a polynomial f̃ = f̃nxn + . . . + f̃0, with f̃i = si · 2−(L+1) and si ∈ Z, an absolute
L-approximation of f if

∣∣ f̃i − fi
∣∣ ≤ 2−L for all i. We assume that we can obtain such an

approximation f̃ at O(k(log n+ L+ τ)) cost. This is the cost of reading the coefficients of
f̃ . We frequently use the phrase “the coefficients of f need to be approximated to L bits
after the binary points” instead of “the algorithm requires an absolute L-approximation
of f ”.

5.6 introduction and history of root computation 87

For a survey of literature on root computation algorithms, see [McN07; MP13; Pan97;
SM16; Bec+18]. In whatever follows, this chapter deals with computing the real roots
of k-nomials. All the known root computation algorithms can be divided into the two
following categories.

1. Iterative algorithms for simultaneously computing (or some approximation of) all
the roots.

2. Subdivision methods in which one starts with a region containing all the roots
and then subdivide this region according and check whether a region contains
exactly one root or no root.

We solely focus on subdivision algorithms in this chapter. The famous examples of the
subdivision methods are the Descartes’s method and the splitting circle method. See
[CL76; Meh+06; Eig08; RZ04] for some examples of the Descartes’s method.

The splitting circle method was introduced by Schönhage in [Sch82]. It was further
improved by Pan in [Pan02]. The algorithm in [Pan02] isolates all the complex roots
of a polynomial. For integer polynomials f (x) of degree n and coefficients magnitude
bounded by 2τ, Pan’s algorithm isolates all the complex roots using Õ

(
n2τ
)

bit oper-
ations. This algorithm of [Pan02] essentially runs the factorization algorithm where
the precision is controlled by the worst case root separation bound σ(f), which is
2−Θ(n(log n+τ)) [Mah64]. Pan’s algorithm is not adaptive with respect to the root sepa-
ration of the input polynomial and assumes the worst case root separation bound of
2−Θ(n(log n+τ)). An algorithm that determines the precision adaptively was described
in [MSW15]. In the worst case root separation, the algorithm in [MSW15] runs in time
Õ
(
n3 + n2τ

)
. For integer polynomials, this running time essentially matches that of

Pan.
All the algorithms mentioned above, compute the complex roots of polynomials.

In contrast, there exist dedicated algorithms which only compute real roots. These
algorithms have an advantage of usually being much simpler. the Descartes method
is one such method which can (only) be used to isolate the real roots. See [ESY06]
for a standard example of the Descartes method to isolate the real roots. For integer
polynomials f (x) of degree n and coefficients magnitude bounded by 2τ, the algorithm
of [ESY06] isolates all the real roots in time Õ

(
n4τ2). One can even use approximate

arithmetic in Descartes method. This allows one to compute real root approximations
of real polynomials also, whose coefficients are given by an oracle.

Approximate arithmetic with Descartes’s method was used in [Meh+06] to describe
an algorithm which isolates all the real roots of a square-free real polynomial f (x) =
∑n

i=0 fixi, coefficients 2−τ ≤ | fi| ≤ 2τ, with O(n4(τ − log(σ(f)))2) bit operations, this
running time was improved to Õ

(
n3 + n2τ

)
in [SM16].

Another common problem in root computation is the refinement. Here one is given a
real interval I which already isolates a real root α of the given polynomial f (x). But
we want to find a sub-interval I′ of I such that α ∈ I′ with |I′| ≤ 2−L , where L is

88 computing the roots of polynomials

an additional integer input to the refinement routine. Sagraloff [Sag14] combines the
Newton iteration and bisection to refine the intervals. However, the refinement method
of [Sag14] only applies to rational polynomials. [SM16] uses the idea of [Sag14] along
with approximate computation and the choice of admissible points, to demonstrate a
refinement routine for arbitrary coefficients.

All the methods (except [Sag14]) above are not sparsity aware. That is, if the input
polynomial is an (n, k, τ)-nomial then the above algorithms do not take advantage of
the input polynomial being sparse. Sagraloff [Sag14] uses refinement to demonstrate
an algorithm which for integer (n, k, τ)-nomials, isolates all the real roots in poly(O(k ·
(log n + τ))) arithmetic operations. But the bit complexity of the algorithm in [Sag14]
is still Õ

(
k4 · nτ

)
, which is essentially optimal for small k, as shown in Theorem 5.10.

For (n, k, τ)-nomials, all the algorithms mentioned in above discussion do not run in
polynomial time, i.e., in time poly(O(k · (log n+ τ))). Suppose we only want to compute
integer or rational roots of a given integer (n, k, τ)-nomial. In this case, polynomial time
algorithms are known (see [CKS99; LJ99]). We describe the algorithm of [CKS99] in
Section 5.7.

5.7 Fractional Derivatives and Integer Roots

In this section, we introduce yet another method to compute the real roots. In this
method, one first computes the real roots (or some approximations) of f ′(x). By using
Rolle’s theorem, we know that there is at least one real root α ∈ (a, b) of f ′(x) if a, b are
the real roots of f (x). Thus if α, β are some roots of f ′(x) with no root of f ′(x) being in
(α, β), then (α, β) can contain at most one root of f (x). And (α, β) contains a root of
f (x) if and only if f (α) f (β) < 0. Thus, one can compute the real roots of f (x) from the
real roots of f ′(x). Similarly, we can use recursion to compute the real roots of f ′(x).
We have omitted several issues here, like the following.

1. It is usually not possible to compute the roots of f ′(x) exactly.

2. Checking f (α) f (β) < 0 might be too costly. This happens when | f (α)| or | f (β)|
might be very small and thus we might need a very high precision to compute
the signs of f (α) and f (β).

Now we demonstrate an application of the above strategy, which was first described in
[CKS99]. The following Problem 5.1 was solved in [CKS99].

Problem 5.1 (Integer roots of Integer (n, k, τ)-nomials). Given an integer (n, k, τ)-nomial
f (x) ∈ Z[x], compute all integer roots of f (x).

Note that the size of the sparse representation of any integer (n, k, τ)-nomial is
O(k · (τ + log n)).

5.7 fractional derivatives and integer roots 89

Theorem 5.11 (Theorem 1 in [CKS99]). There is a polynomial time algorithm for Problem 5.1,
i.e., it runs in poly(k · (τ + log n)) bit operations.

To prove Theorem 5.11, we introduce the following definition:

Definition 5.6 (Fractional derivative). Let f be a k-nomial of the form:

f (x) = ∑k
i=1 fixei ∈ R[x].

Here ei’s are non-negative integers, with 0 = e1 < e2 < . . . < ek ≤ n. Then, we define

f [1] def
=== f ′

xe2−1 as the (first) fractional derivative of f . In other words, we divide the first
derivative f ′ of f by the highest possible power of x that divides f ′.

The ith fractional derivative f [i] of f is then recursively defined as the first fractional
derivative of f [i−1]. Notice that if f (x) is an (n, k, τ)-nomial then, for i ≤ k− 1, f [i] is an
(n, k− i, τ + i · log n)-nomial with a non-zero constant term and f [i] = 0 for i ≥ k. We
further use the notation D f to denote the tuple of all non-zero fractional derivatives
f , f [1], f [2], . . . , f [k−1], i.e., D f = (f , f [1], f [2], , . . . , f [k−1]).

Now we restate the definition of locating intervals as given in [CKS99].

Definition 5.7. A list L = {[ui, vi]}i∈[N] of closed intervals with integer end points and
satisfying ui ≤ vi ≤ ui+1, is said to locate the roots of f (x) ∈ Z[x] in the interval
[−M, M] if for each root α ∈ [−M, M] of f (x), there exists an i ∈ [N] such that
α ∈ [ui, vi].

We also call such lists to be locating lists for the roots of f . We further state the
following Theorem 5.12 from [CKS99].

Theorem 5.12 (Theorem 1 in [CKS99]). There exists an algorithm which, for a given a ∈ Z

and an integer (n, k, τ)-nomial f (x) ∈ Z[x], computes the sign of f (a) in poly(k · (τ +

log n), log(|a|) + 1) bit operations.

For computing the integer roots, we further need a “refinement” routine. Here, we
are given an isolating integral interval [a, b], i.e., a, b ∈ Z and [a, b] contains exactly one
real root (this root might not be an integer) α. The desired “refinement” routine would
refine [a, b] to an isolating integral interval I of length at most 1 such that α ∈ I. For the

rest of this section, we define B def
=== 22τ + 1.

Lemma 5.13. Algorithm 5.5 refines the isolating interval [a, b] (with log(max(a, b)) = O(τ))
in poly(τ, log n, k) bit operations.

Proof. Note that Algorithm 5.5 in line 17 and line 19 can recurse at most O(log(B)) =
O(τ) many times. Also, the sign computations in line 6 can be performed using
poly(τ, log n, k) bit operations, this follows from Theorem 5.12. Thus Algorithm 5.5 uses
poly(τ, log n, k) bit operations. The correctness also follows from the fact if we have
not terminated by the line 16, then only one of the subdivided intervals in line 17 and
line 19 can contain the root α.

90 computing the roots of polynomials

Algorithm 5.5 Refine an isolating interval.

Input: An integer (n, k, τ)-nomial f (x) ∈ Z[x] and an isolating interval [a, b] (with
a, b ∈ Z and |a| , |b| ≤ B) for some real root α of f .

Output: An integral sub-interval I of [a, b] of length at most 1 such that α ∈ I.
1: if b ≤ a + 1 then
2: return [a, b]
3: end if
4: c1 ← b a+b

2 c
5: c2 ← d a+b

2 e
6: Compute the sign of f (x) at a, c1, c2, b.
7: if f (a) = 0 then
8: return [a, a]
9: else if f (b) = 0 then

10: return [b, b]
11: else if f (c1) = 0 then
12: return [c1, c1]
13: else if f (c2) = 0 then
14: return [c2, c2]
15: end if
16: if f (a) f (c1) < 0 then
17: return output of this Algorithm 5.5 on f and [a, c1]
18: else
19: return output of this Algorithm 5.5 on f and [c2, b]
20: end if

5.7 fractional derivatives and integer roots 91

The following Algorithm 5.6 computes a locating list for f if one has already com-
puted a locating list for f [1].

Algorithm 5.6 Compute locating list of f (x).

Input: An integer (n, k, τ)-nomial f (x) ∈ Z[x] and a locating list L′ for f [1] in (−B, B).
It is assumed that all intervals in L′ have width 0 or 1.

Output: A locating list for f (x) in (−B, B).
1: L′ ← L′ ∪ {[0, 0]}
2: Assume L′ = {[ui, vi]}i∈[N]

3: L ← L′

4: Using the algorithm of Theorem 5.12, compute the signs of f (x) at points
−B, u1, v1, . . . , uN , vN , B.

5: for each interval [a, b] ∈ {[−B, u1], [v1, u2], . . . , [vN , B]} do
6: if f (a) f (b) < 0 then
7: I ← output of Algorithm 5.5 on f and [a, b]
8: L ← L ∪ I
9: end if

10: end for
11: return L

Proposition 5.1 (Proposition 1 in [CKS99]). For any integer (n, k, τ)-nomial f (x) ∈ Z[x],
Algorithm 5.6 computes a locating list in (−B, B) for f of size at most N + 2k and works in
poly(τ, log n, k, N) bit operations.

Proof. Note that all the roots of f [1] and f ′ are the same except that f ′ might have
zero as an additional root. Thus the locating list L′ in line 1 is a locating list for f ′.
Computations in line 4 of Algorithm 5.6 have poly(τ, log n, k, N) cost, this follows from
Theorem 5.12. Let [a, b] be some interval in line 5. The corresponding open interval
(a, b) can contain at most one root of f , because otherwise L′ (in line 1) could not
be a locating list for f ′. And this interval (a, b) can contain a root of f if and only if
f (a) f (b) < 0. If f (a) f (b) < 0 then, we add I (refined from [a, b] in line 7) to L if this
condition is satisfied. Thus L is a locating list for f . By using Descartes’s rule of signs
(Theorem 5.3), we know that f has at most 2k− 1 real roots. Therefore the test in line 6

can succeed at most 2k− 1 times. Thus L is a list of locating intervals for f of size at
most N + 2k.

Now we can use Algorithm 5.6 recursively to compute the integer roots of a given
integer (n, k, τ)-nomial.

Now it is easy to see that Algorithm 5.7 proves Theorem 5.11.

Proof of Theorem 5.11. By using Algorithm 5.6, we know that the locating list L for f (in
line 5) is of size at most 2k2 and is also computed in time poly(τ, log n, k) . By Cauchy’s

92 computing the roots of polynomials

Algorithm 5.7 Compute all the integer roots.

Input: An integer (n, k, τ)-nomial f (x) ∈ Z[x].
Output: A set S containing all the integer roots of f .

1: Lk−1 ← {[0, 0]} . Lk is a locating list for the (k− 1)th fractional derivative f [k−1].
2: for each i ∈ {0, 1, . . . , k− 2} do
3: Using Algorithm 5.6, compute a locating list Li for the ith fractional derivative

f [i] in (−B, B).
4: end for
5: L ← L0 . This is a locating list for f .
6: S ← ∅
7: for each interval [a, b] ∈ L do
8: if f (a) = 0 then
9: S ← S ∪ {a}

10: end if
11: if f (b) = 0 then
12: S ← S ∪ {b}
13: end if
14: end for
15: return S

Root bound, we know that all the roots of f lie in (−B, B). Thus for each integer root α

of f , there is an interval [a, b] ∈ L such that α ∈ [a, b]. Also, since we only add refined
interval to the Li’s, all the intervals in L are of length at most 1. Therefore all the integer
roots of f can only lie on the end points of intervals in L. Therefore it is obvious that
the loop in line 7 finds all the integers roots of f . This loop runs in time poly(τ, log n, k).
Thus the time complexity of Algorithm 5.7 is poly(τ, log n, k).

Remark 5.2. Algorithm 5.7 computes all the integer roots of sparse integer polynomials
in polynomial time. Lenstra (Jr.) [LJ99] gave an algorithm which can compute all the
rational roots of such polynomials in polynomial time.

5.8 Computing the Real Roots of k-nomials

We saw above that the task of computing the integer roots of a k-nomial f can be
performed by computing the integer roots of the first fractional derivative f [1]. We want
to extend the same strategy to compute the real roots as well. To this end, we define
the notion of isolating intervals.

Definition 5.8 (Isolating interval list). A list L = {(ui, vi)}i∈[N] of open intervals with
rational end points and satisfying ui < vi < ui+1, is said to isolate the (real) roots of
f (x) ∈ R[x] if, for each (real) root α of f (x), there exists an i ∈ [N] such that α ∈ [ui, vi].

5.8 computing the real roots of k-nomials 93

We have seen in Theorem 5.10 that one can not compute a list of isolating intervals for
(n, k, τ)-nomials in poly(n, k, τ) time. Thus it is reasonable to ask whether in polynomial
time one can compute an approximation of all the real roots. To this end, we define:

Definition 5.9 (Weak (L, I)-covering). A weak (L, I)-covering for f is a list (I1, I2, . . . , It)

of open disjoint and sorted real intervals that fulfills the following conditions:

1. The width of each interval Ij is at most 2−L.

2. For every real root ξ of f in I, there exists an interval Ij that contains ξ.

We remark that the above Definition 5.9 is quite similar to the definition of locating
lists (Definition 5.7) but with an additional parameter L which ensures that the intervals
are “small”. We use the definition of weak covering to compute a covering defined
below in Definition 5.10.

Definition 5.10 ((L, I)-covering). For a polynomial f , an integer L ∈N, and an interval
I ⊂ R, we call a list ((∆r1(m1), µ1), (∆r2(m2), µ2), . . . , (∆rt(mt), µt)) an (L, I)-covering
for f if the following conditions are fulfilled:

1. The disks ∆ri(mi) ⊂ C are pairwise disjoint, mj are real values with m1 < · · · < mt,
and rj ≤ 2−L for all j.

2. ∆rj(mj) contains exactly µj roots of f for all j.

3. For every real root ξ of f in I, there exists some disk ∆rj(mj) that contains ξ.

If I = R, we omit I and just call a (weak) (L, R)-covering for f a (weak) L-covering
for f . The main result of this chapter is the following Theorem 5.13.

Theorem 5.13. For any (n, k, τ)-nomial, we can compute an L-covering L of size |L| < 2k in
time Õ(poly(k, log n) · (τ + L)).

It is not hard to see that Theorem 5.13 is a true generalization of Theorem 5.11

because we can set L = 2 and then check if the disks in L-covering of Theorem 5.13

contain integer roots. Notice that our algorithm computes L-bit approximations of all
real roots but might also return (real-valued) L-bit approximations of some non-real
roots with a small imaginary part (the centers of the disks ∆ri(mi)). Further notice that
unless µj is odd, we also do not know whether mj actually approximates a real root,
and unless µj = 1, we cannot conclude that a disk ∆rj(mj) in an L-covering is isolating
for a root of f . Hence, in general, our algorithm does not yield the correct number of
distinct real roots. However, if f has only simple roots, we may compute an L-covering
for f for L = 2, 4, 8, . . . until µj = 1 for all j. Then, the disks ∆ri(mi) isolate all real roots.
This argument implies the following Theorem 5.14.

94 computing the roots of polynomials

Theorem 5.14. Let f be an (n, k, τ)-nomial with only simple real roots, and let σ be the
minimal distance between any two (complex) distinct roots of f , i.e., the separation of f . Then,
we can compute isolating intervals for all real roots in Õ

(
poly(k, log n)(τ + log

(1
σ

)
)
)

bit
operations.

Algorithm of Theorem 5.13 improves upon [Sag14] in several ways. Namely, [Sag14]
only applies to integer polynomials, whereas our novel approach applies to polynomials
with arbitrary real coefficients. In addition, the running time of the algorithm in [Sag14]
does not adapt to the actual separation of the roots, whereas the complexity of our novel
approach rather depends on the actual separation than on the worst-case bound of size
2−Θ(n(τ+log n)) for the separation of an integer polynomial. In the worst case, our method
isolates all the real roots of a very sparse integer polynomial, i.e., k = (log(nτ))O(1), in
time Õ(nτ). Thus our bound of Õ(nτ) is essentially optimal, as shown in Theorem 5.10.

As an easy implication of Theorem 5.14 and Theorem 5.8, the following result is easy
to prove.

Corollary 5.6. Let f (x) = a1xe1 + a2xe2 + a3 be an integer trinomial satisfying the condition:
log max(e1, e2, |a1| , |a2| , |a3|) ≤ τ and e2 ≤ e1 = n. Then we can isolate all the real roots of
f (x) in Õ

(
poly(k, log n) · τ3) bit operations.

Proof. The claim follows immediately by applying Theorem 5.14 and Theorem 5.8,
which essentially proves that σf ≥ 2−268τ3

. More specifically, we can compute an L-
covering (by using Theorem 5.13) with L > 269τ3. This also covers the case of f (x)
having double roots.

5.9 Overview of the Algorithm

Before we go into detail, we give a brief overview of our algorithm, where we omit
the technical details. We first remark that the problem of computing an (L, [1, ∞))-
covering can be reduced to the problem of computing an (L, [0, 1])-covering (in fact,
we are computing an (L, [0, 1 + 1

n])-covering but this is only due to some technical
reasons) by means of the coordinate transformation x 7→ 1

x followed by multiplication
with xn. We may also reduce the problem of computing an (L, (−∞, 0])-covering
of f to the problem of computing an (L, [0, ∞))-covering by means of the coordinate
transformation x 7→ −x. Hence, we are eventually left with merging (L, [0, 1])-coverings
for the polynomials f , xn · f (1

x), f (−x), and xn · f (− 1
x) in a suitable manner. We give

details for this step in Section 5.14. Notice that the considered coordinate transformation
preserves the sparseness of the input polynomial, hence we may concentrate on the
problem of computing an (L, [0, 1])-covering for f only. For this, we first compute
a weak (L, [0, 1])-covering of f , which is achieved by recursively computing weak
(L, [0, 1])-coverings of the fractional derivatives of f .

5.9 overview of the algorithm 95

The general idea of recursively computing the real roots of f from the real roots of its
fractional derivatives has already been considered in previous work; e.g. [LJ99; Sag14;
GG12; CL76; Cos+05; Pan+07; RY05; CKS99]. We already explained this idea in proving
Theorem 5.11, where we computed a locating list for f if we are given a locating list for
the first fractional derivative f [1]. Let us recall the essential argument we used. Given
a weak (L, [0, 1])-covering (I′1, I′2, . . . , I′t) for f [1], we already know that in between
two consecutive intervals Ij = (a, b) and Ij+1 = (c, d), the polynomial f is monotone,
and thus there can be at most one real root in between b and c, which then must be
simple. In order to check for the existence of such a root, it suffices to check whether f
changes signs at the points b and c. In case of a sign change, we may then refine the
interval (b, c), which is known to be isolating for a real root of f , to a width less than
2−L. If we proceed in this way for all intervals in between two consecutive intervals as
well as with the leftmost interval, whose endpoints are 0 and the left endpoint of I′1,
and the rightmost interval, whose endpoints are the right endpoint of I′t and 12, then
we obtain a set of intervals I′′j of size at most 2−L that cover all real roots of f that are
contained in [0, 1] but in none of the intervals I′j . Hence, the union of the intervals I′j
and I′′j constitutes a weak (L, [0, 1])-covering for f . This shows how to compute a weak
(L, [0, 1])-covering for f from recursively computing weak (L, [0, 1])-coverings for its
fractional derivatives.

We remark that, in this simplistic description, we have omitted several key problems
one faces when formalizing the algorithm: Evaluating the sign of a polynomial f at
given points b, c may require a very high precision, which should be avoided to ensure
a polynomial bit complexity. In addition, we need an efficient refinement method that
uses only a polynomial number of iterations. For the latter problem, we use a slightly
modified variant of the algorithm from [Sag14; SM16]. For the computation of the
sign of f (and its higher order fractional derivatives) at certain points, we consider an
approach that allows us to slightly perturb the evaluation points such that the absolute
value of each of the considered polynomials does not become too small. One major
contribution of this paper, when compared to our previous work [Sag14], is to show
that this can be done in way such that the precision always stays polynomial in log n, k,
τ, and L.

In the second phase, we derive an (L, [0, 1])-covering from a weak (L′, [0, 1])-covering,
where L′ has been chosen sufficiently large. A straight forward approach would be to
use a method for computing the number of roots in the one-circle region ∆(I) = ∆r(m)

of each interval I in the weak (L′, [0, 1])-covering. Here, ∆(I) is defined as the disk
centered at the midpoint m = m(I) of I and passing through the endpoints of the
interval. In the literature, several methods have been proposed to count the number
of roots in a disk in complex space. Unfortunately, these algorithm are not sparsity
aware, which rules out a straight-forward application of them. Recent work [Bec+18]
introduces the so-called T∗-test, a method for root counting based on Pellet’s Theorem.

2 For technical reasons, we will indeed consider slight perturbations of 0 and 1 in our algorithm.

96 computing the roots of polynomials

The method only needs to compute approximations of the coefficients of the polynomial
f (m + r · x), however, we cannot afford to compute all coefficients. Fortunately, in our
situation, only the first k2 coefficients are actually needed to determine the outcome
of the test. In order to guarantee success of the test, it may further be necessary to
merge some of the intervals in the weak covering and to consider disks that are larger
than the one-circle regions of the merged intervals. This explains why we need a weak
(L′, [0, 1])-covering with a sufficiently large L′ > L.

5.10 Polynomial arithmetic

Our algorithm only needs to perform basic operations on polynomials. In particular, we
need to evaluate the sign of a given sparse polynomial at some points x. As we already
mentioned in the overview of our algorithm, the complexity of this operation becomes
too high if the value of the polynomial at a given point x is almost zero as then one
needs to perform computations with a very high precision. Also, exact evaluation of a
sparse polynomial at a rational point (even of small bit-size) is expensive as the output
has bit-size linear in n. Instead, we consider approximate evaluation, which allows us
to evaluate any (n, k, τ)-nomial f at an arbitrary point x ∈ (0, 1 + 1

n) to an absolute
error less than 2−L in a time that is polynomial3 in log n, k, τ, and L. More precisely,
we prove the following Lemma 5.14.

Lemma 5.14. Let f ∈ R[x] be an (n, k, τ)-nomial, c be a positive real number, and L a non-
negative integer. Then, we can compute an L-bit approximation λ of f (c) (|λ− f (c)| < 2−L)
in a number of bit operations bounded by

Õ((k + log n) · (L + nlog (c) + log n + τ + k)).

Proof. In essence, we follow the same approach as in [KS15]. That is, for a fixed non-
negative integer K, we perform each occurring operation ◦ ∈ {+, ·} (either addition or
multiplication) with fixed precision K. More precisely, the input is initially rounded
after the Kth bit after the binary point. Then, in each of the following steps, we replace
each exact operation ◦ between two numbers a and b by a corresponding approximate
operation ◦̃, where we define a◦̃b to be the result obtained by rounding a ◦ b after
the Kth bit after the binary point. Suppose that we have computed approximations
ã = a + ε1 and b̃ = b + ε2 of two intermediate results a and b, where we assume that
ε

def
=== max(|ε1| , |ε2| , 2−K) < 1. Then, we have:∣∣a · b− ã · b̃

∣∣ < |a| · |ε1|+ |b| · |ε2|+ |ε1ε2|+ 2−K < 4 · ε ·max(1, |a| , |b|)

and ∣∣a + b− (ã + b̃)
∣∣ < |ε1|+ |ε2|+ 2−K.

3 Notice that, for c ∈ (0, 1 + 1
nO(1)), we may omit the term nlog (c) in the bound stated in Lemma 5.14.

5.10 polynomial arithmetic 97

Hence, when evaluating one term fi · xei of f at the point x = c with absolute precision

K > L + log k + 1 + τ + (2 log n + 1) · (n · log (c) + 2)

via repeated squaring, we induce a total error ε i for the computation of fi · cei of size
less than

2τcn(2 log n+1) · 42 log n+1 · 2−K−L < (2k)−1 · 2−L

as there are at most 2 · log n+ 1 multiplications, and each (exact) intermediate result has
absolute value bounded by max(2τ, cn). When eventually summing up the approxima-
tions of all terms fi · xei , we thus induce an error of size less than ∑i ε i + k · 2−K < 2−L

for the computation of the final result. The bound on the bit complexity follows from
the fact that we need O(k + log n) arithmetic operations on integers of bit-size

O(K + τ + log k + nlog (c)) = O(K)

and each such operation uses Õ(K) bit operations.

We already mentioned that evaluating the sign of a polynomial f at a point x might be
costly if f (x) has a small absolute value. In order to avoid such undesired computations,
we first perturb x in a suitable manner. That is, instead of evaluating the sign of f at x,
we evaluate its sign at a nearby point, where f becomes large enough. This can be done
in a way such that the actual behavior of the algorithm does not change. We will call
such points “admissible”. We remark that this concept was already used in previous
work [Sag14; SM16]. Here, we modify the approach to choose an admissible point,
where the sign of each fractional derivative of a sparse polynomial f can be evaluated
in polynomial time.

Definition 5.11 (Multi-point). For m ∈ R, δ ∈ R+ and t ∈ N, the multi-point m[t; δ] is
defined as:

m[t; δ]
def
=== {mi

def
=== m + (i− t) · δ; i = 0, 1, . . . , 2t}.

Definition 5.12 (Admissible point). Let g : R→ R be a function, a point m∗ ∈ m[t; δ] is
said to be (g, m[t; δ])-admissible if

|g(m∗)| ≥ 1
8
· max

x∈m[t;δ]
|g(x)| .

If t and δ (or even m and g) are clear from the context, we simply call a (g, m[t; δ])-
admissible point (g, m)-admissible (or just admissible). Since the value of g at an
admissible points is “relatively large”, we expect that g has no root in a corresponding
neighborhood. The following Lemma 5.15 formalizes this intuition.

Lemma 5.15. Let m∗ ∈ m[t; δ] be an (f , m[t; δ])-admissible point for an (n, k, τ)-nomial f ,
with m ∈ R+ and 2 ≤ k ≤ t ≤ k2. If m

δ > 4k2n2, then the disk ∆δ·k−4k(m∗) contains no root
of f for n ≥ 3.

98 computing the roots of polynomials

Proof. Let z1, z2, . . . , zn denote the complex roots of f . We remark that due to the
condition m

δ > 4k2n2, each disk ∆δ(mi) is contained in the cone Cn for all mi ∈ m[t; δ].
Since f (x) has at most k− 1 roots in the cone Cn (see Figure 5.2) and t ≥ k, there

exists a point mi0 ∈ m[t; δ] such that ∆δ(mi0) does not contain any of these roots.
By way of contradiction, assume that there is a root zl of f in the disc of radius δ

k4k

around m∗. We have:

f (m∗)
f (mi0)

=
n

∏
i=1

m∗ − zi

mi0 − zi

Let di be the distance between mi0 and zi, we know that di ≥ δ. By using the triangle
inequality for the distance between m∗ and zi, one can see that, for the roots zi 6= zl
that are contained in Cn, we have∣∣∣∣m∗ − zi

mi0 − zi

∣∣∣∣ ≤ 1 +
2δt
di
≤ 1 + 2t ≤ 1 + 2k2,

whereas
∣∣∣ m∗−zl

mi0−zl

∣∣∣ < k−4k. Now consider the roots zj of f that are outside of Cn. We know

that dj ≥ (m− δt) · sin(π
n+2). Since 2

π x ≤ sin(x), we get that dj ≥ 2·(m−δt)
n+2 . By using the

inequality m
δ > 4k2n2, we get dj ≥ 2·δ(4k2n2−t)

(n+2) ≥ 2·δk2(4n2−1)
(n+2) ≥ 2δk2n. Thus∣∣∣∣m∗ − zi

mi0 − zi

∣∣∣∣ ≤ 1 +
2δt
dj
≤ 1 +

t
k2n
≤ 1 +

1
n

,

Hence:

f (m∗)
f (mi0)

≤
(

1 +
1
n

)n−k+1

· (2k2 + 1)k−2 · 1
k4k

<

(
1 +

1
n

)n−k+1

· (2k2 + 1
k4)k−2 · 1

k8

≤ e
k8

<
1
8

.

But this contradicts the fact that m∗ is an admissible point.

Note that we defined the notion of an admissible point for general functions and not
just for polynomials. This is because during the computation of a weak L-covering of f ,
we aim to compute admissible points where the values of all fractional derivatives are
large. For this, we need the following definition.

5.10 polynomial arithmetic 99

Definition 5.13. Let G = (g1, g2, . . . , gt) be a tuple of t functions gi : R → R. Then,
MG(x) is defined as follows:

MG(x) def
=== min(|g1(x)| , |g2(x)| , . . . , |gt(x)|).

For a fixed real x, we call G̃(x) = (g̃1(x), g̃2(x), . . . , g̃t(x)) an L-approximation of G(x) if
|g̃i(x)− gi(x)| ≤ 2−L for all i.

We first show how to compute an admissible point m∗ ∈ m[t; δ] for MG(x) under the
assumption that we can compute an L-approximation of G(x) for any x ∈ m[t; δ] in
time T(L).

Lemma 5.16. Let G = (g1, g2, . . . , gt) be as in Definition 5.13, m[t; δ] a multi-point
and λ := maxa∈m[t;δ] |MG(a)|. Suppose that for any point mi ∈ m[t; δ], we can compute an
L-approximation of G(mi) in time T(L). Then, we can compute an (MG , m[t; δ])-admissible
point m∗ ∈ m[t; δ] as well as an integer `∗ with

2`
∗−1 ≤ |MG(m∗)| ≤ λ ≤ 2`

∗+1

in time
O
(

t · log
(

log
(

λ−1
))
· T
(

log
(

λ−1
)))

.

Proof. We proceed in the same fashion as in Lemma 8 of [SM16]. For L = 1, 2, 4, . . ., we
compute L-approximations G̃L

i = (g̃L
1 (mi), g̃L

2 (mi), . . . ˜, gL
t (mi)) of G(mi) for all points

mi ∈ m[t; δ] until the following condition is satisfied for at least one mi:

ML
i

def
=== min

(∣∣∣g̃L
i (mi)

∣∣∣ ,
∣∣∣g̃L

2 (mi)
∣∣∣ , . . . ,

∣∣∣g̃L
t (mi)

∣∣∣) ≥ 4 · 2−L = 2−L+2.

Then, let i0 be the index such that ML
i0 is maximal among all ML

i0 , and let `∗ be an

integer such that
∣∣∣`∗ − log ML

i0

∣∣∣ ≤ 1
2 . We output `∗ and m∗ := mi0 .

Using a similar straight-forward argument as in the proof of Lemma 8 of [SM16] then
shows that 2`

∗−1 ≤ MG(m∗) ≤ λ ≤ 2`
∗+1. By following this approach, we must succeed

for some L ≤ 2log
(1

λ

)
. Since we double L at most log log max(1

λ , 1) many times and
since we approximately evaluate the functions gi at t points, the stated complexity
bound follows.

We now apply the above lemma to G def
=== D f , the sequence of fractional deriva-

tives of f . Then Lemma 5.14 yields a bound for the bit complexity of computing

L-approximations of D f (mi) for all mi ∈ m[t; δ], which directly depends on λ
def
===

maxmi∈m[t;δ]

∣∣∣MD f (mi)
∣∣∣.

100 computing the roots of polynomials

Corollary 5.7. Assume that f (x) is an (n, k, τ)-nomial, m[t; δ] a multi-point and λ
def
===

maxmi∈m[t;δ]

∣∣∣MD f (mi)
∣∣∣. Further assume that m[t; δ] ⊂ (0, α) for some positive real α. Then,

we can determine an (MD f , m[t; δ])-admissible point m∗ and an integer `∗ with

2`∗−1 ≤
∣∣∣MD f (m

∗)
∣∣∣ ≤ λ ≤ 2`

∗+1

using Õ
(

t · k · (k + log n) ·
(

τ + k log n + nlog (α) + log
(
λ−1))) many bit operations.

The following bound on λ implies that, for suitably chosen t,m and δ, we can compute
m∗ in polynomial time.

Lemma 5.17. Let f ∈ R[x] be a (n, k, τ)-nomial with τ > 0 and f (0) 6= 0, and let a, r be
positive real numbers with r < a such that (a− r, a + r) does not contain any real root of any
fractional derivative of f (x). Then,∣∣∣MD f (a)

∣∣∣ ≥ 2−k(3τ+3klog(n)+log(1
r)).

Proof. First we show that we can assume n > 1. The case of n = 0 is trivial. If
n = 1, then we have f (x) = f1x + f0 with 2−τ ≤ | fi| ≤ 2τ and f1 6= 0. The only
root of f (x) is − f0

f1
. We have f [1] = f1. Since (a− r, a + r) does not contain any real

root of any fractional derivative of f (x), we get that
∣∣∣a + f0

f1

∣∣∣ > r. Therefore f (a) =

f1a + f0 = f1

(
a + f0

f1

)
. Hence | f (a)| > r2−τ ≥ 2−τ+log(1

r). In particular, we have∣∣∣MD f (a)
∣∣∣ ≥ 2−k(3τ+3k log n+log(1

r)). Thus the condition n > 1 can be assumed without
loss of generality.

We prove this claim by induction on the sparsity of f . Our induction hypothesis is: if
(a− r, a + r) does not contain any real root of any fractional derivative of f (x) for an
(n, i, τ)-nomial f (x) with f (0) 6= 0 then∣∣∣MD f (a)

∣∣∣ ≥ 2−i(3τ+3i log n+log(1
r)+i).

Let f be an (n, i + 1, τ)-nomial with f (0) 6= 0. We have that f = a + xjg with j ≥ 1,
here g is some i-nomial and also a 6= 0, g(0) 6= 0. We have f ′ = jxj−1g + xjg′ and
f [1] = jg + xg′. Since (a− r, a + r) does not contain any root of any fractional derivative
of f (x), it follows that f is monotone in (a− r, a + r). We assume that f is positive in
(a− r, a + r), otherwise we apply the analysis below to − f .

Now we have the following two cases.

5.10 polynomial arithmetic 101

Case 1. First case is when f is increasing in (a− r, a + r). In this case, mean value
theorem guarantees the existence of a t ∈

(
a− r

2 , a
)

such that the following
inequality is true.

f (a) > f (a)− f
(

a− r
2

)
=

r
2
· f ′(t) =

r
2
· tj−1 f [1](t).

Since (a − r, a + r) contains no root of any fractional derivative of f , we
get that

(
t− r

2 , t + r
2

)
contains no root of any fractional derivative of f [1] .

Also, f [1] is an (n, i, τ + log n)-nomial with f [1](0) 6= 0. Therefore we can
use the induction hypothesis on f [1] to obtain the following lower bound on∣∣∣MD

f [1]
(t)
∣∣∣. ∣∣∣MD

f [1]
(t)
∣∣∣ ≥ 2−i(3(τ+log n)+2i log n+log(2

r)+i).

In particular, ∣∣∣ f [1](t)∣∣∣ ≥ 2−i(3(τ+log n)+2i log n+log(2
r)+i).

Now we have two sub-cases, in the first sub-case we have that tj−1 ≥
2−(3τ+log i). In this sub-case, we obtain:

| f (a)| > r
2
· 2−(3τ+log i) · f [1](t)

≥ 2−(i(3·(τ+log n)+2i log n+log(2
r)+i)+log(2

r)+3τ+log i). (5.5)

Let us use

E def
=== (i(3 · (τ + log n) + 2i log n + log

(
2
r

)
+ i) + log(

2
r
) + 3τ + log i)

to denote the negation of exponent in Equation (5.5). To complete the induc-
tion step, we need to prove that

E ≤ (i + 1)(3τ + 2(i + 1) log n + log
(

1
r

)
+ i + 1).

We use the fact that

log(
2
r
) ≤ log

(
2
r

)
and

log
(

2
r

)
≤ 1 + log

(
1
r

)
.

102 computing the roots of polynomials

This yields the following upper bound for E.

E ≤ 3(i + 1)τ + 3i log n + 2i2 log n + ilog
(

1
r

)
+ i + log

(
1
r

)
+ 1 + log i + i2

≤ 3(i + 1)τ + (2i2 + 3i + 1) log n + (i + 1)log
(

1
r

)
+ i2 + i + 1

(Because i ≤ n)

≤ 3(i + 1)τ + 2(i + 1)2 log n + (i + 1)log
(

1
r

)
+ (i + 1)2

≤ (i + 1)(3τ + 2(i + 1) log n + log
(

1
r

)
+ i + 1).

This implies that

| f (a)| > 2−(i+1)(3τ+2(i+1) log n+log(1
r)+i+1).

Now we look at the sub-case when tj−1 < 2−(3τ+log i). In this case, t < 1.
Therefore |g(t)| ≤ 2τi = 2τ+log i. Hence∣∣∣tjg(t)

∣∣∣ ≤ ∣∣∣tj−1g(t)
∣∣∣ < 2−(3τ+log i)2τ+log i ≤ 2−2τ.

Thus | f (a)| > | f (t)| =
∣∣a + tjg(t)

∣∣ ≥ 2−τ+1. By using the induction hypothe-
sis on f [1], we obtain that∣∣∣MD f (a)

∣∣∣ ≥ 2−(i+1)(3τ+2(i+1) log n+log(1
r)+i+1).

Case 2. Now consider the case when f is decreasing in the interval (a− r, a + r). By a
similar argument as above, we get that there exists a t ∈

(
a, a + r

2

)
such that

the following inequality is true.

f (a) > f (a +
r
2
) > f (a +

r
2
)− f (a)

=
r
2
· f ′(t) =

r
2
· tj−1 f [1](t).

Since (a− r, a + r) contains no root of any fractional derivative of f , we get
that

(
t− r

2 , t + r
2

)
contains no root of any fractional derivative of f [1]. Now

we follow exactly the same analysis as we applied above in the case when f
was monotonically increasing in the interval (a− r, a + r). This yields:∣∣∣MD f (a)

∣∣∣ ≥ 2−(i+1)(3τ+2(i+1) log n+log(1
r)+i+1).

5.10 polynomial arithmetic 103

Since n > 1, we have that k log n ≥ k. Thus the claimed lower bound on
∣∣∣MD f (a)

∣∣∣
follows.

Combining the above lemma and Corollary 5.7 now yields

Theorem 5.15. Let f be a (n, k, τ)-nomial and let m[t; δ] be a multi-point with t ≥ k2 and
m[t; δ] ⊂ (0, α) for some for some real number α. Then, we can compute an (MD f , m[t; δ])-
admissible point m∗ using

Õ(t · k2 · (k + log n) · (k log n + τ + log
(

δ−1
)
+ nlog (α)))

bit operations.

Proof. Since each fractional derivative of f has at most k− 1 positive real roots and
since t ≥ k2, there exists an a ∈ m[t; δ] such that (a − δ/2, a + δ/2) does not con-
tain any real root of any of fractional derivative. Hence, Lemma 5.17 implies that
λ := maxx∈m[t;δ]

∣∣∣MD f (x)
∣∣∣ ≥ ∣∣∣MD f (a)

∣∣∣ is lower bounded by 2−O(k(k log n+τ+log(δ−1)).
Corollary 5.7 then yields the claimed bound on the running time.

Now we prove Theorem 5.16, which essentially states that if a small ball around a
real number x0 does not contain any root of f (x) then | f (x0)| is “large”. First we prove
the following Lemma 5.18.

Lemma 5.18. Let f = ∑n
i=0 fixi ∈ C[x] be any polynomial. If a, b ∈ R+ are such that

|a− b| ≤ δ and ∆2δn(
a+b

2) does not contain any root of f then
∣∣∣ f (a)

f (b)

∣∣∣ ∈ [1
e , e].

Proof. Suppose z1, z2, . . . , zn ∈ C are the roots of f . We have that∣∣∣∣ f (a)
f (b)

∣∣∣∣ =
n

∏
i=1

∣∣∣∣ a− zi

b− zi

∣∣∣∣ .

Since ∆2δn(
a+b

2) does not contain any root of f , for all zi we have that
∣∣∣ a−zi

b−zi

∣∣∣ ≥ 2δn− δ
2

2δn+ δ
2
=

1− 1
2n+ 1

2
. Thus

∣∣∣ f (a)
f (b)

∣∣∣ ≥ (1− 1
2n+ 1

2

) 1
n ≥ 1

e . Similarly, we can show that
∣∣∣ f (b)

f (a)

∣∣∣ ≥ 1
e . Thus∣∣∣ f (a)

f (b)

∣∣∣ ∈ [1
e , e].

The following Theorem 5.16 shows that if there are no roots of an (n, k, τ)-nomial
f (x) “near” a point x0 then | f (x0)| is “large”.

Theorem 5.16. Let f ∈ R[x] be an (n, k, τ)-nomial with a non-zero constant term, and let
x0, r be positive real numbers such that ∆r(x0) contains no root of f then

| f (x0)| = 2−O(k(k log n+τ+log(1
r)).

104 computing the roots of polynomials

Proof. Consider the multi-point x0[k2; δ] for δ = r
8nk2 . There exists a point x∗ ∈ x0[k2; δ]

such that (x∗ − δ, x∗ + δ) does not contain any root of any fractional derivative of f .
Thus, by using Lemma 5.17, we know that,

| f (x∗)| ≥
∣∣∣MD f (x∗)

∣∣∣ ≥ 2−k·(3k log n+3τ+log(1
δ)). (5.6)

Also, the condition of Lemma 5.18 are fulfilled for a = x∗ and b = x0. Hence, we
obtain that | f (x0)| ≥ 1

e · | f (x∗)|, and thus

| f (x0)| = 2−O(k·(k log n+τ+log(1
δ))). (5.7)

By using δ = r
8nk2 , Equation (5.7) can be written as | f (x0)| = 2−O(k(k log n+τ+log(1

r)).

As an application of Lemma 5.17, we prove the following Theorem 5.17 which lower
bounds

∣∣∣MD f (m
∗)
∣∣∣ for suitable admissible points m∗.

Theorem 5.17. Let f ∈ R[x] be an (n, k, τ)-nomial and m∗ be an (MD f , m[t; δ])-admissible
point for some t ≥ k2. Then, we have that:∣∣∣MD f (m

∗)
∣∣∣ ≥ 2−(k(3τ+3k log n+log(1

δ))+3).

Proof. Since each fractional derivative of f has at most k− 1 positive real roots and
since t ≥ k2, there exists an a ∈ m[t; δ] such that (a − δ/2, a + δ/2) does not con-
tain any real root of any of fractional derivative. Hence, Lemma 5.17 implies that∣∣∣MD f (a)

∣∣∣ ≥2−k(k log n+τ+log(δ−1)) . By the definition of admissible points, we get that:∣∣∣MD f (m
∗)
∣∣∣ ≥ 2−(k(3τ+3k log n+log(1

δ))+3).

5.11 Refinement

A crucial subroutine of our overall algorithm is an efficient method for refining an
interval I0 = (a0, b0) ⊂ R+ (in what follows, it is assumed that log (a0, b0) = O(τ)) that
is known to be isolating for a simple real root of an (n, k, τ)-nomial f . It is assumed
that the algorithm receives the sign of f at the endpoints of I0 as additional input. For
the refinement, we consider the algorithm Refine from Section 5 in [SM16] (see also
Section 3 in [Sag14]), however, we make a single (minor) modification. As the argument
from [SM16] directly applies, we only state the main results and refer the reader to
[SM16] for details.

5.11 refinement 105

Refine recursively refines I0 to a size less than 2−L using a trial and error ap-
proach that combines Newton iteration and bisection. This was modified to work for
k-nomials in [Sag14]. The refinement routine in [Sag14] was called NewRefine. In each
iteration, NewRefine computes (f , m[dk/2e; δ])-admissible points m∗ for a constant
number of points m ∈ I and a corresponding δ of size 2−O(τ+log n+L). In addition, f , f ′

are evaluated at these admissible points to an absolute precision that is bounded by
O
(

log
(
| f (m∗)|−1

)
+ log n + L + τ

)
and only f , f ′ need to be evaluated. Each end-

point of the interval returned by NewRefine is then either one of the admissible points
computed in a previous iteration or one of the endpoints of I0.

We now propose the following modification of NewRefine, which we denote
NewRefine

∗(Algorithm 5.11): Whenever NewRefine asks for an (f , m[dk/2e; δ])-
admissible point m∗, we compute an (MD f , m[k2; δ′])-admissible point m∗, with δ′ ≈ δ

n ,
instead (see Algorithm 5.8 for a more precise description). We work with these admissi-
ble points to guarantee that all occurring endpoints are admissible. As a consequence,
computing the signs of all fractional derivatives at the relevant end points is efficient!

To formally define NewRefine
∗, we first need a straight forward modification (Al-

gorithm 5.8) of the “Newton-Test_signat” test proposed in [Sag14]. We call this mod-
ification NewtonTest

∗. For missing details, we refer the reader to [SM16] for more
details.

We say that Algorithm 5.8 fails if the output pair (I′, NI′) is the same as the input pair
(I, NI). Otherwise, we say that Algorithm 5.8 succeeds. Now the following Lemma 5.19

is easy to verify.

Lemma 5.19. If NewtonTest
∗ (Algorithm 5.8) succeeds, then it returns a pair (I′, NI′) with

NI′ = N2
I and w(I)

8NI
≤ w(I′) ≤ w(I)

NI
.

It can happen that the NewtonTest
∗ fails. Sufficient conditions for the success of

NewtonTest
∗ were derived in [SM16]. It is shown in [SM16] that if the roots in I

are “well-separated” from other roots of f then the NewtonTest
∗ succeeds. More

specifically, it was shown in [SM16] that it succeeds if there exists a sub-interval J of
I with w(J) ≤ 2−13·w(I)

NI
such that the one circle region ∆(J) of J contains all the roots

contained in one circle region ∆(I) of I, and ∆210nNI w(I)(m(I)) contains no further roots
of f . For an exact statement, see Lemma 23 in [SM16]. One way NewtonTest

∗ can fail
is that if the there is some cluster of roots in ∆(I) near one of the end points of I, in
this case the test BoundaryTest

∗ succeeds. So if NewtonTest
∗ fails, we try the test

called BoundaryTest
∗ (Algorithm 5.9). This is a straight forward modification of the

“Boundary-Test_signat” test defined in [Sag14] (see also [SM16]).
It is shown in [SM16] that if all the roots of f contained in ∆(I) are “close“ to one of

the end points of I then BoundaryTest
∗ succeeds (see “Algorithm: Boundary-Test” in

[SM16]).

106 computing the roots of polynomials

Algorithm 5.8 NewtonTest
∗

Input: An (n, k, τ)-nomial f , a non-negative integer t with t < k, a pair (I, NI) , here
I = (a, b) is an interval with dyadic end points which isolates a real root α of f [t].
Also, NI = 22nI for some nI ∈N.

Output: A pair (I′, NI′), here I′ is a sub-interval of I, α ∈ I′ and NI′ ≥ NI .
1: ξ j ← a + j

4 · w(I) for j ∈ {1, 2, 3}, ε← 2−d5+2 log ne and g← f [t].
2: Compute points ξ∗j for j ∈ {1, 2, 3}, where ξ∗j is an (MD f , ξ j[k2; ε ·w(I)])-admissible

point.
3: for all pairs (j1, j2) ∈ {(1, 2), (1, 3), (2, 3)} do

4: vj1
def
===

g(ξ∗j1)
g′(ξ∗j1)

and vj2
def
===

g(ξ∗j2)
g′(ξ∗j2)

.

5: Define the Condition1 as:
(

min
(∣∣vj1

∣∣ ,
∣∣vj2

∣∣) > w(I) or
∣∣vj1 − vj2

∣∣ < w(I)
4n)

)
.

6: Define the Condition2 as:
(

max
(∣∣vj1

∣∣ ,
∣∣vj2

∣∣) < 2 · w(I) and
∣∣vj1 − vj2

∣∣ > w(I)
8n)

)
.

7: Compute a sufficiently good approximation of vj1 and vj2 such that at least one
of the conditions (Condition1 or Condition2) can be verified.

8: if Condition1 can be verified then
9: break . Discard the pair (j1, j2).

10: end if
11: if Condition2 can be verified then
12: Define λj1,j2

def
=== ξ∗j1 +

ξ∗j2
−ξ∗j1

vj1−vj2
· vj1 .

13: Compute approximation λ̃j1,j2of λj1,j2 such that
∣∣λj1,j2 − λ̃j1,j2

∣∣ ≤ 1
32NI

.
14: if λ̃j1,j2 6∈ [a, b] then
15: break . Discard the pair (j1, j2).
16: else
17: Compute `j1,j2

def
=== b 4NI ·(λ̃j1,j2−a)

w(I) c.
18: aj1,j2 ← a + max(0, `j1,j2 − 1) · w(I)

4Ni
and bj1,j2 ← a + min(4NI + `j1,j2 + 2)

19: if aj1,j2 = a then
20: a∗j1,j2 ← a
21: else
22: Compute an (MD f , aj1,j2 [k

2; ε · w(I)
NI

])-admissible point c∗j1,j2 .
23: a∗j1,j2 ← c∗j1,j2
24: end if
25: Repeat line 19 to line 24 for bj1,j2 . . We check if bj1,j2 = b
26: Compute the sign of g(a∗j1,j2) and g(b∗j1,j2).
27: if g(a∗j1,j2)·g(b

∗
j1,j2) < 0 then

28: I′ ← (a∗j1,j2 , b∗j1,j2)

29: return (I′, N2
I)

30: else
31: break . Discard the pair (j1, j2).
32: end if
33: end if
34: end if
35: end for
36: return (I, NI)

5.11 refinement 107

Algorithm 5.9 BoundaryTest
∗

Input: An (n, k, τ)-nomial f , a non-negative integer t with t < k, a pair (I, NI) , here
I = (a, b) is an interval with dyadic end points which isolates a real root α of f [t].
Also, NI = 22nI for some nI ∈N.

Output: A pair (I′, NI′), here I′ is a sub-interval of I, α ∈ I′ and NI′ ≥ NI .
1: m` ← a + w(I)

2Ni
, mr ← b− w(I)

2Ni
, ε← 2−d2+2 log ne and g← f [t].

2: Compute an (MD f , m`[k2; ε · w(I)
NI

])-admissible point m∗` .

3: Compute a (MD f , mr[k2; ε · w(I)
NI

])-admissible point m∗r .
4: Compute the signs of g(a), g(m∗`), g(m∗r) and g(b).
5: if g(a)·g(m∗`) < 0 then
6: return ((a, m∗`), N2

I)
7: else if g(b)·g(m∗r) < 0 then
8: return ((m∗r , b), N2

I)
9: end if

10: return (I, NI)

Similar to that of Algorithm 5.8, we say that Algorithm 5.9 fails if the output pair
(I′, NI′) is same as the input pair (I, NI). Otherwise, we say that Algorithm 5.9 succeeds.
Now, the following Lemma 5.20 is easy to verify.

Lemma 5.20. If BoundaryTest
∗ (Algorithm 5.9) succeeds, then it returns a pair (I′, NI′)

with NI′ = N2
I and w(I)

4NI
≤ w(I′) ≤ w(I)

NI
.

It might happen that both, the NewtonTest
∗ and the BoundaryTest

∗ fail (they
can not fail too many times), in this case we fall back to the usual bisection method.
Algorithm BisectionTest

∗ (Algorithm 5.10) formalizes this step.
Now, we propose the claimed modification NewRefine

∗ of NewRefine in [Sag14].
Then, a similar argument4 as used in Lemma 6 and Theorem 7 of [Sag14] yields the

following Theorem 5.18.

Theorem 5.18. For refining an interval I = (a, b) with log (a, b) = O(τ) to a size less
than 2−L, the algorithm NewRefine

∗(Algorithm 5.11) needs O(k · (log n + log(τ + L)))
iterations. In each iteration, we need to compute a constant number of (MD f , m[k2; δ′])-
admissible points m∗, with m[k2; δ′] ⊂ I0 and δ′ = 2−O(τ+log n+L). In addition, the poly-
nomials f [t] and (f [t])′ have to be evaluated at m∗ to an absolute precision bounded by
O
(

log
(
| f (m∗)|−1

)
+ log n + L + τ

)
.

Proof Sketch. Let I = I0 ⊃ I1 ⊃ · · · ⊃ Is be the chain of intervals produced by
NewRefine

∗. Let smax be the length of the longest continuous sub-chain in I0 ⊃ I1 ⊃

4 The argument in Sagraloff [Sag14] only uses that, in each iteration, we choose an arbitrary point m∗ ∈
[m− dk/2e · δ, m + dk/2e · δ].

108 computing the roots of polynomials

Algorithm 5.10 BisectionTest
∗

Input: An (n, k, τ)-nomial f , a non-negative integer t with t < k, a pair (I, NI) , here
I = (a, b) is an interval with dyadic end points which isolates a real root α of f [t].
Also, NI = 22nI for some nI ∈N.

Output: A pair (I′, NI′), here I′ is a sub-interval of I, α ∈ I′ and NI′ ≥ NI .
1: ε ← 2−d2+2 log ne.
2: g ← f [t].
3: Compute admissible point m∗, where m∗ is an (MD f , m(I)[k2; ε · w(I)])-admissible

point.
4: Compute the signs of g(a), g(m∗), g(m∗r) and g(b).
5: NI′ ← max

(
4,
√

NI
)

6: if g(a)·g(m∗) < 0 then
7: return ((a, m∗), NI′)
8: else
9: return ((m∗, b), NI′)

10: end if

Algorithm 5.11 NewRefine
∗

Input: An (n, k, τ)-nomial f , a non-negative integer t with t < k, an interval I and a
positive integer L. Here I is an interval with dyadic end points which isolates a real
root α of f [t].

Output: A sub-interval I′ of I with |I| ≤ 2−L and α ∈ I′.
1: NI′ ← 4.
2: I′ ← I.
3: while |I′| > 2−L do
4: (I1, NI1) ← Output of NewtonTest

∗ (Algorithm 5.8) on (I′, NI′).
5: if NI1 = N2

I′ then
6: (I′, NI′) ← (I1, NI1).
7: continue
8: end if
9: (I2, NI2) ← Output of BoundaryTest

∗ (Algorithm 5.9) on (I′, NI′).
10: if NI2 = N2

I′ then
11: (I′, NI′) ← (I2, NI2).
12: continue
13: end if
14: (I3, NI3) ← Output of BisectionTest

∗ (Algorithm 5.10) on (I′, NI′).
15: (I′, NI′) ← (I3, NI3).
16: end while
17: return I′

5.11 refinement 109

· · · ⊃ Is such that the one circle region of all the intervals in this sub-chain contains
exactly the same roots of f [t]. By using an analogous argument as in Lemma 26 in
[SM16], (see also Lemma 6 in [Sag14]), we get that smax = O(log n + log(τ + L)).

Let v0
def
=== var(f [t], I0). The main task in Theorem 7 of [Sag14] is to show that

s = O(v0·(log n + log(τ + L))). To this end, [Sag14] divides the chain I0 ⊃ I1 ⊃ · · · ⊃ Is

into two parts. Let j0 be the smallest index such that ∆(Ij0) contains at most v0 many
roots of f [t] (if there exists no such j0, then we set j0 = s) . The first part of the chain
is I0 ⊃ I1 ⊃ · · · ⊃ Ij0 and the second part is Ij0+1 ⊃ Ij0+2 ⊃ · · · ⊃ Is. So it is enough to
show that j0 = O(v0·(log n + log(τ + L))) and s− j0 = O(v0·(log n + log(τ + L)). By
using the definition of smax, after every smax intervals in the chain, the number of roots
in the one circle region drops by at least one. Is has at least one root of f [t] in its one
circle region, namely α. Thus s− j0 ≤ v0 · smax = O(v0·(log n + log(τ + L))). To show a
similar upper bound on j0, consider the following two cases.

Case 1. The first case is when Ij0 and I0 share an endpoint. Thus guarantees the
success of the BoundaryTest

∗. In this case, it can be shown that j0 =

O(log n + log(τ + L)). This follows from the proof of Lemma 23 of [SM16],
where j0 appears as s1 in the proof of Lemma 23 of [SM16].

Case 2. Now consider the cases when Ij0 and I0 do not share share any endpoint. Let
k0 < j0 be the index of the last interval Ik0 such that Ik0 shares an endpoint
with I0. Then k0 = O(log n + log(τ + L)). Suppose I0 = (a0, b0). We know

that all the points in Ik0+1 are of absolute value at least
w(Ik0+1)

4 . Now it can
be seen that after O(log n) further intervals from k0, once circle regions of
subsequent intervals are contained in the Obreshkoff lens Ln of I0 as intervals
are at least halved in each step. By using Theorem 5.4, we know that the
number of roots in Ln is bounded by v0. Therefore the once circle region of
these subsequent intervals contains at most v0 roots.

This proof is essentially the same as the proof of Lemma 6 and Theorem 7 of [Sag14].
We have only used the fact that the multi points we created in NewRefine

∗ are always
contained in the intervals spanned by multi-points created in NewRefine in [Sag14], as
we set ε = Θ

(1
n2

)
. Other claims follow directly from the description of NewRefine

∗ in
Algorithm 5.11.

Combining Theorem 5.18 and Theorem 5.15, we obtain a bound on the complexity of
refining I0 to a size less than 2−L:

Corollary 5.8. For refining I0 = (a0, b0) ⊂ R+, to a size less than 2−L, the algorithm
NewRefine

∗ needs

Õ
(

k5 · (k + log n) · log n ·
(

k log n + τ + L + nlog (b0)
))

110 computing the roots of polynomials

bit operations. For each endpoint p of the interval returned by NewRefine
∗, it holds that∣∣∣MD f (p)

∣∣∣ = 2−O(k(k log n+τ+L+k)).

5.12 Computing a Weak Covering

We now describe how to compute a weak (L, [0, 1 + 1
n])-covering for a given (n, k, τ)-

nomial f in polynomial time. Suppose f = ∑k
i=1 fixei . We first consider an upper bound

τ̃ ∈N for τ with τ ≤ τ̃ ≤ τ + 2, and define δ := min(2−2τ̃−2, 1
n) · k−2. Then, in the first

step, we compute (MD f , m[k2; δ])−admissible points a∗ and b∗ for m := 2−2τ−2 and
m := 1 + 2

n , respectively. Then, we follow the approach as outlined in Section 5.9 to
compute a weak (L, [a∗, b∗])-covering for f , where we use the algorithm NewRefine

∗

from the previous Section to refine isolating intervals for the roots of the fractional
derivatives of f to a size less than 2−L. The so obtained covering is indeed also a weak
(L, [0, 1 + 1

n])-covering for f , which follows from the fact that b∗ ≥ 1 + 1
n and each

positive root of f is lower bounded by
(

1 + maxk−1
i=1

| fi |
| f1|

)−1
≥ (1 + 22τ)−1 ≥ a∗, due

to Cauchy’s root bound (Theorem 5.2). For details, consider the exact description of
Algorithm 5.12.

Correctness of the algorithm follows directly from our considerations in Section 5.9.
Further notice that, for each i in the outermost for-loop of the algorithm, we add at
most k− i− 1 intervals to Wi to obtain Wi+1 as f [i] has at most k− i− 1 positive real
roots. Hence, each list Wi contains at most k2 many intervals. It remains to bound the
running time of Algorithm 5.12. The proof of the following Lemma 5.21 follows in a
straight forward manner from Theorem 5.15, Corollary 5.8, and the fact that we need to
call the refinement algorithm at most k times for each fractional derivative.

Lemma 5.21. Algorithm 5.12 computes a weak (L, [0, 1 + 1
n])-covering for f consisting of at

most k2 many intervals. Its bit complexity is Õ(k7 · (k + log n) · log n · (k log n + τ + L)).

Proof. We first prove the claimed bound on the running time. The outermost for
loop runs at most k− 1 times. So we just need to prove the running time bound of
Õ(k6 · (k + log n) · (k log n + τ + L) · log n) on one iteration of this loop. Note that an
interval is added to a weak (L, [0, 1 + 1

n])-covering Wi of f [i] if it contains a root of
f [i]. Also, intervals of Wi−1 are added to Wi. Thus each interval in Wi corresponds to
some positive real root of f [i] or some f [j] for some j > i. Each fractional derivative
f [i] of any (n, k, τ)-nomial f has exactly k − i monomials. Therefore f [i] has at most
k − i − 1 positive real roots. Hence the total number of intervals in Wi is at most
1 + 2 + . . . + k + i− 1 = (k−i

2). Thus, the inner for loop runs for at most O(k2) iterations.
In each iteration of the inner loop, we compute the sign of f [i] at the end points of

some interval (b, c). Note that both b and c are (MD f , m[k2; δ′])-admissible for some

5.12 computing a weak covering 111

Algorithm 5.12 Compute a weak (L, [0, 1 + 1/n])-covering of f

Input: An (n, k, τ)-nomial f and a non-negative integer L ∈N.
Output: A weak (L, [0, 1 + 1

n])-covering of f .
1: δ ← 1

k2 ·min(1
n , 2−2τ−6)

2: Compute (MD f , m[k2; δ])-admissible points a∗ and b∗ for m def
=== 2−2τ−6 and m def

===

1 + 2
n , respectively.

3: Compute the sign of f at x = a∗ and x = b∗.
4: for i = k− 1 to 0 do
5: if (i = (k− 1)) then
6: Compute a trivial weak (L, [a∗, b∗])-covering Wk−1 for f [k−1]. . f [k−1] has

only one monomial.
7: Wk−1 ← {(a∗, a∗), (b∗, b∗)}
8: else
9: Wi+1 ← weak (L, [a∗, b∗])-covering for f [i+1] computed in the previous itera-

tion of this loop
10: Wi ← Wi+1
11: end if
12: for each consecutive intervals (a, b) and (c, d) in Wi+1 do
13: Compute signs of f [i](b) and f [i](c).
14: if f [i](b) f [i](c) < 0 then
15: Use NewRefine

∗ to refine the isolating interval (b, c) to a new interval
(b′, c′) of length at most 2−L.

16: Wi ← Wi ∪ (b′, c′)
17: end if
18: end for
19: end for
20: return W0

112 computing the roots of polynomials

δ′ = 2−O(τ+log n+L), which follows from Theorem 5.18. Thus by using Lemma 5.17, we
know that ∣∣∣ f [i](x)

∣∣∣ ≥ 2−O(k·(k log n+τ+L))

for x = b, c. By using Lemma 5.14, we know that we can compute the sign of f [i](b)
and f [i](c) in time

Õ((k + log n) · (k(k log n + τ + L) + log n + τ + k))) =

Õ(k · (k + log n) · (k log n + τ + L)).

Here we are using the fact that all these end points c (also b) are in (0, 1 + 3
n) and thus

n · log (c) = O(1).
Thus all the signs can be computed in time

Õ(k2 · k · (k + log n) · (k log n + τ + L)).

Now note that we perform the refinement on an interval (b, c) using NewRefine
∗

only when (b, c) contains a real root of f [i]. Since f [i] has at most k − i − 1 positive
real roots, we use NewRefine

∗ at most k − i − 1 times. By using Corollary 5.8, all
such refinements take time Õ(k6 · (k + log n) · log n · (k log n + τ + L)). Thus Algorithm
Algorithm 5.12 runs in Õ(k7 · (k + log n) · log n · (k log n + τ + L)) time.

Correctness of W0 being a weak (L, [0, 1 + 1/n])-covering of f follows from the
discussion at the beginning of this section.

In order to further process a weak (L, [0, 1 + 1/n])-covering for f , we need the
intervals in the weak covering to be well separated. For given L, λ ∈ N0, we say
that a list L of intervals is (L, λ)-separated if the distance dist(I, J) between I and
its neighboring intervals is at least min(2−L, λ · w(I)). Notice that, starting from an
arbitrary list L of intervals, we can always deduce an (L, λ)-separated list L′ from L
in a way such that each interval in L is contained in an interval from L′. Namely, this
can be achieved by recursively merging pairs of intervals I, J ∈ L that violate the above
condition until the actual list is (L, λ)-separated. See Algorithm 5.13 for details.

By induction, it is easy to see that

w(L′) ≤ (2 + λ)|L| ·max(2−L, w(L)),

where w(L) and w(L′) denote the maximal width of an interval in L and L′, respec-
tively. Hence, by first computing a weak (L′, [0, 1 + 1/n])-covering L, with

L′ = L + k2 · log(2 + λ)

5.13 Tl -test 113

Algorithm 5.13 Merge

Input: A set of L intervals of size ` and a parameter λ.
Output: A list of intervals L′ such for every interval I ∈ L′, distance between I and its

neighboring intervals is at least λ · w(I). Also intervals of L′ cover the intervals of
L.

1: L′ ← L.
2: for each interval I ∈ L do
3: if I is not λ-separated then . There is some interval J which is “too close” to I
4: Suppose J is the neighboring interval of I such that distance between I and J

is < min(2−L, λ · w(I)).
5: I′ ← Smallest interval containing both J and I.
6: L′ ← L′ ∪ I′.
7: L′ ← L′ \ {I, J}.
8: break
9: end if

10: if Any interval was merged then
11: return output of this algorithm Algorithm 5.13 on L′.
12: end if
13: return L′.
14: end for

and |L| ≤ k2, and then recursively merging the intervals, we obtain a weak (L, [0, 1 +
1/n])−covering for f that is also (L, λ)-separating and whose intervals have width at
most 2−L. From Lemma 5.21, we thus conclude:

Corollary 5.9. For any λ, L ∈ N0, we can compute an (L, λ)-separating weak (L, [0, 1 +

1/n])−covering for f in

Õ(k7(k + log n) · (k log n + τ + L + k2 log(2 + λ)) · log n)

bit operations.

5.13 Tl-test

In the previous section, we have shown how to compute a weak (L, [0, 1 + 1
n))-covering

of a given (n, k, τ)-nomial f . Now, we aim to convert this weak covering to a covering
of f . For this, we need an algorithm to count the number of roots of f (x) contained in
a given disk. Recent work [Bec+18] introduces a simple algorithm for this task, denoted
Tl-test, which is based on Pellet’s Theorem (Theorem 5.19).

Theorem 5.19 (Pellet’s Theorem, Theorem 28.1 in [Mar66]). Given the polynomial

f (z) = f0 + f1x + · · ·+ fpxp + · · ·+ fnxn with fp 6= 0.

114 computing the roots of polynomials

If the polynomial Fp(x) defined by

Fp(x)
def
=== | f0|+ | f1| x + · · ·+

∣∣ fp−1
∣∣ xp −

∣∣ fp
∣∣ xp +

∣∣ fp+1
∣∣ xp + · · ·+ | fn| xn

has two positive zeros r and R, r < R, then f (x) has exactly p zeros in or on the circle |x| < r
and no zeros in the ring r < |x| < R.

For an arbitrary polynomial F ∈ C[x], a disk ∆ = ∆r(m) ⊂ C, and a parameter K ≥ 1,
we consider the following inequality:

Tl(∆, K, F) :

∣∣∣∣∣F(l)(m)rl

l!

∣∣∣∣∣− K ·∑
i 6=l

∣∣∣∣∣F(i)(m)ri

i!

∣∣∣∣∣ > 0. (5.8)

Hence, we check whether the absolute value of the lth coefficient al =
F(l)(m)rl

l! of

F∆(x) = f (m + rx) =
n

∑
i=0

aixi =
n

∑
i=0

F(i)(m)ri

i!
xi

dominates the sum of the absolute values of all remaining coefficients weighted by
the parameter K. We say that Tl(∆, K, F) succeeds if the above inequality is fulfilled.
Otherwise, we say that it fails. In case of success for any K ≥ 1, ∆ contains exactly
l roots of F counted with multiplicity. This follows directly from Rouché’s Theorem
(Theorem 5.9) applied on alxl and F∆(x). We obtain no information in case of a failure
of Tl(∆, K, F). In [Bec+18], sufficient conditions were derived on the success of the
Tl-test:

Theorem 5.20 (Corollary 1 in [Bec+18]). Let F ∈ C[x] be a polynomial of degree n, and
∆r(m) be a disk. If ∆r(m) as well as the enlarged disk ∆256n5r(m) contain l roots of F counted
with multiplicity, then Tl(∆16nr(m), 3

2 , F) succeeds.

Unfortunately, the above test has two major drawbacks when dealing with sparse
polynomials. First, we need to compute the coefficients F∆ exactly, which we cannot
afford as the bit-size of each coefficient of F∆(x) is Ω(n). Second, an even more severe,
there are n coefficients to be computed. Hence, using the above approach directly
to count the number of roots of a sparse polynomial f does not work. Instead, we
propose two modifications to overcome these issues. The first modification, namely to
use approximate (in a proper manner) instead of exact arithmetic, has already been
considered in previous work. However, the second modification is more subtle. It
exploits the fact that, for a suitably chosen disk centered at some admissible point, only
the first k2 coefficient are relevant for the outcome of the above test.

We first go into details with respect to our first modification. Let us define E`
def
=== |al |

and Er
def
=== K ·∑i 6=l |ai| the expressions on the left and right hand side of the inequality

5.13 Tl -test 115

in (Equation (5.8)). We aim to check whether E`− Er > 0 or not. In general, if a predicate
P is of the latter form P = (E` − Er > 0) with two (computable) expressions E` and
Er, you can compute approximations Ẽ` and Ẽr of E` and Er with

∣∣Ẽ` − E`

∣∣ < 2−L and∣∣Ẽr − Er
∣∣ < 2−L for L = 1, 2, 4, For a certain L, you may then try to compare E`

and Er taking into account their corresponding approximations and the approximation
error. Eventually (for a sufficiently large L), you either succeed, in which case you can
return the sign, or assert that E` and Er must be good approximations of each other.
In the latter case, you just return a flag called Undecided. In short, this is the idea of
so-called soft-predicates. For details, we refer to [Bec+18]. Notice that, in cases where

Algorithm 5.14 Soft Predicate P̃ .

Input: A predicate P defined by non-negative expressions E` and Er , with E` 6= 0 or
Er 6= 0, i.e., P succeeds if and only if E` > Er. A rational constant δ > 0.

Output: True, False, or Undecided. In case of True (False), P succeeds (fails). In case of
Undecided, we have 1

1+δ · E` < Er ≤ (1 + δ) · E`.
1: L ← 1
2: while True do
3: Compute L-bit approximations Ẽ` and Ẽr of E` and Er.
4: Compute upper and lower bounds of E` and Er as below. . E+

` , E+
r are upper

bounds and E−` , E−r are lower bounds.
5: E+

` ← max(0, Ẽ` + 2−L)
6: E+

r ← max(0, Ẽr + 2−L)
7: E−` ← max(0, Ẽ` − 2−L)
8: E−r ← max(0, Ẽr − 2−L)
9: if E−` > E+

r then . In this case, we are sure that E` > Er
10: return True
11: end if
12: if E+

` < E−r then . In this case, we are sure that E` < Er
13: return False
14: end if
15: if

(1
1+δ

)
· E+

` ≤ E−r ≤ E+
r ≤ (1 + δ) · E−` then . In this case, we know that E`, Er

are good approximations of each other.
16: return Undecided.
17: end if
18: L ← 2 · L
19: end while

E` considerably differs from Er, the soft predicate P̃ allows us to compute the sign
of P without the need of exact arithmetic. In all other cases (if it returns Undecided),
we know at least that E` and Er are good approximations of each other. We remark
that, in [Bec+18], the above soft predicate P̃ was only described for δ = 1

2 , however,
it easily generalizes to any constant δ. The proof in [Bec+18] directly shows that, for

116 computing the roots of polynomials

any constant δ, Algorithm 5.14 needs an L0-bit approximation of E` and Er with L0

bounded by:

L0 ≤ 2 ·
(

log
(

max(E`, Er)
−1
)
+ log

(
1
δ

))
.

In [Bec+18], a soft-variant of the Tl-test was considered, where the authors compared

the expressions E`
def
=== |al | and Er

def
=== ∑i 6=l |ai|. Now, we apply the above soft-predicate

to the expressions E`
def
=== al and Er

def
=== ∑i≤k2

i 6=l |ai|, that is, we replace the entire sum
∑i 6=l |ai| by its truncation after the first k2 terms. However, we will make the assumption

that the truncated sum ∑i>k2 |ai| is upper bounded by |a0|
128 ; see Algorithm 5.15. This

might look haphazardly at first sight, however, we will later see that the latter condition
is always fulfilled for a k-nomial F and a suitable disk ∆r(m) centered at an admissible
point.

Algorithm 5.15 T̃l-test

Input: An (n, k, τ)-nomial f (x), a disk ∆ := ∆r(m) in the complex space and an integer
l with 0 ≤ l ≤ k. It is required that ∑i>k2 |ai| ≤ |a0|

128 , where f∆(x) = ∑n
i=0 ai · xi.

Output: True, False or Undecided. If the algorithm returns True then the disk ∆r(m)
contains exactly l roots.

1: Define E`
def
=== |al | and Er

def
=== 65

64 ·∑
i≤k2

i 6=l |ai|.
2: Define predicate P = (E` − Er > 0).
3: return output of Algorithm 5.14 on predicate P with δ = 1

128 .

Lemma 5.22. For a disk ∆ := ∆r(m) ⊂ C, the T̃l-test (Algorithm 5.15) needs to compute
L-bit approximations of E` and Er with

L ≤ L(m, r, f)
def
=== 2 ·

(
log
(

max(E`, Er)
−1
)
+ 8)

)
.

If Tl(∆, 3
2 , f) succeeds and ∑i>k2 |ai| ≤ |a0|

128 , then the T̃l-test returns True. Running Algo-
rithm 5.15 for all l = 0, . . . , k uses a number of bit operations upper bounded by:

Õ
(

k2 · (k + log n)(L(m, r, f) + τ + nlog (m) + k2 · (log n + log (r)))
)

.

Proof. We first prove correctness. If the algorithm returns True, then E` > Er, and thus
|al | > 65

64 ·∑
i≤k2

i 6=l |ai| . If l = 0, then

∑
i 6=0
|al | <

64
65
· |a0|+

1
128
· |a0| < |a0| .

5.13 Tl -test 117

Otherwise, we have

|al | >
65
64
·

i≤k2

∑
i 6=l
|ai| ≥

i≤k2

∑
i 6=l
|ai|+

1
64
· |a0| ≥

i≤n

∑
i 6=l
|ai| .

Hence, in both cases, Tl(∆, 1, f) succeeds, which implies that ∆ contains exactly l roots.
Now, suppose that Tl(∆, 3

2 , f) succeeds. If the T̃l-test returns Undecided, then 128
129 ·

E` < Er ≤ 129
128 · E`. On the other hand, we have

|al | >
3
2

≤n

∑
i 6=l
|ai| ≥

3
2

≤k2

∑
i 6=l
|ai|

and thus E` >
3
2 Er, which contradicts the fact that 128

129 · E` < Er. If the T̃l-test returns
False, a similar argument yields a contradiction as well. This shows that success of Tl
implies that T̃l returns True. It remains to show the claimed bounds on the bit complexity.
It suffices to estimate the cost for computing an L(m, r, f)-bit approximations of E`

and Er. The ith coefficient ai, with i ≤ k2, can be computed by evaluating the (n, k, τ +

k2 · (log n + log (r)))-nomial gi = f (i)(x)ri

i! at x = m. In order to compute L(m, r, f)-
bit approximations of E` and Er, we need to compute an (L(m, r, f) + 2 log k)-bit
approximation of each gi(m), for i = 0, . . . , k. According to Lemma 5.14, this can be
done using

Õ(k2 · (k + log n)(L(m, r, f) + nlog (m) + τ + k2 · (log n + log (r)))

bit operations.

Notice that, in order to actually use the T̃l-test for counting the roots in a disk ∆, we
need the following to be satisfied: ∑i>k2 |ai| ≤ |a0|

128 to be true.

Theorem 5.21. Let F be a (n, k, τ)-nomial with n ≥ k ≥ 2. Let ∆
def
=== ∆r(m) be a disk

centered at some m ∈ R+ with m
r > n16, and let F∆(x) = ∑n

i=0 ai · xi. Further suppose that
∆ r

2·k4k+2
(m) does not contain any root of F and F(m) 6= 0. Then, it holds that ∑i>k2 |ai| ≤ |a0|

128 .

Proof. Let z1, z2, . . . , zn be the complex roots of F(x), then we have:

ai

a0
=

F(i)(m)

F(m) · i! · r
i =

ri

i!
· ∑
(j1,j2,...,ji)

1

∏i
`=1(m− zj`)

.

Here we sum over all tuples (j1, j2, . . . , ji) with distinct entries js, 1 ≤ js ≤ n. For a fixed
tuple (j1, j2, . . . , ji), at most k of the i roots zj1 , zj2 , . . . , zji are contained in the cone Cn as
defined in Figure 5.2, whereas the remaining i− k roots are located outside of Cn. Since
m
r > n16, the distance from m to any of these roots is at least n15r. Also, since ∆ r

2·k4k+2
(m)

118 computing the roots of polynomials

does not contain any roots of F(x), distance of m from the roots in Cn is at least r
2·k4k+2 .

Thus, we get ∑(j1,j2,...,ji)
1

∏i
`=1 |m−zjk

| ≤ (n
i) ·

2k ·k4k2+2k

rk ·(n15r)i−k . Hence, for i > k2, we get

|ai|
|a0|
≤ ri

i!
·
(

n
i

)
· 2k · k4k2+2k

rk · (n15r)i−k =
1
i!
·
(

n
i

)
· 2k · k4k2+2k

n15(i−k)

≤ 1
i! · i! ·

2k · k4k2+2k

n14i−15k

≤ 1
i! · i! ·

2k · k4k2+2k

n6i (By using the fact that (n
i) ≤

ni

i! and 15k < 8k2 < 8i)

≤ 1
i! · n6 · i! ·

2k · k4k2+2k

k6k2 ≤ 2k

n6 · (i!)2 ·
(

1
k

)1−2k2+2k

<
1

128n

Hence, summing up over all i > k2 proves the claim.

The following Corollary is now an immediate consequence of Theorem 5.21 and
Lemma 5.15.

Corollary 5.10. Let f (x) ∈ R[x] be an (n, k, τ)-nomial, and m, r ∈ R+. Further assume
that m

r ≥ 2(1 + n16). Let m∗ be a (f , m[k2; r
k2]) -admissible point and r∗ = 2r. Define

∆ = ∆r∗(m∗) ⊇ ∆r(m) and f∆(x) = ∑n
i=0 ai · xi. , then ∑i>k2 |ai| ≤ |a0|

128 .

In the next step, we show how to satisfy the precondition of the Tl-test. Theorem 5.20

says that if ∆256n5r(m) does not contain any of the roots which are not contained

in ∆r(m), then Tl(∆16nr, 3
2 , f) succeeds for some l. Let us define M def

=== 256n5, and

let ∆i
def
=== ∆Mir(m) for i = 0, 1, . . . , k + 1. Further assume that r has been chosen

sufficiently small enough such that each of the disks ∆i is contained in the cone Cn.
Since Cn contains at most k roots, there must exist a j with 0 ≤ j ≤ k such that ∆j+1−∆j
does not contain any root. Hence the Tl-test will succeed on ∆16nMjr(m). So instead of
running the Tl-test on some initial disk ∆r(m), we run it on all disks ∆16nMir(m) for
i = 0, 1, . . . , k. See Figure 5.3.

We return the first disk on which the Tl-test succeeds; see Algorithm 5.16.
Correctness of the algorithm follows immediately from the above discussion. The

condition on m and r guarantees that each of the disks ∆i is contained in Cn. Lemma 5.23

gives a bound on its running time.

Lemma 5.23. Algorithm 5.16 returns a disk ∆r′(m′), with r′ ≤ 2Rr
n15 and m′ ∈ [m− r′

32n , m +
r′

32n], together with the number of roots of f (x) in ∆r′(m′). Its bit complexity is bounded by

Õ
(

k5 · (k + log n) ·
(

k2 log n + nlog
(

m + r28k+4n5k+16
)
+ τ + log

(
r−1
)))

.

5.13 Tl -test 119

π
n+2

m

Figure 5.3: Here M = 256n5r and innermost circle has radius M and circles after that have
radius Mr, M2r, . . .

Algorithm 5.16 Wrapper T̃l-test

Input: An (n, k, τ)-nomial f (x), a disk ∆ := ∆r(m) in the complex space. We assume
m ≥ 2r + 2Rnr with R = 28k+4n5k+16.

Output: A disk ∆r′(m′) ⊇ ∆r(m) and the number of the roots of f in ∆r′(m′), where
m′ and r′ satisfy: r′ ≤ 2Rr

n15 , m′ ∈ [m− r′
32n , m + r′

32n].
1: M ← 256n5r′

2: for each 0 ≤ i ≤ k do
3: for each 0 ≤ l ≤ k do
4: ri ← Mir
5: Compute an (f , m[k2; ri

k2])-admissible point m∗i .
6: r∗i ← 2ri
7: Perform the T̃l-test, that is Algorithm 5.15, on ∆16nr∗i (m

∗
i).

8: if T̃l-test succeeded in the previous step then
9: return ∆16nr∗i (m

∗
i) and l.

10: end if
11: end for
12: end for

120 computing the roots of polynomials

Proof. The condition m ≥ 2r + 2Rnr implies that all the disks considered in the Algo-
rithm 5.16 are contained in the cone Cn. In addition, the condition of Corollary 5.10 is
also fulfilled.

We have that M = 256n5, and ∆i
def
=== ∆Mir(m) for i = 0, 1, . . . , k+ 1. Since Cn contains

at most k− 1 roots (Theorem 5.5) of f , we know that there exists an i such that ∆i and
∆i+1 both contain l roots of f . Thus line 7 would succeed for this i. It is clear that we
make at most k2 calls to line 7. By using Lemma 5.22, line 7 runs in

Õ
(

k2 · (k + log n)(L + τ + nlog (m∗i) + k2 · (log n + log (16nr∗i)))
)

bit operations. Here L def
=== 2 ·

(
log
(
max(E`, Er)−1)+ 8)

)
with ai =

f (i)(m′)
i! · (16nr∗i)

i

and E`, Er defined as in Algorithm 5.15. Note that max(E`, Er) ≥ a0. By using Theo-

rem 5.17, we get that a0 = f (m′) ≥ 2−O
(

k·
(

k log n+τ+log
(

k2
ri

)))
where ri is as defined in

line 4. Therefore

max(E`, Er) ≥ 2−O
(

k·
(

k log n+τ+log
(

k2
r1

)))
.

Thus the total running time of line 7 is

Õ
(

k3 · (k + log n) ·
(

k2 log n + nlog (m + Rr) + τ + log
(

r−1
)))

.

Now the claimed running time follows.

5.14 Computing a Covering

We now show how to compute an (L, [0, 1 + 1
n])-covering from a weak (L′, [0, 1 + 1

n])-
covering. For this, we apply Algorithm 5.16 to the one-circle regions of these intervals
in the weak covering. The following Lemma 5.24 shows that the requirements in
Algorithm 5.16 are fulfilled if we choose L′ large enough. In addition, by ensuring that
the intervals in the weak covering are well separated from each other, we can ensure
that the corresponding disks returned by Algorithm 5.16 are disjoint.

Lemma 5.24. Algorithm 5.17 computes an (L, [0, 1 + 1
n])-covering L′ for f using

Õ
(
k7 · (k + log n)(k3 log n + τ + L)

)
bit operations. The distance between any two disks of L′ is at least 32 · 2−L, and ∆ ∩R ⊂
(2−3τ, 2) for any disk ∆ in L′.

Proof. By using Corollary 5.9, line 3 in Algorithm 5.17 can be performed using

Õ(k7(k + log n) · (k log n + τ + L + dlog Re+ 4τ + 5 + log n + k2 log(2 + 8R)) · log n)

5.14 computing a covering 121

Algorithm 5.17 Computing an (L, [0, 1 + 1
n])-covering

Input: An (n, k, τ)-nomial f (x) and a positive integer L.
Output: An (L, [0, 1 + 1/n])-covering for f .

1: R ← 28k+4n5k+16

2: L′ ← L + dlog Re+ 4τ + 5+log n
3: Compute a weak (L′, [0, 1 + 1

n])-covering L for f that is (L′, 8R)-separated. . By
using Corollary 5.9.

4: L′ ← ∅
5: for each interval I = (a, b) ∈ L do
6: ∆ ← ∆ b−a

2
(a+b

2)=one circle region of I
7: (∆r′(m′), µ) ← Output of Algorithm 5.16 on f and ∆.
8: L′ ← L′ ∪ {(∆r′(m′), µ)}
9: end for

bit operations. By using R=28k+4n5k+16, this bound writes as

Õ
(
k7 · (k + log n)(k3 log n + τ + L)

)
.

Note that the weak covering returned in line 3 is of size at most k2. By using Lemma 5.23,
we need

Õ
(

k7 · (k + log n) ·
(

k2 log n + nlog (m + Rr) + τ + log
(

r−1
)))

many bit operations to convert the weak covering to a strong covering, where r is the
minimum size of the intervals in the weak covering we computed in line 3. We know
that r = 2−O(L′).Therefore m + Rr ≤ 1 + 1

nO(1) . Thus nlog (m + Rr) = O(1). Hence the
total running time is Õ

(
k7 · (k + log n)(k3 log n + τ + L)

)
.

It remains to show how to compute an (L, [0, ∞))-covering for f from an (L, [0, 1+ 1
n))-

covering L1 for f and an (L, [0, 1 + 1
n))-covering L2 for xn f (1

x). We first derive an
(L, [n

n+1 , ∞))-covering for f from L2 by inverting the disks ∆ in L2. The proof of the
following Lemma 5.25 is straight forward.

Lemma 5.25. Let L be an (L, [0, 1 + 1
n])-covering of xn f (1

x) as computed by Algorithm 5.17,

and L′ def
=== {(∆−1, µ) : (∆, µ) ∈ L} be the list obtained from L by inverting the disks in L (i.e.

∆r(m)−1 = ∆r′(m′) with r′ = r
m2−r2 and m′ = m

m2−r2). Then, L′ is an (L′, [n
n+1 , ∞))-covering

of f with L′ ≥ L− 6τ, and the distance between two disks in L′ is at least 8 · 2−L.

Proof. It is easy to see that ∆r′(m′) is the image of the disk ∆r(m) under the map z 7→ 1
z .

Since the value of the left end point m− r of any disk in L is at least 2−3τ, we obtain
that:

122 computing the roots of polynomials

m2 − r2 = (m− r)(m + r) ≥ (m− r)2 ≥ 2−6τ.

Therefore:
r′ =

r
m2 − r2 ≤ r26τ.

Hence L′ ≥ L− 6τ.
Suppose t is a real root of f (x) with t ∈ [n

n+1 , ∞). Then 1
t is the root of xn f (1

x) and
also 1

t ∈ [0, 1 + 1
n]). Therefore 1

t is covered by L. Hence L′ is (L′, [n
n+1 , ∞))-covering of

f .
Suppose ∆r1(m1), ∆r2(m2) are two disks in L. The distance between the corresponding

inverted disks ∆r′1
(m′1), ∆r′2

(m′2) is:

1
m1 + r1

− 1
m2 − r2

≥ (m2 − r2)− (m1 + r1)

(m2 − r2) · (m1 + r2)

Since the value of the right end point of every disk in L is at most 2, it follows that
(m2 − r2) · (m1 + r2) ≤ 4. Therefore:

1
m1 + r1

− 1
m2 − r2

≥ (m2 − r2)− (m1 + r1)

(m2 − r2) · (m1 + r2)
≥ 32 · 2−L

4
= 8 · 2−L.

Above, we have used the fact that the distance (m2 − r2)− (m1 + r1) between any
two ∆r1(m1), ∆r2(m2) disks in L is at least 32 · 2−L (by using Lemma 5.24).

Finally, we merge an (L, [0, 1 + 1
n))-covering L1 and an (L, [n

n+1 , ∞))-covering L2 for
f . Here, we assume that L > 3 + log n, and that the coverings are computed using
Algorithm 5.17 and by inverting the (L, (0, 1 + 1

n))-covering for xn · f (1
x) to obtain L2.

This guarantees that the distance between any two disks in either L1 or L2 is at least
8 · 2−L. For the merge, we keep each disk from L1 that has no intersection with a disk
from L1, and vice versa. For each pair of elements (∆1, µ1) ∈ L1 and (∆2, µ2) ∈ L2 with
∆1 ∩ ∆2 6= ∅, we keep (∆1, µ1) (and omit (∆2, µ2)) if the center of ∆1 is not larger than
1. Otherwise, we keep (∆2, µ2) (and omit (∆1, µ1)). Following this approach, we might
loose some of the complex roots that are contained in the union of ∆1 and ∆2, however,
we will not loose any real root. Now we show that we do not loose any real root.

Suppose ∆1 ∩ ∆2 6= ∅ and we kept (∆1, µ1). Assume that there is a real root a ∈ ∆2

which we lost by following this approach. We have ∆1 = ∆r(m). Since we kept (∆1, µ1),
we know that m < 1. Since L > 3 + log n, radius of both ∆1, ∆2 is at most 1

8n . It
follows that |m− a| < 3

8n . In particular, a < 1 + 1
n . This means there exists a pair

(∆, µ) ∈L1(because L1 is an (L, [0, 1 + 1
n))-covering) such that a ∈ ∆. In this case,

the distance between ∆1 and ∆ is less than 8 · 2−L. This is a contradiction. A similar
argument applies when we keep ∆2 instead of ∆1.

Thus, the so obtained list constitutes an (L, (0, ∞))-covering for f .

5.14 computing a covering 123

Notice that any two (L, (0, ∞)) and (L, (−∞, 0))-coverings for f can be trivially
merged by taking their union as there are no intersections. In addition, since the final
covering contains a list of disjoint disks contained in the union of the cone Cn and its
reflection on the imaginary axis, and since the union of these two cones contains at
most 2k− 1 roots of f , the number of disks is also bounded by 2k− 1. Hence, our main
Theorem Theorem 5.13 follows.

Part III

C O M P L E X I T Y O F S Y M M E T R I C P O LY N O M I A L S

6
C O M P L E X I T Y O F S Y M M E T R I C P O LY N O M I A L S

This chapter deals with arithmetic complexity of symmetric polynomials. It is known
that symmetric Boolean functions are “easy” to compute. So one can ask the same
question for symmetric polynomials. In this chapter, we show that there exist symmetric
polynomials which are “hard” to compute, that is, there exist symmetric polynomial
families having “large” arithmetic circuit complexity (assuming VP 6= VNP). For this
purpose, we use an algebraic version of Newton method used in finding the roots of
uni-variate polynomials.

6.1 Checking Symmetries

First we study the complexity of checking whether a given Boolean function or poly-
nomial is symmetric? To this end we define the following problem: SFT (symmetric
function testing).

Problem 6.1 (SFT). Given a Boolean circuit C computing the Boolean function f (x1, x2, . . . ,
xn), check if f is symmetric, that is, is f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n)) for all
σ ∈ Sn?

We now show that SFT is a “hard problem”.

Lemma 6.1. SFT and CSAT are polynomial time Turing reducible to each other, i.e., SFT ≤T
P

CSAT and CSAT ≤T
P SFT.

Proof. Given a Boolean circuit C, we want to check if the function f (x1, x2, . . . ,
xn) computed by C is symmetric. As the permutation group Sn is generated by two

permutations σ
def
=== (1, 2) and π

def
=== (1, 2, . . . , n) [Bra+11], it is necessary and sufficient

to check if the given function f is invariant under these two permutations of variables.
Thus we define the following Boolean functions:

g(x1, x2, . . . , xn)
def
=== f (xσ(1), xσ(2), . . . , xσ(n))

h(x1, x2, . . . , xn)
def
=== f (xπ(1), xπ(2), . . . , xπ(n))

127

128 complexity of symmetric polynomials

Now note that the equality of two Boolean variables x, y can be checked by the following
equality gadget.

(x ?
= y) = (¬x ∨ y) ∧ (x ∨ ¬y)

Thus we only need to check if both (¬ f ∨ g) ∧ (f ∨ ¬g) and (¬ f ∨ h) ∧ (f ∨ ¬h) are
tautologies (always equal to 1). This can be checked by two oracles calls to CSAT. Thus
SFT ≤T

P CSAT.
Now we prove the other direction. Given a Boolean circuit C, we want to check if the

function f (x1, x2, . . . , xn) computed by C is always zero. First we make an oracle call
to SFT to check if f is symmetric. If f is not symmetric then obviously f is a non-zero
function because the zero function is trivially symmetric. Thus we can assume f to be

symmetric. Now we ask the SFT oracle if the function h def
=== f ∧ x1 is symmetric? If f

was the zero function then so is h, therefore SFT oracle will answer that h is symmetric.
So if SFT oracle answers h to be non-symmetric then obviously f was non-zero. If h
also turns out to be symmetric then we know that:

∀(a1, a2, . . . , an) ∈ {0, 1}n : f ∧ a1 = f ∧ a2 = · · · = f ∧ an. (6.1)

Suppose f evaluated to 1 on a point (a1, a2, . . . , an) 6∈ {(0, 0, . . . , 0), (1, 1, . . . , 1)}. This
means that there exists (a1, a2, . . . , an) ∈ {0, 1}n such that f (a1, a2, . . . , an) = 1 with
ai = 1, aj = 0 for some i, j ∈ [n]. Then obviously we have f (a1, a2, . . . , an) ∧ ai = 1 and
f (a1, a2, . . . , an) ∧ aj = 0. Hence Equation (6.1) can not to be true. Thus f can only
be non-zero on the set {(0, 0, . . . , 0), (1, 1, . . . , 1)}. The value of f at both these points
can be checked manually to check whether f is the zero function or not. Therefore
CSAT ≤T

P SFT.

Analogous to SFT, we define the following problem: SPT (symmetric polynomial
testing).

Problem 6.2 (SPT). Given an arithmetic circuit C computing the polynomial f (x1, x2, . . . ,
xn), check if f is a symmetric polynomial?.

Lemma 6.2. SPT and ACIT are polynomial time many one reducible to each other, i.e.,
SPT ≤P ACIT and ACIT ≤P SPT.

Proof. Given an arithmetic circuit C, we want to check if the polynomial f (x1, x2, . . . ,
xn) computed by C is symmetric.

As in the proof of the Lemma 6.1, we use the fact that permutation group Sn is

generated by two permutations σ
def
=== (1, 2) and π

def
=== (1, 2, . . . , n), it is necessary and

sufficient to check if the given polynomial f is invariant under these two permuta-

6.2 computing symmetric functions and polynomials 129

tions of variables. Analogous to the proof of the Lemma 6.1, we define the following
polynomials:

g(x1, x2, . . . , xn)
def
=== f (xσ(1), xσ(2), . . . , xσ(n))

h(x1, x2, . . . , xn)
def
=== f (xπ(1), xπ(2), . . . , xπ(n))

Thus f is symmetric iff f − g = f − h = 0. Consider the polynomial F = y(f − g) +
z(f − h), where y, z are fresh variables. Thus f is symmetric iff F is the zero polynomial.
Hence SPT ≤P ACIT.

Now we prove the reverse direction. Given an arithmetic circuit C, we want to check
if the polynomial f (x1, x2, . . . , xn) computed by C is the zero polynomial or not.

Consider the polynomial G def
=== f (x2

1, x2
2, . . . , x2

n) · x1. We know that f is non-zero iff G
is non-zero. Suppose that G 6= 0. Now observe that in every monomial M of G, the
degree of x1 in M is odd and the degrees of the other variables x2, . . . , xn in M are

even. Now consider the polynomial H def
=== G(xσ(1), xσ(2), . . . , xσ(n)) where σ

def
=== (1, 2).

In every monomialM′ of H, the degree of x2 inM′ is odd and the degrees of the other
variables x1, x3, . . . , xn inM′ are even. Thus H 6= G. Hence if G is non-zero then G is
not symmetric because it is not invariant under the permutation σ

def
=== (1, 2). Thus G

is symmetric iff f = 0. Hence ACIT ≤P SPT.

In contrast to SFT, SPT has a randomized polynomial time algorithm by using
Lemma 6.2 (because ACIT ∈ BPP). We have seen that SPT and SFT have contrasting
computational complexities. That is, checking the symmetries in the Boolean setting
seems harder than in the algebraic setting. It is natural to study this contrast in the
computation of symmetric functions and polynomials.

6.2 Computing Symmetric functions and Polynomials

6.2.1 Symmetric functions

First we prove the well known result that symmetric Boolean functions (the correspond-
ing language) are in complexity class TC0.

Lemma 6.3. If L is a language such that Ln is a symmetric function for all n ∈ N+, then
L ∈ TC0.

130 complexity of symmetric polynomials

Proof. Since Ln is symmetric, we conclude that Ln only depends on the number of 1’s
in the input. Let us use |x|1 to denote the number of 1’s in x ∈ {0, 1}n. Let I ⊆ [n] be
the set such that the following is true:

Ln(x) =

1 |x|1 ∈ I

0 otherwise

Now it is easy to see the following equality for all x ∈ {0, 1}n:

Ln(x) =
∨
i∈I

(Ti(x) ∧ (¬Ti+1(x))). (6.2)

Here the Tj’s (in Equation (6.2)) are the threshold gates defined in Definition 2.14

in Chapter 2. The description of Ln in Equation (6.2) is obviously a TC0 circuit. Thus
L ∈ TC0.

6.2.2 Symmetric polynomials

We saw in Lemma 6.3 that symmetric Boolean functions are easy to compute. Now
we show that there exist symmetric polynomials which are hard to compute using
arithmetic circuits, assuming some well known complexity conjectures. First we define
the so called elementary symmetric polynomials.

Definition 6.1. The ith elementary symmetric polynomial en
i in n variables x1, x2, . . . ,

xn is defined as the following polynomial:

en
i

def
=== ∑

1≤j1<j2<···<ji≤n
xj1 · xj2 · · · · · xji .

For an arbitrary polynomial f ∈ F[x1, x2, . . . , xn], we define the polynomial fSym as:

fSym
def
=== f (en

1 , en
2 , . . . , en

n). (6.3)

Whenever n is clear from the context, we use the notation ei to denote the ith symmetric
polynomial en

i . Note that fSym is a symmetric polynomial. So Equation (6.3) is a method
to create symmetric polynomials. The fundamental theorem of symmetric polynomials
states that Equation (6.3) is the only way to create symmetric polynomials.

Theorem 6.1 ([BSC17]). If g ∈ F[x1, x2, . . . , xn] is a symmetric polynomial then there
exists a unique polynomial f ∈ F[y1, y2, . . . , yn] such that g = f (en

1 , en
2 , . . . , en

n). Moreover,
deg(f) ≤ deg(g).

6.2 computing symmetric functions and polynomials 131

Theorem 6.1 states that every symmetric polynomial g can be uniquely written as
fSym for some f . Thus in whatever follows, we always use the notation of kind fSym to
denote a symmetric polynomial.

Suppose we are given an arithmetic circuit C to compute f . Can we convert this
circuit to a circuit computing fSym? If we could compute the elementary symmetric
polynomials using small arithmetic circuits then we could just substitute the inputs of C
by en

i ’s to obtain a circuit CSym computing fSym. It is a folklore result that en
i ’s are easy

to compute.

Lemma 6.4 (Folklore). For any n ∈N+, L({en
1 , en

2 , . . . , en
n}) ≤ O(n2).

Proof. Consider the polynomial g(y) defined as:

g(y) def
=== (y + x1)(y + x2) . . . (y + xn).

Observe that the coefficient of yn−i in g(y) is en
i . By polynomial interpolation we also

know that the coefficients of g(y) are F-linear combinations of the evaluation of g(y)
at n distinct points a1, a2, . . . , an ∈ F. Therefore it follows that en

1 , en
2 , . . . , en

n ∈
〈g(a1), g(a2), . . . , g(an)〉. Each g(ai) can be computed using 2n arithmetic operations:
n additions and n multiplications. After computing each g(ai), it takes further 2n
arithmetic operations to compute each en

i . This construction is a circuit whose outputs
compute the elementary symmetric polynomials. It is clear that this circuit has size
4n2 = O(n2).

Now the following Corollary 6.1 follows easily using Lemma 6.4.

Corollary 6.1. For any polynomial f ∈ F[x1, x2, . . . , xn] , L(fSym) ≤ L(f) + O(n2).

Proof. We replace the ith input of the circuit C computing f by en
i . By Lemma 6.4, it

follows that this step can be performed by using O(n2) extra arithmetic operations.
Thus L(fSym) ≤ L(f) + O(n2).

The more interesting question is that if the reverse direction of Corollary 6.1 is also
true, i.e., can we bound L(f) in terms of L(fSym)? This question was posed and partially
solved in [GST06; DSW09; LR09]. More specifically, the following theorems were proved
in [GST06; DSW09; LR09].

Theorem 6.2 (Theorem 1 in [GST06]). For any polynomial f ∈ F[x1, x2, . . . , xn],
L(f) ≤ ∆(n)L(fSym) + 2, where ∆(n) ≤ 4n(n!)2.

Where as [GST06] showed the bound on L(f) for exact computation, [LR09] demon-
strated it for approximate computations.

Theorem 6.3 ([LR09]). For any polynomial f ∈ Q[x1, x2, . . . , xn], there is an algorithm that
computes the value f (a) within ε in time L(fSym) + poly(log ||a|| , n, log 1

ε) for any a ∈ Qn.

132 complexity of symmetric polynomials

Note that Theorem 6.3 does not compute a circuit for f but only gives an algorithm to
approximate the value of f at a given point. Results in [DSW09] were in a much more
general setting. [DSW09] studied the in-variance under general finite matrix groups,
not just under Sn as we are doing here. By specializing the theorems in [DSW09] for
the finite matrix group Sn, we get the following result.

Theorem 6.4 ([DSW09]). For any polynomial f ∈ F[x1, x2, . . . , xn], we have L(f) ≤
((n + 1)!)6L(fSym).

The upper bound in [DSW09] (Theorem 6.4) is worse than that of [GST06] (Theo-
rem 6.2) but this is to be expected because [DSW09] solves a more general problem.

All the exact bounds on L(f) above are exponential. Now we demonstrate that L(f)
can be polynomially bounded in terms of L(fSym). For this, we need the Newton’s
iteration in an algebraic setting. The main proof idea is much easier to demonstrate in
the case of n = 2. Let B(y) be the following uni-variate polynomial in y with coefficients
in C[x1, x2]:

B(y) def
=== y2 − (x1 + x2)y + x1x2.

Note that the roots of B(y) are x1, x2. Hence we have the following equalities:

x1 =
x1 + x2 +

√
(x1 + x2)2 − 4x1x2

2
.

x2 =
x1 + x2 −

√
(x1 + x2)2 − 4x1x2

2
.

Use the symbols e1, e2 to define the elementary symmetric polynomials: e1
def
=== (x1 + x2)

and e2
def
=== x1x2. Thus we have the following equalities:

x1 =
e1 +

√
e2

1 − 4e2

2
. (6.4)

x2 =
e1 −

√
e2

1 − 4e2

2
. (6.5)

Let fSym ∈ C[x1,x2] be a symmetric polynomial with deg(f) = d.
If we substitute the above radical expressions (in Equation (6.4) and Equation (6.5))

for x1 and x2 in fSym(x1, x2), then we obtain f (e1, e2). But unfortunately, we can not
perform these kind of substitutions in our model of computation. This is because we

can not compute expressions of the form
√

e2
1 − 4e2 in arithmetic circuits.

If we use the substitution e2 ← e2 − 1 in Equation (6.4) and Equation (6.5) and
then substitute x1 and x2 in fSym(x1, x2), we shall obtain f (e1, e2 − 1). The degree of
f (e1, e2 − 1) is also bounded by d. Even by using this substitution, expressions in
Equation (6.4) and Equation (6.5) can not be computed by arithmetic circuits. But this

6.2 computing symmetric functions and polynomials 133

substitution allows us to use Taylor expansion on
√

e2
1 − 4(e2 − 1) to obtain a power

series in e1, e2. Since f (e1, e2 − 1) has degree at most d, we only need to substitute
degree truncation d of these Taylor series to obtain f (e1, e2 − 1) (also some additional
junk terms which can be removed efficiently) and subsequently use the substitution
e2 ← e2 + 1 to obtain f (e1, e2).

This method works for two variables. This method can be extended to work for at
most four variables because polynomials of degree more than four are not solvable
by radicals (see section 15.9 in [BML77]). To make this idea work in general, we shall
substitute en by en + (−1)n−1 and then compute degree d truncation of roots of B(y)
using Newton’s iteration. In whatever follows, we work with the field F = C.

6.2.2.1 Roots as power series

Let F(y) = F(y, u1, u2, . . . , un) = yn + f1(u1, u2, . . . , un)yn−1 + . . . + fn(u1, u2, . . . , un)

be a monic square-free polynomial in variables y and u1, u2, . . . , un, where fi ∈ C[u1, u2,
. . . , un]. Let A(u1, u2, . . . , un) be a root of F with respect to y. The root is usually an
algebraic function in u1, u2, . . . , un but not a power series. The following Lemma 6.5
formalizes a sufficient condition where roots of F(y) can be expressed as power series
in u1, u2, . . . , un.

Lemma 6.5 (Condition A in [SK99]). Let F(y, u1, u2, . . . , un) be square free monic with
respect to y. If F(y, 0, 0, . . . , 0) has no multiple root (as a uni-variate polynomial in y) then the
roots Ai(u1, u2, . . . , un) of F(y, u1, u2, . . . , un) can be expanded into power series in u1, u2, . . . ,
un.

As stated above, we are interested in the following special case:

F(y, e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)nen.

This F is being considered as a uni-variate polynomial in y over the power series ring
C[[e1, e2, . . . , en]]. In this case, the roots of F(y, e1, e2, . . . , en) are x1, x2, . . . , xn. We want
to express roots of this F as power series in e1, e2, . . . , en. For this purpose, we consider
a slightly modified version of F. More specifically, consider:

F(y, e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)n(en + (−1)n−1). (6.6)

Notice that F(y, 0, 0, . . . , 0) has n distinct roots, namely the nth roots of unity. Thus the
roots of this F(y) (Equation (6.6)) can be expressed as power series in e1, e2, . . . , en, this
follows from Lemma 6.5. Let us record this as Corollary 6.2.

Corollary 6.2. If F is as in Equation (6.6), then there exist n power series A1, A2, . . . ,
An ∈ C[[e1, e2, . . . , en]] such that F(Ai) = 0 for all i ∈ [n].

134 complexity of symmetric polynomials

Now we show how to compute the degree d truncations of such roots A1, A2, . . . , An.
This already follows from [KT78]. We describe the algorithm and its proof of correctness
here.

6.2.2.2 Newton’s Method

Algorithm 6.18 Newton’s Method
Input: A square free monic polynomial F(y) = F(y, u1, u2, . . . , un) ∈ C[u1, u2, . . . ,

un][y] with respect to y of degree n such that F(y, 0, 0, . . . , 0) has n simple roots.
A positive integer d with d = 2` for some ` ∈ N. We assume that A1, A2, . . . ,
An ∈ C[[u1, u2, . . . , un]] are the roots of F(y).

Output: Degree d truncations A(`)
1 , A(`)

2 , . . . , A(`)
n of n power series roots (A1, A2, . . . ,

An) of F(y), that is, A(`)
i ≡ Ai mod Id with I def

=== 〈u1, u2, . . . , un〉 for all i ∈ [n].
1: {α1, α2, . . . , αn} ← Roots of F(y, 0, 0, . . . , 0).
2: for 1 ≤ i ≤ n do
3: A(0)

i ← αi.
4: for 0 ≤ k ≤ `− 1 do

5: A(k+1)
i ← A(k)

i −
F(A(k)

i)

F′(A(k)
i)

.

6: end for
7: end for
8: return A(`)

1 , A(`)
2 , . . . , A(`)

n .

For the analysis of Algorithm 6.18, define the ideal I as:

I def
=== 〈u1, u2, . . . , un〉.

Theorem 6.5. In Algorithm 6.18, A(k)
i ≡ Ai mod I2k

for all 0 ≤ k ≤ `, for all i ∈ [n].

Proof. Our claim is obviously true for k = 0. We prove the theorem by induction on
k. We prove it simultaneously for all i ∈ [n], so for the sake of brevity we use A(k) to
denote A(k)

i and α to denote αi. Consider the following equalities for a root A = Ai of
F(y):

0 = F(A) = F(A(k) + (A− A(k)))

= F(A(k)) + (A− A(k))F′(A(k)) + ∑
j>1

(A− A(k))j

j!
F(j)(A(k)). (6.7)

6.2 computing symmetric functions and polynomials 135

Here F(j) def
=== ∂jF(y,u1,u2,...,un)

∂yj is the jth derivative of F(y) with respect to y. Since α is a
simple root of F(y, 0, 0, . . . , 0), we know that:

Constant term of F′(A(k)) = F′(α) 6= 0

Thus F′(Ak) is inveritble in the ring C[[u1, u2, . . . , un]] of power series. Therefore we
have:

A− A(k+1) = A−
(

A(k) − F(A(k))

F′(A(k))

)
=

A− A(k+1) = −∑
i>1

(A− A(k))iF(i)(A(k))

i! · F′(A(k))
. (By using Equation (6.7))

Since A − A(k) ∈ I2k
, the right hand side of the above equation is in I2k+1

. Thus
A(k+1) ≡ A mod I2k+1

.

In Algorithm 6.18, we need to compute the inverse of F′(A(k)), since we want to
compute A(k+1), it is enough to compute inverse of F′(A(k)) mod I2k+1

, this also follows
from [KT78]. We describe this in Algorithm 6.19.

Algorithm 6.19 Inverse computation

Input: A circuit C computing the polynomial g(u1, u2, . . . , un) such that g(0, 0, . . . , 0) 6=
0 and a positive integer d with d = 2` for some ` ∈N.

Output: A circuit D for computing a polynomial p(u1, u2, . . . , un) such that
p ≡ g−1 mod Id, here I = 〈u1, u2, . . . , un〉 and g−1 is the inverse of g in C[[u1, u2,
. . . , un]].

1: p0 ← 1
g(0,0,...,0) .

2: for 0 ≤ k ≤ `− 1 do
3: pk+1 ← pk(2− g · pk).
4: end for
5: return p`.

Lemma 6.6. Algorithm 6.19 computes a polynomial p such that p ≡ g−1 mod Id.

Proof. We again prove it by induction on k, induction hypothesis is that pk ≡ g−1 mod
I2k

. This induction hypothesis is trivially true for k = 0. Consider:

136 complexity of symmetric polynomials

1
g
− pk+1 =

1
g
− pk(2− g · pk)

= g · (1
g2 −

2pk

g
+ p2

k)

= g · (1
g
− pk)

2

By using the induction hypothesis, we know that 1
g − pk ∈ I2k

. Therefore it implies that
1
g − pk+1 ∈ I2k+1

. Now the lemma follows from the fact that ` = dlog de.

We can also prove that there is a “small” circuit for p in Lemma 6.6.

Lemma 6.7. Let g(u1, u2, . . . , un) be a polynomial such that g(0, 0, . . . , 0) 6= 0. For any
positive integer d with d = 2` for some ` ∈ N, there is a polynomial p ∈ C[u1, u2, . . . , un]

such that p ≡ g−1 mod Id. Moreover, L(p) ≤ L(g) + O(`).

Proof. In Algorithm 6.19, we need three arithmetic operations to compute pk+1 from
pk. It follows from Lemma 6.6 that p` = g−1 mod Id. Thus there exists a circuit of size
L(g) + 3 · ` = L(g) + O(`) computing p ≡ g−1 mod Id.

Now the following Theorem 6.6 follows by applying Lemma 6.7 and Theorem 6.5.

Theorem 6.6. Let F(y, e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)n(en + (−1)n−1) and let
A1, A2, . . . , An ∈ C[[e1, e2, . . . , en]] such that F(Ai, e1, e2, . . . , en) = 0 for all i ∈ [n]. Let
d be a positive integer with d = 2` for some ` ∈ N and let I = 〈e1, e2, . . . , en〉 be the ideal
generated by e1, e2, . . . , en in the polynomial ring C[e1, e2, . . . , en]. Let polynomials Di be such
that Di ≡ Ai mod Id. Then L({D1, D2, . . . , Dn}) ≤ O(n2`+ n`2).

Proof. We construct a circuit D whose outputs are D1, D2, . . . , Dn. We construct the
desired circuit D by using Algorithm 6.18 on F(y, e1, e2, . . . , en) and s = (0, 0, . . . , 0). It
is enough to describe a circuit computing each Di such that Di ≡ Ai mod Id. The circuit
for A(0)

i in Algorithm 6.18 is trivially of size one. By line 5 of Algorithm 6.18, a circuit

for A(k+1)
i can be constructed given any circuits of A(k)

i , F(A(k)
i) and F′(A(k)

i). Note that

are circuits of size O(n) computing F(y, e1, e2, . . . , en) and F′(y, e1, e2, . . . , en)
def
===

∂F(y,e1,e2,...,en)
∂y . Thus if A(k)

i has a circuit of size s then there exists a size s + O(n + log d)

circuit computing A(k+1)
i , this follows from Lemma 6.7. In particular, there exists

a circuit computing Di
def
=== A(dlog de)

i of size O(n log d + log2 d). By Theorem 6.5, it
follows that Di ≡ Ai mod Id. We combine circuits computing Di’s to construct the
desired circuit D of size O(n · n log d + n log2 d) = O(n2 log d + n log2 d).

Now we are ready to prove that L(f) can be polynomially bounded in terms of
L(fSym).

6.2 computing symmetric functions and polynomials 137

Theorem 6.7. For any polynomial f ∈ F[x1, x2, . . . , xn] of degree d, we have the following
upper bound on L(f):

L(f) ≤ O(d2(L(fSym) + n2 log d + n log2 d))).

Proof. The main idea is what we have hinted above. Namely, let F(y, e1, e2, . . . , en) be
the following polynomial:

F(y, e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)n(en). (6.8)

Here ei = en
i is the ith elementary symmetric polynomial. We know that the roots (as a

uni-variate polynomial in y) of F are x1, x2, . . . , xn. Therefore, x1, x2, . . . , xn are algebraic
functions in e1, e2, . . . , en. Thus xi = Ai(e1, e2, . . . , en) for some algebraic function Ai

Let CSym(x1, x2, . . . , xn) be a circuit of size L(fSym) computing fSym(x1, x2, . . . , xn). If
we could substitute the xi’s by Ai’s in CSym(x1, x2, . . . , xn), we would obtain a circuit for
f . But we cannot compute algebraic functions using arithmetic circuits. Now replace en

by en + (−1)n−1 in Equation (6.8). Thus the new F(y, e1, e2, . . . , en) is:

F(y, e1, e2, . . . , en) = yn − e1yn−1 + . . . + (−1)n(en + (−1)n−1). (6.9)

Let the roots of F(y) in Equation (6.9) again be A1, A2, . . . , An. By using Lemma 6.5, we
know that Ai’s are in C[[e1, e2, . . . , en]]. The following Equation (6.10) follows from the
above discussion:

CSym(A1, A2, . . . , An) = f (e1, e2, . . . , en + (−1)n−1). (6.10)

To compute f , it is enough the substitute the degree d truncations of the A′is in
Equation (6.10), instead of the exact infinite power series Ai. Let D1, D2, . . . , Dn be
the outputs of circuit D obtained by applying Theorem 6.6 with degree 2dlog de. We
substitute the xi → Di in the circuit CSym(x1, x2, . . . , xn). We obtain the following
equality:

h def
=== CSym(D1, D2, . . . , Dn) = f (e1, e2, . . . , en + (−1)n−1) + g. (6.11)

In the above Equation (6.11), g is a polynomial with all its monomials of degree at least
d + 1, i.e., g ∈ Id+1 with I = 〈e1, e2, . . . , en〉. Hence it follows that:

f (e1, e2, . . . , en + (−1)n−1) =
d

∑
i=0

h[i].

138 complexity of symmetric polynomials

By Theorem 6.6, we know that L(h) ≤ L(fSym) + (n2 log d + n log2 d). By using re-
mark 2.2, we conclude that:

L(f (e1, e2, . . . , en + (−1)n−1)) ≤ O(d2(L(fSym) + n2 log d + n log2 d))).

By using the substitution en → en − (−1)n−1, we obtain that :

L(f) ≤ O(d2(L(fSym) + n2 log d + n log2 d))).

Remark 6.1. In contrast to results in [GST06; DSW09], our results do depend on the
degree d. But if the degree d = poly(n) then our upper bound on L(f) is polynomial in
n and L(fSym). This upper bound was exponential in [GST06; DSW09].

6.2.3 Hard Symmetric Polynomials

By using the results in Subsection 6.2.2, we are ready to prove that there exist hard
symmetric polynomials. To this end, the following Theorem 6.8 suffices.

Theorem 6.8. Let (fn)n∈N be a VNP-complete family. Consider the corresponding symmetric
polynomial family ((fn)Sym)n∈N. If ((fn)Sym)n∈N ∈ VP then VP = VNP.

Proof. Suppose fSym
def
=== ((fn)Sym)n∈N is in VP. Then there exists an arithmetic circuit

C of size poly(n) computing the symmetric polynomial (fn)Sym. By using Theorem 6.7,
we conclude that L(fn) ≤ poly(n) and thus (fn)n∈N ∈ VP. Since (fn)n∈N is assumed to
be VNP-complete, it implies that VP = VNP.

Corollary 6.3. Assuming VP 6= VNP, the polynomial family (qn)n∈N defined by qn
def
===

(pern)Sym is not in VP.

B I B L I O G R A P H Y

[AZ09] Martin Aigner and Gnter M. Ziegler. Proofs from THE BOOK. 4th. Springer
Publishing Company, Incorporated, 2009. isbn: 3642008550, 9783642008559.

[Ami66] S.A Amitsur. “Rational identities and applications to algebra and geom-
etry.” In: Journal of Algebra 3.3 (1966), pp. 304 –359. issn: 0021-8693. doi:
https://doi.org/10.1016/0021-8693(66)90004-4. url: http://www.
sciencedirect.com/science/article/pii/0021869366900044.

[ACR98] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. “A New
General Derandomization Method.” In: J. ACM 45.1 (Jan. 1998), pp. 179–213.
issn: 0004-5411. doi: 10.1145/273865.273933. url: http://doi.acm.org/
10.1145/273865.273933.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009. isbn: 978-0-521-42426-4. url:
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264.

[AL81] MD Atkinson and S Lloyd. “Primitive spaces of matrices of bounded rank.”
In: Journal of the Australian Mathematical Society 30.4 (1981), pp. 473–482.

[Bab+93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP Has
Subexponential Time Simulations Unless EXPTIME has Publishable Proofs.”
In: Computational Complexity 3 (1993), pp. 307–318. doi: 10.1007/BF01275486.
url: https://doi.org/10.1007/BF01275486.

[Bec+18] Ruben Becker, Michael Sagraloff, Vikram Sharma, and Chee Yap. “A near-
optimal subdivision algorithm for complex root isolation based on the
Pellet test and Newton iteration.” In: J. Symb. Comput. 86 (2018), pp. 51–96.
doi: 10.1016/j.jsc.2017.03.009. url: https://doi.org/10.1016/j.jsc.
2017.03.009.

[BML77] Garrett Birkhoff and Saunders Mac Lane. A survey of modern algebra. English.
4th ed. New York : Macmillan, 1977. isbn: 0023100702. url: http://www.
gbv.de/dms/hbz/toc/ht000038471.pdf.

[BJP18] Markus Bläser, Gorav Jindal, and Anurag Pandey. “A Deterministic PTAS
for the Commutative Rank of Matrix Spaces.” In: vol. 14. 3. Theory of
Computing, 2018, pp. 1–21. doi: 10.4086/toc.2018.v014a003. url: http:
//www.theoryofcomputing.org/articles/v014a003.

139

https://doi.org/https://doi.org/10.1016/0021-8693(66)90004-4
http://www.sciencedirect.com/science/article/pii/0021869366900044
http://www.sciencedirect.com/science/article/pii/0021869366900044
https://doi.org/10.1145/273865.273933
http://doi.acm.org/10.1145/273865.273933
http://doi.acm.org/10.1145/273865.273933
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/BF01275486
https://doi.org/10.1007/BF01275486
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1016/j.jsc.2017.03.009
http://www.gbv.de/dms/hbz/toc/ht000038471.pdf
http://www.gbv.de/dms/hbz/toc/ht000038471.pdf
https://doi.org/10.4086/toc.2018.v014a003
http://www.theoryofcomputing.org/articles/v014a003
http://www.theoryofcomputing.org/articles/v014a003

140 bibliography

[BSC17] Ben Blum-Smith and Samuel Coskey. “The Fundamental Theorem on
Symmetric Polynomials: History’s First Whiff of Galois Theory.” In: The
College Mathematics Journal 48.1 (2017), pp. 18–29. issn: 07468342, 19311346.
url: http://www.jstor.org/stable/10.4169/college.math.j.48.1.18.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004. doi: 10.1017/CBO9780511804441.

[BS16] Cornelius Brand and Michael Sagraloff. “On the Complexity of Solving
Zero-Dimensional Polynomial Systems via Projection.” In: Proceedings of
the ACM on International Symposium on Symbolic and Algebraic Computation.
ISSAC ’16. Waterloo, ON, Canada: ACM, 2016, pp. 151–158. isbn: 978-1-
4503-4380-0. doi: 10.1145/2930889.2930934. url: http://doi.acm.org/
10.1145/2930889.2930934.

[Bra+11] J. N. Bray, M. D. E. Conder, C. R. Leedham-Green, and E. A. O’Brien. “Short
presentations for alternating and symmetric groups.” In: Trans. Amer. Math.
Soc. 363.6 (2011), pp. 3277–3285. issn: 0002-9947. doi: 10.1090/S0002-9947-
2011-05231-1. url: https://doi.org/10.1090/S0002-9947-2011-05231-
1.

[Bü00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory.
Springer Berlin Heidelberg, 2000. doi: 10.1007/978-3-662-04179-6. url:
http://dx.doi.org/10.1007/978-3-662-04179-6.

[CR99] P. M. COHN and C. REUTENAUER. “ON THE CONSTRUCTION OF
THE FREE FIELD.” In: International Journal of Algebra and Computation
09.03n04 (1999), pp. 307–323. doi: 10.1142/S0218196799000205. eprint:
https://doi.org/10.1142/S0218196799000205. url: https://doi.org/
10.1142/S0218196799000205.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. “The Com-
plexity of Satisfiability of Small Depth Circuits.” In: Parameterized and Exact
Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark,
September 10-11, 2009, Revised Selected Papers. Ed. by Jianer Chen and Fedor
V. Fomin. Vol. 5917. Lecture Notes in Computer Science. Springer, 2009,
pp. 75–85. isbn: 978-3-642-11268-3. doi: 10.1007/978-3-642-11269-0_6.
url: https://doi.org/10.1007/978-3-642-11269-0_6.

[Coh75] P. M. Cohn. “The Word Problem for Free Fields: A Correction and an
Addendum.” In: The Journal of Symbolic Logic 40.1 (1975), pp. 69–74. issn:
00224812. url: http://www.jstor.org/stable/2272273.

[CL76] George E. Collins and Rüdiger Loos. “Polynomial Real Root Isolation by
Differentiation.” In: Proceedings of the Third ACM Symposium on Symbolic
and Algebraic Computation. SYMSAC ’76. Yorktown Heights, New York,

http://www.jstor.org/stable/10.4169/college.math.j.48.1.18
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1145/2930889.2930934
http://doi.acm.org/10.1145/2930889.2930934
http://doi.acm.org/10.1145/2930889.2930934
https://doi.org/10.1090/S0002-9947-2011-05231-1
https://doi.org/10.1090/S0002-9947-2011-05231-1
https://doi.org/10.1090/S0002-9947-2011-05231-1
https://doi.org/10.1090/S0002-9947-2011-05231-1
https://doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1142/S0218196799000205
https://doi.org/10.1142/S0218196799000205
https://doi.org/10.1142/S0218196799000205
https://doi.org/10.1142/S0218196799000205
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.1007/978-3-642-11269-0_6
http://www.jstor.org/stable/2272273

bibliography 141

USA: ACM, 1976, pp. 15–25. doi: 10.1145/800205.806319. url: http:
//doi.acm.org/10.1145/800205.806319.

[Con78] John B. Conway. Functions of One Complex Variable I. Springer New York,
1978. doi: 10.1007/978-1-4612-6313-5. url: http://dx.doi.org/10.
1007/978-1-4612-6313-5.

[Coo00] Stephen Cook. “The P versus NP problem.” In: Clay Mathematical Institute;
The Millennium Prize Problem. 2000.

[Cos+05] Michel Coste, Tomás Lajous-Loaeza, Henri Lombardi, and Marie-Françoise
Roy. “Generalized Budan–Fourier theorem and virtual roots.” In: Journal of
Complexity 21.4 (2005). Festschrift for the 70th Birthday of Arnold Schonhage,
pp. 479 –486. issn: 0885-064X. doi: https://doi.org/10.1016/j.jco.2004.
11.003. url: http://www.sciencedirect.com/science/article/pii/
S0885064X05000075.

[CKS99] Felipe Cucker, Pascal Koiran, and Steve Smale. “A Polynomial Time Al-
gorithm for Diophantine Equations in One Variable.” In: J. Symb. Com-
put. 27.1 (1999), pp. 21–29. doi: 10.1006/jsco.1998.0242. url: https:
//doi.org/10.1006/jsco.1998.0242.

[DSW09] Xavier Dahan, Éric Schost, and Jie Wu. “Evaluation properties of invariant
polynomials.” In: J. Symb. Comput. 44.11 (2009), pp. 1592–1604. doi: 10.1016/
j.jsc.2008.12.002. url: https://doi.org/10.1016/j.jsc.2008.12.002.

[DF04] D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2004. isbn: 9780471433347.
url: https://books.google.de/books?id=KJDBQgAACAAJ.

[Dur+14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-
Altherre, and Nitin Saurabh. “Homomorphism Polynomials Complete for
VP.” In: 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science (FSTTCS 2014). Ed. by Venkatesh Raman and S.
P. Suresh. Vol. 29. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014, pp. 493–504. isbn: 978-3-939897-77-4. doi: 10.4230/LIPIcs.FSTTCS.
2014.493. url: http://drops.dagstuhl.de/opus/volltexte/2014/4866.

[EK95] Alan Edelman and Eric Kostlan. “How many zeros of a random polynomial
are real?” In: Bull. Amer. Math. Soc. (N.S.) 32.1 (1995), pp. 1–37. issn: 0273-
0979. doi: 10.1090/S0273-0979-1995-00571-9. url: https://doi.org/10.
1090/S0273-0979-1995-00571-9.

[Edm67] Jack Edmonds. “Systems of distinct representatives and linear algebra.” In:
J. Res. Nat. Bur. Standards Sect. B 71B (1967), pp. 241–245. issn: 0160-1741.

https://doi.org/10.1145/800205.806319
http://doi.acm.org/10.1145/800205.806319
http://doi.acm.org/10.1145/800205.806319
https://doi.org/10.1007/978-1-4612-6313-5
http://dx.doi.org/10.1007/978-1-4612-6313-5
http://dx.doi.org/10.1007/978-1-4612-6313-5
https://doi.org/https://doi.org/10.1016/j.jco.2004.11.003
https://doi.org/https://doi.org/10.1016/j.jco.2004.11.003
http://www.sciencedirect.com/science/article/pii/S0885064X05000075
http://www.sciencedirect.com/science/article/pii/S0885064X05000075
https://doi.org/10.1006/jsco.1998.0242
https://doi.org/10.1006/jsco.1998.0242
https://doi.org/10.1006/jsco.1998.0242
https://doi.org/10.1016/j.jsc.2008.12.002
https://doi.org/10.1016/j.jsc.2008.12.002
https://doi.org/10.1016/j.jsc.2008.12.002
https://books.google.de/books?id=KJDBQgAACAAJ
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.493
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.493
http://drops.dagstuhl.de/opus/volltexte/2014/4866
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1090/S0273-0979-1995-00571-9
https://doi.org/10.1090/S0273-0979-1995-00571-9

142 bibliography

[Edm03] Jack Edmonds. “Submodular Functions, Matroids, and Certain Polyhedra.”
In: Combinatorial Optimization — Eureka, You Shrink!: Papers Dedicated to Jack
Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised
Papers. Ed. by Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 11–26. isbn: 978-
3-540-36478-8. doi: 10.1007/3-540-36478-1_2. url: https://doi.org/10.
1007/3-540-36478-1_2.

[Eig08] Arno Eigenwillig. “Real Root Isolation for Exact and Approximate Poly-
nomials Using Descartes’ Rule of Signs.” PhD thesis. Saarland University,
2008. url: https://books.google.de/books?id=PBkUmwEACAAJ.

[ESY06] Arno Eigenwillig, Vikram Sharma, and Chee K. Yap. “Almost Tight Re-
cursion Tree Bounds for the Descartes Method.” In: Proceedings of the 2006
International Symposium on Symbolic and Algebraic Computation. ISSAC ’06.
Genoa, Italy: ACM, 2006, pp. 71–78. isbn: 1-59593-276-3. doi: 10.1145/
1145768.1145786. url: http://doi.acm.org/10.1145/1145768.1145786.

[EH88] David Eisenbud and Joe Harris. “Vector spaces of matrices of low rank.” In:
Advances in Mathematics 70.2 (1988), pp. 135–155.

[Fla62] H. Flanders. “On Spaces of Linear Transformations with Bounded Rank.”
In: Journal of the London Mathematical Society s1-37.1 (1962), pp. 10–16. doi:
10.1112/jlms/s1- 37.1.10. eprint: /oup/backfile/content_public/
journal/jlms/s1-37/1/10.1112/jlms/s1-37.1.10/2/s1-37-1-10.pdf.
url: http://dx.doi.org/10.1112/jlms/s1-37.1.10.

[FR04] Marc Fortin and Christophe Reutenauer. “Commutative/noncommutative
rank of linear matrices and subspaces of matrices of low rank.” eng. In:
Séminaire Lotharingien de Combinatoire 52 (2004), B52f. url: http://eudml.
org/doc/125000.

[GST06] PIERRICK GAUDRY, ÉRIC SCHOST, and NICOLAS M. THIÉRY. “EVALU-
ATION PROPERTIES OF SYMMETRIC POLYNOMIALS.” In: International
Journal of Algebra and Computation 16.03 (2006), pp. 505–523. doi: 10.1142/
S0218196706003128. eprint: https://doi.org/10.1142/S0218196706003128.
url: https://doi.org/10.1142/S0218196706003128.

[GG12] Maria Emilia Alonso Garcia and André Galligo. “A Root Isolation Al-
gorithm for Sparse Univariate Polynomials.” In: Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation. ISSAC ’12.
Grenoble, France: ACM, 2012, pp. 35–42. isbn: 978-1-4503-1269-1. doi:
10.1145/2442829.2442839. url: http://doi.acm.org/10.1145/2442829.
2442839.

[Gar+15] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. “Operator
scaling: theory and applications.” In: arXiv preprint arXiv:1511.03730 (2015).

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://books.google.de/books?id=PBkUmwEACAAJ
https://doi.org/10.1145/1145768.1145786
https://doi.org/10.1145/1145768.1145786
http://doi.acm.org/10.1145/1145768.1145786
https://doi.org/10.1112/jlms/s1-37.1.10
/oup/backfile/content_public/journal/jlms/s1-37/1/10.1112/jlms/s1-37.1.10/2/s1-37-1-10.pdf
/oup/backfile/content_public/journal/jlms/s1-37/1/10.1112/jlms/s1-37.1.10/2/s1-37-1-10.pdf
http://dx.doi.org/10.1112/jlms/s1-37.1.10
http://eudml.org/doc/125000
http://eudml.org/doc/125000
https://doi.org/10.1142/S0218196706003128
https://doi.org/10.1142/S0218196706003128
https://doi.org/10.1142/S0218196706003128
https://doi.org/10.1142/S0218196706003128
https://doi.org/10.1145/2442829.2442839
http://doi.acm.org/10.1145/2442829.2442839
http://doi.acm.org/10.1145/2442829.2442839

bibliography 143

[Gar+16] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigder-
son. “A Deterministic Polynomial Time Algorithm for Non-commutative
Rational Identity Testing.” In: Proceedings of the 57th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2016. 2016, pp. 109–117. doi:
10.1109/FOCS.2016.95. url: https://doi.org/10.1109/FOCS.2016.95.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cam-
bridge University Press, 2008. isbn: 978-0-521-88473-0.

[Har89] Juris Hartmanis. Godel, von Neumann and the P=? NP Problem. Tech. rep.
Cornell University, 1989.

[ISW99] R. Impagliazzo, R. Shaltiel, and A. Wigderson. “Near-optimal conversion
of hardness into pseudo-randomness.” In: 40th Annual Symposium on Foun-
dations of Computer Science (Cat. No.99CB37039). 1999, pp. 181–190. doi:
10.1109/SFFCS.1999.814590.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of
k-SAT.” In: Journal of Computer and System Sciences 62.2 (2001), pp. 367

–375. issn: 0022-0000. doi: https : / / doi . org / 10 . 1006 / jcss . 2000 .

1727. url: http : / / www . sciencedirect . com / science / article / pii /

S0022000000917276.

[ISW00] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. “Extractors and
pseudo-random generators with optimal seed length.” In: Proceedings of
the thirty-second annual ACM symposium on Theory of computing. ACM. 2000,
pp. 1–10.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E Requires Exponential
Circuits: Derandomizing the XOR Lemma.” In: Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing. STOC ’97. El Paso,
Texas, USA: ACM, 1997, pp. 220–229. isbn: 0-89791-888-6. doi: 10.1145/
258533.258590. url: http://doi.acm.org/10.1145/258533.258590.

[IQS15] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. “Constructive
noncommutative rank computation in deterministic polynomial time over
fields of arbitrary characteristics.” In: CoRR abs/1512.03531 (2015). arXiv:
1512.03531. url: http://arxiv.org/abs/1512.03531.

[IQS17a] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. “Construc-
tive Non-Commutative Rank Computation Is in Deterministic Polynomial
Time.” In: 8th Innovations in Theoretical Computer Science Conference, ITCS
2017, January 9-11, 2017, Berkeley, CA, USA. Ed. by Christos H. Papadim-
itriou. Vol. 67. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017, 55:1–55:19. isbn: 978-3-95977-029-3. doi: 10.4230/LIPIcs.ITCS.2017.
55. url: https://doi.org/10.4230/LIPIcs.ITCS.2017.55.

https://doi.org/10.1109/FOCS.2016.95
https://doi.org/10.1109/FOCS.2016.95
https://doi.org/10.1109/SFFCS.1999.814590
https://doi.org/https://doi.org/10.1006/jcss.2000.1727
https://doi.org/https://doi.org/10.1006/jcss.2000.1727
http://www.sciencedirect.com/science/article/pii/S0022000000917276
http://www.sciencedirect.com/science/article/pii/S0022000000917276
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
http://doi.acm.org/10.1145/258533.258590
https://arxiv.org/abs/1512.03531
http://arxiv.org/abs/1512.03531
https://doi.org/10.4230/LIPIcs.ITCS.2017.55
https://doi.org/10.4230/LIPIcs.ITCS.2017.55
https://doi.org/10.4230/LIPIcs.ITCS.2017.55

144 bibliography

[IQS17b] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. “Non-commutative
Edmonds’ problem and matrix semi-invariants.” In: computational complexity
26.3 (2017), pp. 717–763. issn: 1420-8954. doi: 10.1007/s00037-016-0143-x.
url: https://doi.org/10.1007/s00037-016-0143-x.

[Iva+15] Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha. “Gen-
eralized Wong sequences and their applications to Edmonds’ problems.”
In: Journal of Computer and System Sciences 81.7 (2015), pp. 1373–1386. url:
http://arxiv.org/abs/1307.6429.

[JS17] Gorav Jindal and Michael Sagraloff. “Efficiently Computing Real Roots
of Sparse Polynomials.” In: Proceedings of the 2017 ACM on International
Symposium on Symbolic and Algebraic Computation. ISSAC ’17. Kaiserslautern,
Germany: ACM, 2017, pp. 229–236. isbn: 978-1-4503-5064-8. doi: 10.1145/
3087604.3087652. url: http://doi.acm.org/10.1145/3087604.3087652.

[Juk12] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms
and Combinatorics. Springer Berlin Heidelberg, 2012. isbn: 9783642245077.
url: https://books.google.de/books?id=BPdzkgEACAAJ.

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polynomial
Identity Tests Means Proving Circuit Lower Bounds.” In: Comput. Complex.
13.1/2 (Dec. 2004), pp. 1–46. issn: 1016-3328. doi: 10.1007/s00037-004-
0182-6. url: http://dx.doi.org/10.1007/s00037-004-0182-6.

[Kac43] M. Kac. “On the average number of real roots of a random algebraic
equation.” In: Bull. Amer. Math. Soc. 49.4 (Apr. 1943), pp. 314–320. url:
https://projecteuclid.org:443/euclid.bams/1183505112.

[KVV12] Dmitry S Kaliuzhnyi-Verbovetskyi and Victor Vinnikov. “Noncommutative
rational functions, their difference-differential calculus and realizations.”
In: Multidimensional Systems and Signal Processing 1.23 (2012), pp. 49–77.

[KS15] Michael Kerber and Michael Sagraloff. “Root Refinement for Real Polynomi-
als Using Quadratic Interval Refinement.” In: J. Comput. Appl. Math. 280.C
(May 2015), pp. 377–395. issn: 0377-0427. doi: 10.1016/j.cam.2014.11.031.
url: http://dx.doi.org/10.1016/j.cam.2014.11.031.

[Koi11] Pascal Koiran. “Shallow circuits with high-powered inputs.” In: Innovations
in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January
7-9, 2011. Proceedings. Ed. by Bernard Chazelle. Tsinghua University Press,
2011, pp. 309–320. isbn: 978-7-302-24517-9. url: http://conference.itcs.
tsinghua.edu.cn/ICS2011/content/papers/5.html.

[Koi17] Pascal Koiran. “Root Separation for Trinomials.” working paper or preprint.
Sept. 2017. url: https://hal-ens-lyon.archives-ouvertes.fr/ensl-
01585049.

https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-016-0143-x
http://arxiv.org/abs/1307.6429
https://doi.org/10.1145/3087604.3087652
https://doi.org/10.1145/3087604.3087652
http://doi.acm.org/10.1145/3087604.3087652
https://books.google.de/books?id=BPdzkgEACAAJ
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
https://projecteuclid.org:443/euclid.bams/1183505112
https://doi.org/10.1016/j.cam.2014.11.031
http://dx.doi.org/10.1016/j.cam.2014.11.031
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/5.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/5.html
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01585049
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01585049

bibliography 145

[KT78] H. T. Kung and J. F. Traub. “All Algebraic Functions Can Be Computed
Fast.” In: J. ACM 25.2 (Apr. 1978), pp. 245–260. issn: 0004-5411. doi: 10.
1145/322063.322068. url: http://doi.acm.org/10.1145/322063.322068.

[LJ99] Hendrik W. Lenstra (Jr.) “Finding Small Degree Factors of Lacunary Poly-
nomials.” In: Number Theory in Progress 1 (1999), pp. 267–276.

[LR09] Dick Lipton and Ken Regan. Arithmetic Complexity and Symmetry. 2009. url:
https://rjlipton.wordpress.com/2009/07/10/arithmetic-complexity-

and-symmetry/.

[Lov79] László Lovász. “On determinants, matchings, and random algorithms.” In:
FCT. 1979, pp. 565–574.

[Mah14] Meena Mahajan. “Algebraic Complexity Classes.” In: Perspectives in Compu-
tational Complexity: The Somenath Biswas Anniversary Volume. Ed. by Manin-
dra Agrawal and Vikraman Arvind. Cham: Springer International Publish-
ing, 2014, pp. 51–75. isbn: 978-3-319-05446-9. doi: 10.1007/978-3-319-
05446-9_4. url: https://doi.org/10.1007/978-3-319-05446-9_4.

[MV97] Meena Mahajan and V. Vinay. “Determinant: Combinatorics, Algorithms,
and Complexity.” In: Chicago Journal of Theoretical Computer Science 1997.5
(1997).

[Mah64] K. Mahler. “An inequality for the discriminant of a polynomial.” In: Michi-
gan Math. J. 11.3 (Sept. 1964), pp. 257–262. doi: 10.1307/mmj/1028999140.
url: https://doi.org/10.1307/mmj/1028999140.

[Mar66] Morris Marden. Geometry of Polynomials. 2nd. Providence, RI: American
Mathematical Society, 1966, pp. xiii+243. isbn: 0821815032.

[Mar85] Morris Marden. “The Search for a Rolle’s Theorem in the Complex Do-
main.” In: The American Mathematical Monthly 92.9 (1985), pp. 643–650. issn:
00029890, 19300972. url: http://www.jstor.org/stable/2323710.

[McN07] J.M. McNamee. Numerical Methods for Roots of Polynomials. Numerical Meth-
ods for Roots of Polynomials Teil 1. Elsevier, 2007. isbn: 9780444527295.
url: https://books.google.de/books?id=FP8kAQAAIAAJ.

[MP13] J.M. McNamee and V. Pan. Numerical Methods for Roots of Polynomials -.
Studies in Computational Mathematics Teil 2. Elsevier Science, 2013. isbn:
9780080931432. url: https://books.google.de/books?id=j0rY3D9fx-0C.

[MSW15] Kurt Mehlhorn, Michael Sagraloff, and Pengming Wang. “From approxi-
mate factorization to root isolation with application to cylindrical algebraic
decomposition.” In: Journal of Symbolic Computation 66 (2015), pp. 34 –
69. issn: 0747-7171. doi: https : / / doi . org / 10 . 1016 / j . jsc . 2014 .

02.001. url: http://www.sciencedirect.com/science/article/pii/
S0747717114000200.

https://doi.org/10.1145/322063.322068
https://doi.org/10.1145/322063.322068
http://doi.acm.org/10.1145/322063.322068
https://rjlipton.wordpress.com/2009/07/10/arithmetic-complexity-and-symmetry/
https://rjlipton.wordpress.com/2009/07/10/arithmetic-complexity-and-symmetry/
https://doi.org/10.1007/978-3-319-05446-9_4
https://doi.org/10.1007/978-3-319-05446-9_4
https://doi.org/10.1007/978-3-319-05446-9_4
https://doi.org/10.1307/mmj/1028999140
https://doi.org/10.1307/mmj/1028999140
http://www.jstor.org/stable/2323710
https://books.google.de/books?id=FP8kAQAAIAAJ
https://books.google.de/books?id=j0rY3D9fx-0C
https://doi.org/https://doi.org/10.1016/j.jsc.2014.02.001
https://doi.org/https://doi.org/10.1016/j.jsc.2014.02.001
http://www.sciencedirect.com/science/article/pii/S0747717114000200
http://www.sciencedirect.com/science/article/pii/S0747717114000200

146 bibliography

[Meh+06] Kurt Mehlhorn, Arno Eigenwillig, Lutz Kettner, Werner Krandick, Su-
sanne Schmitt, and Nicola Wolpert. “A Descartes Algorithms for Poly-
nomials with Bit-Stream Coefficients.” In: Reliable Implementation of Real
Number Algorithms: Theory and Practice. Ed. by Peter Hertling, Christoph
M. Hoffmann, Wolfram Luther, and Nathalie Revol. Dagstuhl Seminar
Proceedings 06021. Dagstuhl, Germany: Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.
url: http://drops.dagstuhl.de/opus/volltexte/2006/715.

[Mey00] C.D. Meyer. Matrix Analysis and Applied Linear Algebra. Other Titles in
Applied Mathematics. Society for Industrial and Applied Mathematics,
2000. isbn: 9780898714548. url: https://books.google.de/books?id=
Brpp1Cvzs14C.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Inter-
national Series on Parallel Computation. Cambridge University Press,
1995. isbn: 9780521474658. url: https://books.google.de/books?id=
QKVY4mDivBEC.

[Nis91] Noam Nisan. “Lower bounds for non-commutative computation.” In: Pro-
ceedings of the twenty-third annual ACM symposium on Theory of computing.
ACM. 1991, pp. 410–418.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs randomness.” In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149 –167. issn: 0022-0000.
doi: https://doi.org/10.1016/S0022- 0000(05)80043- 1. url: http:
//www.sciencedirect.com/science/article/pii/S0022000005800431.

[Obr63] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome.
Hochschulbücher für Mathematik. Deutscher Verlag der Wissenschaften,
1963. url: https://books.google.de/books?id=bjrSAAAAMAAJ.

[Obr03] N. Obreshkov. Zeros of Polynomials. Bulgarian academic monographs. Marin
Drinov Academic Publishing House, 2003. isbn: 9789544309374. url: https:
//books.google.de/books?id=M-kZAQAAIAAJ.

[Orl08] James B Orlin. “A fast, simpler algorithm for the matroid parity prob-
lem.” In: International Conference on Integer Programming and Combinatorial
Optimization. Springer. 2008, pp. 240–258.

[Pan97] Victor Y. Pan. “Solving a Polynomial Equation: Some History and Re-
cent Progress.” In: SIAM Review 39.2 (1997), pp. 187–220. doi: 10.1137/
S0036144595288554. eprint: https://doi.org/10.1137/S0036144595288554.
url: https://doi.org/10.1137/S0036144595288554.

http://drops.dagstuhl.de/opus/volltexte/2006/715
https://books.google.de/books?id=Brpp1Cvzs14C
https://books.google.de/books?id=Brpp1Cvzs14C
https://books.google.de/books?id=QKVY4mDivBEC
https://books.google.de/books?id=QKVY4mDivBEC
https://doi.org/https://doi.org/10.1016/S0022-0000(05)80043-1
http://www.sciencedirect.com/science/article/pii/S0022000005800431
http://www.sciencedirect.com/science/article/pii/S0022000005800431
https://books.google.de/books?id=bjrSAAAAMAAJ
https://books.google.de/books?id=M-kZAQAAIAAJ
https://books.google.de/books?id=M-kZAQAAIAAJ
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1137/S0036144595288554
https://doi.org/10.1137/S0036144595288554

bibliography 147

[Pan02] Victor Y. Pan. “Univariate Polynomials: Nearly Optimal Algorithms for Nu-
merical Factorization and Root-finding.” In: Journal of Symbolic Computation
33.5 (2002), pp. 701 –733. issn: 0747-7171. doi: https://doi.org/10.1006/
jsco.2002.0531. url: http://www.sciencedirect.com/science/article/
pii/S0747717102905316.

[Pan+07] Victor Y. Pan, Brian Murphy, Rhys Eric Rosholt, Guoliang Qian, and Yuqing
Tang. “Real Root-finding.” In: Proceedings of the 2007 International Workshop
on Symbolic-numeric Computation. SNC ’07. London, Ontario, Canada: ACM,
2007, pp. 161–169. isbn: 978-1-59593-744-5. doi: 10.1145/1277500.1277524.
url: http://doi.acm.org/10.1145/1277500.1277524.

[RV89] Michael O Rabin and Vijay V Vazirani. “Maximum matchings in general
graphs through randomization.” In: Journal of Algorithms 10.4 (1989), pp. 557

–567. issn: 0196-6774. doi: https://doi.org/10.1016/0196-6774(89)
90005-9. url: http://www.sciencedirect.com/science/article/pii/
0196677489900059.

[RY05] J. Maurice Rojas and Yinyu Ye. “On Solving Univariate Sparse Polynomials
in Logarithmic Time.” In: J. Complex. 21.1 (Feb. 2005), pp. 87–110. issn:
0885-064X. doi: 10.1016/j.jco.2004.03.004. url: http://dx.doi.org/10.
1016/j.jco.2004.03.004.

[RZ04] Fabrice Rouillier and Paul Zimmermann. “Efficient isolation of polyno-
mial’s real roots.” In: Journal of Computational and Applied Mathematics 162.1
(2004). Proceedings of the International Conference on Linear Algebra and
Arithmetic 2001, pp. 33 –50. issn: 0377-0427. doi: https://doi.org/10.
1016/j.cam.2003.08.015. url: http://www.sciencedirect.com/science/
article/pii/S0377042703007271.

[Rud04] Piotr Rudnicki. “Little Bezout theorem (factor theorem).” In: FORMALIZED
MATHEMATICS 12 (2004), p. 2004.

[Sag14] Michael Sagraloff. “A Near-optimal Algorithm for Computing Real Roots
of Sparse Polynomials.” In: ISSAC. Kobe, Japan, 2014, pp. 359–366. isbn:
978-1-4503-2501-1. doi: 10.1145/2608628.2608632. url: http://doi.acm.
org/10.1145/2608628.2608632.

[SM16] Michael Sagraloff and Kurt Mehlhorn. “Computing real roots of real poly-
nomials.” In: Journal of Symbolic Computation 73 (2016), pp. 46 –86. issn: 0747-
7171. doi: http://dx.doi.org/10.1016/j.jsc.2015.03.004. url: http:
//www.sciencedirect.com/science/article/pii/S0747717115000292.

[SK99] Tateaki Sasaki and Fujio Kako. “Solving multivariate algebraic equation by
Hensel construction.” In: Japan Journal of Industrial and Applied Mathematics
16.2 (1999), pp. 257–285. issn: 1868-937X. doi: 10.1007/BF03167329. url:
https://doi.org/10.1007/BF03167329.

https://doi.org/https://doi.org/10.1006/jsco.2002.0531
https://doi.org/https://doi.org/10.1006/jsco.2002.0531
http://www.sciencedirect.com/science/article/pii/S0747717102905316
http://www.sciencedirect.com/science/article/pii/S0747717102905316
https://doi.org/10.1145/1277500.1277524
http://doi.acm.org/10.1145/1277500.1277524
https://doi.org/https://doi.org/10.1016/0196-6774(89)90005-9
https://doi.org/https://doi.org/10.1016/0196-6774(89)90005-9
http://www.sciencedirect.com/science/article/pii/0196677489900059
http://www.sciencedirect.com/science/article/pii/0196677489900059
https://doi.org/10.1016/j.jco.2004.03.004
http://dx.doi.org/10.1016/j.jco.2004.03.004
http://dx.doi.org/10.1016/j.jco.2004.03.004
https://doi.org/https://doi.org/10.1016/j.cam.2003.08.015
https://doi.org/https://doi.org/10.1016/j.cam.2003.08.015
http://www.sciencedirect.com/science/article/pii/S0377042703007271
http://www.sciencedirect.com/science/article/pii/S0377042703007271
https://doi.org/10.1145/2608628.2608632
http://doi.acm.org/10.1145/2608628.2608632
http://doi.acm.org/10.1145/2608628.2608632
https://doi.org/http://dx.doi.org/10.1016/j.jsc.2015.03.004
http://www.sciencedirect.com/science/article/pii/S0747717115000292
http://www.sciencedirect.com/science/article/pii/S0747717115000292
https://doi.org/10.1007/BF03167329
https://doi.org/10.1007/BF03167329

148 bibliography

[Sch82] Arnold Schönhage. “The Fundamental Theorem of Algebra in Terms of
Computational Complexity.” In: (1982).

[Sch80] Jacob T Schwartz. “Fast probabilistic algorithms for verification of polyno-
mial identities.” In: Journal of the ACM 27.4 (1980), pp. 701–717.

[SU01] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudo-random generator.” In: Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on. IEEE. 2001, pp. 648–657.

[SY+10] Amir Shpilka, Amir Yehudayoff, et al. “Arithmetic circuits: A survey of
recent results and open questions.” In: Foundations and Trends® in Theoretical
Computer Science 5.3–4 (2010), pp. 207–388.

[Smo93] Roman Smolensky. “On representations by low-degree polynomials.” In:
Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium
on. IEEE. 1993, pp. 130–138.

[Str73] Volker Strassen. “Vermeidung von divisionen.” In: Journal für die reine und
angewandte Mathematik 264 (1973), pp. 184–202.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom generators
without the XOR lemma.” In: Journal of Computer and System Sciences 62.2
(2001), pp. 236–266.

[TUR36] AM TURING. “ON COMPUTABLE NUMBERS, WITH AN APPLICATION
TO THE ENTSCHEIDUNGSPROBLEM.” In: J. of Math 58 (1936), pp. 345–
363.

[Tod91] Seinosuke Toda. “Counting problems computationally equivalent to com-
puting the determinant.” In: Technical Report CSIM 91-07 (1991).

[Tut47] W. T. Tutte. “The Factorization of Linear Graphs.” In: Journal of the London
Mathematical Society s1-22.2 (1947), pp. 107–111. issn: 1469-7750. doi: 10.
1112/jlms/s1-22.2.107. url: http://dx.doi.org/10.1112/jlms/s1-
22.2.107.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses.” In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Val79] L. G. Valiant. “Completeness Classes in Algebra.” In: Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing. STOC ’79. Atlanta,
Georgia, USA: ACM, 1979, pp. 249–261. doi: 10.1145/800135.804419. url:
http://doi.acm.org/10.1145/800135.804419.

[Vin91] V Vinay. “Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits.” In: Structure in Complexity Theory Conference, 1991.,
Proceedings of the Sixth Annual. IEEE. 1991, pp. 270–284.

[Vol13] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer
Science & Business Media, 2013.

https://doi.org/10.1112/jlms/s1-22.2.107
https://doi.org/10.1112/jlms/s1-22.2.107
http://dx.doi.org/10.1112/jlms/s1-22.2.107
http://dx.doi.org/10.1112/jlms/s1-22.2.107
https://doi.org/10.1145/800135.804419
http://doi.acm.org/10.1145/800135.804419

bibliography 149

[Wal00] M. Waldschmidt. Diophantine Approximation on Linear Algebraic Groups: Tran-
scendence Properties of the Exponential Function in Several Variables. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2000. isbn:
9783540667858. url: https://books.google.de/books?id=p_dyoJVomEsC.

[Wan04] Xiaoshen Wang. “A Simple Proof of Descartes’s Rule of Signs.” In: The
American Mathematical Monthly 111 (2004), pp. 525–526.

[Wig17] Avi Wigderson. “Operator scaling: theory, applications and connections.”
2017. url: http://www.computationalcomplexity.org/Archive/2017/
tutorial.php.

[Yap00] Chee Keng Yap. Fundamental Problems of Algorithmic Algebra. New York, NY,
USA: Oxford University Press, Inc., 2000. isbn: 0-19-512516-9.

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials.” In: EU-
ROSAM. Ed. by Edward W. Ng. Vol. 72. Lecture Notes in Computer Science.
Springer, 1979, pp. 216–226. isbn: 3-540-09519-5. url: http://dblp.uni-
trier.de/db/conf/eurosam/eurosam1979.html#Zippel79.

https://books.google.de/books?id=p_dyoJVomEsC
http://www.computationalcomplexity.org/Archive/2017/tutorial.php
http://www.computationalcomplexity.org/Archive/2017/tutorial.php
http://dblp.uni-trier.de/db/conf/eurosam/eurosam1979.html#Zippel79
http://dblp.uni-trier.de/db/conf/eurosam/eurosam1979.html#Zippel79

	Contents
	List of Figures
	List of Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Contribution and Guide
	1.2.1 Rank of matrix spaces
	1.2.2 Real roots of real sparse polynomials
	1.2.3 Complexity of symmetric polynomials

	2 Preliminaries
	2.1 Notation
	2.2 Boolean and Algebraic Circuits
	2.3 Complexity classes
	2.3.1 Classes P, NP and completeness
	2.3.2 Low depth circuits
	2.3.3 Randomized Complexity Classes

	2.4 Formulas and Algebraic Branching Programs
	2.5 Algebraic Complexity classes
	2.6 Completeness and hard polynomials
	2.7 Definitions and Facts in Linear Algebra

	 Polynomial Identity Testing
	3 Symbolic Matrices and Matrix Spaces
	3.1 Preliminaries
	3.2 Matrix Spaces
	3.2.1 Commutative rank
	3.2.2 Non-commutative rank

	3.3 A max-min characterization of ranks

	4 PTAS for Commutative Rank
	4.1 1/2-approximation algorithm for the commutative rank
	4.2 2/3-approximation algorithm for the commutative rank
	4.3 (1-e)-approximation algorithm for the commutative rank
	4.4 Wong sequences and Wong index
	4.5 Relation between rank and Wong index
	4.6 An Alternative proof of correctness of 4.4
	4.7 Tight examples

	 Real Root Computation of Sparse Polynomials
	5 Computing the Roots of Polynomials
	5.1 Complex Roots of Complex Polynomials
	5.2 Definitions and Notations
	5.3 Real Roots of (Sparse) Real Polynomials
	5.4 Root Separation of Trinomials
	5.4.1 Complex root separation

	5.5 Root separation for 4-nomials
	5.6 Introduction and History of Root Computation
	5.7 Fractional Derivatives and Integer Roots
	5.8 Computing the Real Roots of k-nomials
	5.9 Overview of the Algorithm
	5.10 Polynomial arithmetic
	5.11 Refinement
	5.12 Computing a Weak Covering
	5.13 Tl-test
	5.14 Computing a Covering

	 Complexity of Symmetric Polynomials
	6 Complexity of Symmetric Polynomials
	6.1 Checking Symmetries
	6.2 Computing Symmetric functions and Polynomials
	6.2.1 Symmetric functions
	6.2.2 Symmetric polynomials
	6.2.3 Hard Symmetric Polynomials

	 Bibliography

