

Problems from Optimization and Computational Algebra Equivalent to Hilbert's Nullstellensatz

Markus Bläser
Saarland University

Sagnik Dutta
MPI for Informatics

Gorav Jindal
University of Warsaw
→ University of Regensburg

Hilbert's Nullstellensatz Problem

HN_R over a ring R

Input: Polynomial equations $f_1 = 0, \dots, f_m = 0$ with each $f_i \in R[x_1, \dots, x_n]$.

Output: Does $\exists (a_1, \dots, a_n) \in R^n$ such that $f_i(a_1, \dots, a_n) = 0$ for all i ?

Example: $xy = 0,$

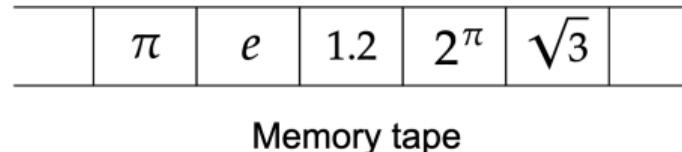
$$(x - 1)^2 + (y - 1)^2 = 0.$$

Over $\mathbb{R} \rightarrow$ **No solution.**

Over $\mathbb{C} \rightarrow (0, 1 + i).$

BSS model of computation

Blum-Shub-Smale (BSS) model: RAM model where registers can store arbitrary elements of the ring and each ring operation costs unit time



P_R : Decision problems over R solvable in deterministic polynomial time

NP_R : Decision problems over R solvable in non-deterministic polynomial time

Theorem (Blum, Shub, Smale '89)

HN_R is NP_R -complete when $R = \mathbb{R}$ or \mathbb{C} .

Existential Theory of The Reals

ETR language: True sentences of the form $\exists x_1, \dots, x_n \phi(x_1, \dots, x_n)$ over the reals.

$$\exists (x, y, z) \in \mathbb{R}^3 (x + y = 0) \wedge (x \cdot x - y \neq 1) \wedge (y \cdot z + x \geq 5)$$

- $\exists\mathbb{R}$: Class of all languages polynomial-time many-one reducible to ETR.
- $\text{NP} \subseteq \exists\mathbb{R} \subseteq \text{PSPACE}$.
- $\forall\mathbb{R}$: Defined similarly with the \forall quantifier.
- $\text{HN}_{\mathbb{R}}^{\mathbb{Z}}$ is $\exists\mathbb{R}$ -complete and its negation is $\forall\mathbb{R}$ -complete.

Status of HN over different rings

Ring	Complexity of HN
\mathbb{Z}	Undecidable [Matiyasevich '70]
\mathbb{Q}	Decidability is open
\mathbb{F}_2 (or any finite field)	NP-complete
\mathbb{C}	In Π_2^P under GRH [Koiran '96]
\mathbb{R}	In PSPACE [Canny '88, Renegar '92]

Goal: Show HN_R -completeness for natural problems from
Computational Algebra and Optimization

- Convexity testing
- Hyperbolicity testing
- Real stability testing
- Affine polynomial projection problem
- Sparse shift problem

Goal: Show HN_R -completeness for natural problems from
Computational Algebra and Optimization

- Convexity testing
- Hyperbolicity testing
- Real stability testing
- Affine polynomial projection problem [A14, open question]
- Sparse shift problem [A-Open2]

Schaefer, Cardinal, Miltzow: *The Existential Theory of the Reals as a Complexity Class: A Compendium*, 2024

Previous results

- Convexity testing: coNP-hard (Ahmadi, Olshevsky, Parrilo, Tsitsiklis, 2010)
- Hyperbolicity testing: coNP-hard (Saunderson, 2019)
- Real stability testing: coNP-hard (Chin, 2024)
- Affine polynomial projection problem: NP-hard for infinite fields (Kayal 2012)
- Sparse shift problem: HN_R -complete when R is an integral domain that is not a field (Chillara, Grichener, Shpilka, 2023)

Convexity testing is $\forall\mathbb{R}$ -complete

- *Hessian* of f :

$$H_f(\mathbf{x}) = \left[\frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_j} \right]_{n \times n}$$

- f is *convex*
 - $\iff \forall \mathbf{x} \in \mathbb{R}^n \quad H_f(\mathbf{x})$ is positive semidefinite
 - $\iff \forall \mathbf{x}, \mathbf{z} \in \mathbb{R}^n \quad \mathbf{z}^T H_f(\mathbf{x}) \mathbf{z} \geq 0.$
- Convexity testing $\in \forall\mathbb{R}$.

$\textcolor{red}{f}$ is homogeneous of degree 4 $\implies \textcolor{green}{z}^T H_{\textcolor{red}{f}}(\textcolor{blue}{x}) \textcolor{green}{z}$ is a **biquadratic polynomial**

$$\textcolor{red}{f} = \textcolor{blue}{x}_1^3 x_2 + x_1 x_3 x_4^2$$

$$\begin{bmatrix} z_1 & z_2 & z_3 & z_4 \end{bmatrix} \begin{bmatrix} 6x_1 x_2 & 3x_1^2 & x_4^2 & 2x_1 x_3 \\ 3x_1^2 & 0 & 0 & 0 \\ x_4^2 & 0 & 0 & 2x_1 x_4 \\ 2x_1 x_3 & 0 & 2x_1 x_4 & 2x_1 x_3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$

$$= 6x_1 x_2 z_1^2 + 6x_1^2 z_1 z_2 + 2x_4^2 z_1 z_3 + 4x_1 x_3 z_1 z_4 + 4x_1 x_4 z_3 z_4 + 2x_1 x_3 z_4^2$$

$\textcolor{red}{f}$ is homogeneous of degree 4 $\implies \textcolor{green}{z}^T H_{\textcolor{red}{f}}(\textcolor{blue}{x}) \textcolor{green}{z}$ is a **biquadratic polynomial**

$$\textcolor{red}{f} = \textcolor{blue}{x}_1^3 x_2 + x_1 x_3 x_4^2$$

$$\begin{bmatrix} z_1 & z_2 & z_3 & z_4 \end{bmatrix} \begin{bmatrix} 6x_1 x_2 & 3x_1^2 & x_4^2 & 2x_1 x_3 \\ 3x_1^2 & 0 & 0 & 0 \\ x_4^2 & 0 & 0 & 2x_1 x_4 \\ 2x_1 x_3 & 0 & 2x_1 x_4 & 2x_1 x_3 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix}$$

$$= 6x_1 x_2 z_1^2 + 6x_1^2 z_1 z_2 + 2x_4^2 z_1 z_3 + 4x_1 x_3 z_1 z_4 + 4x_1 x_4 z_3 z_4 + 2x_1 x_3 z_4^2$$

Convexity testing for degree-4 homogeneous
 \leq_p Non-negativity testing for biquadratic polynomials
 \leq_p Universal theory of the reals

Convexity testing

\geq

[Ahmadi, Olshevsky, Parrilo, Tsitsiklis '10]

(Used for showing coNP-hardness)

Biquadratic non-negativity testing

\geq

[Our contribution]

Universal theory of the reals

$$\begin{array}{ccc}
 \text{Convexity testing} & & [\text{Ahmadi, Olshevsky, Parrilo, Tsitsiklis '10}] \\
 \geq & & (\text{Used for showing coNP-hardness}) \\
 \text{Biquadratic non-negativity testing} & & \\
 \geq & & [\text{Our contribution}] \\
 \text{Universal theory of the reals} & &
 \end{array}$$

$\forall \mathbb{R}$ -complete problems

Easy:

$$\forall \mathbf{x} \in [-1, 1]^n \quad f(\mathbf{x}) > 0 \quad (\deg f = 4)$$

[Schaefer, Stefankovic '24]:

$$\forall \mathbf{x} \quad f(\mathbf{x}) \geq 0 \quad (\deg f = 4)$$

Our mini-goal:

$$\forall \mathbf{x} \quad f(\mathbf{x}) \geq 0 \quad (\text{semi-biquadratic } f)$$

Our final goal:

$$\forall \mathbf{x} \quad f(\mathbf{x}) \geq 0 \quad (\text{biquadratic } f)$$

$$\boxed{\forall \mathbf{x} \in [-1, 1]^n \ f(\mathbf{x}) > 0 \quad \longrightarrow \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \ P(\mathbf{x}, \mathbf{y}, \mathbf{z}) \geq 0}$$

Construction in [Schaefer, Stefankovic '24]:

$$\begin{aligned} P(\mathbf{x}, \mathbf{y}, \mathbf{z}) = & f(\mathbf{x}) + 400 \left((y_1 - 1/16)^2 + \sum_{i=2}^m (y_i - y_{i-1}^2)^2 \right) - y_m^2 + y_m^4 \\ & + \sum_{i=1}^n \left((x_i z_{i+n} - 2z_i)^2 + (z_{i+n} - z_i^2 - 1)^2 \right) \end{aligned}$$

$$\boxed{\forall \mathbf{x} \in [-1, 1]^n \ f(\mathbf{x}) > 0 \quad \longrightarrow \quad \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \ P(\mathbf{x}, \mathbf{y}, \mathbf{z}) \geq 0}$$

Construction in [Schaefer, Stefankovic '24]:

$$\begin{aligned} P(\mathbf{x}, \mathbf{y}, \mathbf{z}) = & f(\mathbf{x}) + 400 \left((y_1 - 1/16)^2 + \sum_{i=2}^m (y_i - y_{i-1}^2)^2 \right) - y_m^2 + y_m^4 \\ & + \sum_{i=1}^n \left((x_i z_{i+n} - 2z_i)^2 + (z_{i+n} - z_i^2 - 1)^2 \right) \end{aligned}$$

Strategy to semi-biquadratize:

- Fix problematic monomials by creating duplicate variables, e.g., replace y_m^4 with $y_m^2 w_m^2$ for a new variable w_m .
- Add the term $(y_m - w_m)^2$ to P .

Semi-biquadratic to Biquadratic

How do we biquadratize the polynomial $f(y_1, y_2, w_1, w_2) = y_1 y_2 w_1 w_2 + y_1 w_2 + w_1$?

- Homogenizing w.r.t. a variable?

$$t^4 f(y_1/t, y_2/t, w_1/t, w_2/t) = y_1 y_2 w_1 w_2 + y_1 w_2 t^2 + w_1 t^3 \rightarrow \text{can't be biquadratic.}$$

Semi-biquadratic to Biquadratic

How do we biquadratize the polynomial $f(y_1, y_2, w_1, w_2) = y_1 y_2 w_1 w_2 + y_1 w_2 + w_1$?

- Homogenizing w.r.t. a variable?

$$t^4 f(y_1/t, y_2/t, w_1/t, w_2/t) = y_1 y_2 w_1 w_2 + y_1 w_2 t^2 + w_1 t^3 \rightarrow \text{can't be biquadratic.}$$

- Homogenize w.r.t. two variables.

$$s^2 t^2 f(y_1/s, y_2/s, w_1/t, w_2/t) = y_1 y_2 w_1 w_2 + y_1 s w_2 t + s^2 w_1 t.$$

Affine Polynomial Projection Problem

PolyProj_F over a field F

Input: Polynomials $f \in \mathbb{F}[y_1, \dots, y_m]$, $g \in \mathbb{F}[x_1, \dots, x_n]$

Output: Does $\exists m \times n$ matrix A and vector $b \in \mathbb{F}^m$ such that $f(A\mathbf{x} + b) = g(\mathbf{x})$

Importance:

- $\text{VP} = \text{VNP} \implies$ The Permanent Polynomial is an affine projection of the Determinant Polynomial with only quasi-poly blowup in size.
- Matrix multiplication has an $\tilde{O}(n^2)$ algorithm if $\text{Mat}_n = \sum_{1 \leq i, j, k \leq n} x_{ij} y_{jk} z_{ki}$ is an affine projection of $\text{SP}_m = \sum_{i=1}^m x_{i1} x_{i2} x_{i3}$ for $m = \tilde{O}(n^2)$.

Prior result

Theorem (Kayal '12)

PolyProj_F is NP-hard for all infinite fields F .

Our result

Theorem

PolyProj_F is HN $_F$ -hard for all fields F .

Sparse Shift Problem

SparseShift _{R} over a ring R

Input: Polynomial $f \in R[x_1, \dots, x_n]$

Output: Does $\exists (a_1, \dots, a_n) \in R^n$ such that $f(x_1 + a_1, \dots, x_n + a_n)$ has fewer monomials than $f(x_1, \dots, x_n)$?

Prior result

Theorem (Chillara, Grichener, Shpilka '23)

SparseShift_R is HN_R -hard for integral domains R which are not fields.

Our result

Theorem

SparseShift_F is HN_F -hard for all infinite fields F .

\implies SparseShift_F is HN_F -complete when $F = \mathbb{R}$ or \mathbb{C} .

Saarland University is inviting applications for a

- tenure track professorship (W2 tt W3) in
- quantum algorithms, complexity, and quantum information
- position within the CS department
- associated with the new center for quantum technologies

More infos: www.uni-saarland.de → job vacancies

Thank you!