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Abstract

Sensitivity Conjecture Proof of [Hua19] is presented.

1 Sensitivity Conjecture

Let Qn be the n-dimensional hyper-cube graph, whose vertex set consists of vectors in {−1, 1}n, and two vectors are
adjacent if they differ in exactly one coordinate. For an undirected graph G, we use the standard graph-theoretic
notations ∆(G) for its maximum degree, and λ1(G) for the largest eigenvalue of its adjacency matrix.

For x ∈ {−1, 1}n and a subset S of indices from [n], we denote by xS the binary vector x with all indices in S
flipped. For f : {−1, 1}n −→ {−1, 1}, the local sensitivity s( f , x) on the input x is defined as the number of indices
i, such that f (x) 6= f (x{i}), and the sensitivity s( f ) of f is maxx s( f , x). The local block sensitivity bs( f , x), is the
maximum number of disjoint blocks B1, B2, . . . , Bn of [n], such that for each Bi, f (x) 6= f (xBi). Similarly, the
block sensitivity bs( f ) of f is maxx bs( f , x). Although seemingly unnatural, the block sensitivity is known to be
polynomially related to many other complexity measures, including the certificate complexity, the decision tree
complexity, the quantum query complexity, and the degree of the Boolean function (as real polynomials). Obviously
bs( f ) ≥ s( f ).

Conjecture 1.1 (Sensitivity Conjecture). For every Boolean function f, bs( f ) ≤ poly(s( f )).

2 Proof

Recall that Qn denotes the n-dimensional hyper-cube graph. For an induced graph G of Qn, let Qn−G denote the sub-

graph of Qn induced on the vertex set V(Qn) \V(G). For an induced graph G of Qn, let Γ(G)
def
=== max(∆(G), ∆(Qn−

G)). The degree of a Boolean function f , denoted by deg( f ), is the degree of the unique multi-linear real polynomial
that represents f . Gotsman and Linial [GL92] proved the following remarkable result.

Theorem 2.1 (Gotsman and Linial [GL92]). Consider the following two statements.

1. For any induced sub-graph G of Qn with |V(G)| 6= 2n−1, we have Γ(G) ≥
√

n.

2. For any Boolean function f , we have s( f ) ≥
√

deg( f ).

Then (1)⇐⇒ (2).

Proof. We first transform (1) into a statement concerning Boolean functions: Associate with the sub-graph G a Boolean
function g such that g(x) = 1 iff x ∈ V(G). Note that degG(x) = n − s(g, x) for x ∈ V(G). We also have that
degQn−G(x) = n− s(g, x) for x 6∈ V(G). Therefore (1) can be restated as (A): For any Boolean function g, E(g) 6= 0
implies that ∃x : s(g, x) ≤ n−

√
n.

Now consider the following statement (B): For any Boolean function f with deg( f ) = n we have s( f ) ≥
√

n.
Clearly, (2) implies (B). We prove that (B) implies (2). Let f be a Boolean function of degree d. Fix a monomial of
degree d of the representing polynomial of f . Without loss of generality we may assume the monomial is x1x2 . . . xd.

Define g(x1, x2, . . . , xd)
def
=== f (x1, x2, . . . , xd, 1, . . . , 1). Then, s( f ) ≥ s(g) ≥

√
d, as desired. Thus (2) is equivalent to

(B).
Therefore we have the following equivalences.
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(1)⇐⇒(A)

(2)⇐⇒(B)

Proof of (A) =⇒ (B): suppose (B) is false. Thus there exists a Boolean function f with s( f ) <
√

n with deg( f ) = n.

Consider the function g(x) def
=== f (x)p(x), where p(x) = ∏i∈[n] xi is the parity function. Observe that Fourier

coefficient f̂ (I) = ĝ([n] \ I) for any subset I ⊆ [n]. Since deg( f ) = n, we get that E(g) = ĝ(∅) 6= 0. Furthermore,
s(g, x) = n− s( f , x). This implies that s(g, x) > n−

√
n. Thus (A) =⇒ (B).

Proof of (B) =⇒ (A): Assume that ∀x, s(g, x) > n−
√

n. This implies that s( f ) <
√

n. By (B), deg( f ) < n, which
is equivalent to f̂ ([n]) = ĝ(∅) = E(g) = 0 contradicting the premise.

[NS92] showed that bs( f ) ≤ 2(deg( f ))2. Thus if we can prove statement (1) of Theorem 2.1 then we obtain that
bs( f ) ≤ 2(s( f ))4. This would imply the Sensitivity conjecture (Theorem 1.1). Part (1) of Theorem 2.1 was proved in
[Hua19]. We prove it in the rest of the write-up. We first recall the following results. Recall that if polynomials f (x)
and g(x) have all real roots r1 ≤ r2 ≤ · · · ≤ rn and s1 ≤ s2 ≤ · · · ≤ sn−1 then we say that f and g interlace if and only
if r1 ≤ s1 ≤ r2 ≤ s2 ≤ · · · ≤ sn−1 ≤ rn.

Theorem 2.2 ([Rah+02]). The roots of polynomials f , g interlace if and only if the linear combinations f + αg have all real
roots for all α ∈ R.

Corollary 2.1 ([Fis05]). If A is a Hermitian matrix, and B is a principle sub-matrix of A, then the eigenvalues of B interlace
the eigenvalues of A.

Proof. Choose α ∈ R, partition A as:

A =

[
B c
c∗ d

]
.

and consider the following equation that follows from linearity of the determinant:∣∣∣∣B− xI c
c∗ d− x + α

∣∣∣∣ = ∣∣∣∣B− xI c
c∗ d− x

∣∣∣∣+ ∣∣∣∣B− xI c
0 α

∣∣∣∣ .

Since the matrix on the left hand side is the characteristic polynomial of a Hermitian matrix, |A− xI|+ α |B− xI|
has all real roots for any α, and hence the eigenvalues interlace.

Lemma 2.1. Let us consider a block matrix M of size (n + m)× (n + m) of the form

M =

[
A B
C D

]
.

Here A, B, C, D are n× n, n×m, m× n, m×m respectively. If D is invertible then

det(M) = det(A− BD−1C)det(D).

If m = n and if C, D commute then det(M) = det(AD− BC).

Theorem 2.3 (Cauchy’s Interlace Theorem, [Fis05]). Let A be a symmetric n × n matrix, and B be a m × m principal
sub-matrix (obtained by deleting the same set of rows and columns from A) of A, for some m < n. If the eigenvalues of
A are λ1 ≥ λ2 ≥ · · · ≥ λn, and the eigenvalues of B are µ1 ≥ µ2 ≥ · · · ≥ µm, then for all 1 ≤ i ≤ m we have that
λi ≥ µi ≥ λi+n−m.

Proof. We just need to prove the case when m = n− 1, because then the claim follows from induction on n−m. The
case m = n− 1 follows from Corollary 2.1.

Lemma 2.2. We define a sequence of symmetric square matrices iteratively as follows,

A1 =

[
0 1
1 0

]
, An =

[
An−1 I

I −An−1

]
.

Then An is a 2n × 2n matrix whose eigenvalues are
√

n of multiplicity 2n−1, and −
√

n of multiplicity 2n−1.
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Proof. First notice that A2
n = nI (by induction on n). The characteristic polynomial pn(x) of An is:

pn(x) def
=== det(xI − An) = det

(
xI − An−1 I

I xI + An−1

)
.

We can use Lemma 2.1 with I and xI + An−1 commuting. We obtain that:

pn(x) = det((xI − An−1)(xI + An−1)− I).

= det((x2 − 1)I − A2
n−1)

= det((x2 − 1)I − (n− 1)I)

= (x2 − n)2n−1

Lemma 2.3. Suppose H is an m-vertex undirected graph, and A is a symmetric matrix whose entries are in {±1, 0} and whose
rows and columns are indexed by V(H), and whenever u and v are non-adjacent in H, A(u, v) = 0. Then

∆(H) ≥ λ1
def
=== λ1(A).

Proof. Suppose ~v is the eigen-vector corresponding to λ1. Then λ1~v = A~v. Without loss of generality, assume v1 is the
coordinate of ~v that has the largest absolute value. Then

|λ1v1| = |(A~v)1| =
∣∣∣∣∣ m

∑
j=1

A1,jvj

∣∣∣∣∣ =
∣∣∣∣∣∑j∼1

A1,jvj

∣∣∣∣∣ ≤ ∑
j∼1

∣∣A1,j
∣∣ |v1| ≤ ∆(H) |v1| .

Therefore |λ1| ≤ ∆(H).

Theorem 2.4. For every integer n ≥ 1, let H be an arbitrary (2n−1 + 1)-vertex induced sub-graph of Qn, then ∆(n) ≥
√

n.

Proof. Let An be the sequence of matrices defined in Lemma 2.2. Note that the entries of An are in {±1, 0}. By the
iterative construction of An, it is not hard to see that when changing every −1-entry of An to 1, we get exactly the
adjacency matrix of Qn, and thus An and Qn satisfy the conditions in Lemma 2.3. For example, we may let the
upper-left and lower-right blocks of An correspond to the two (n− 1)-dimensional sub-cubes of Qn, and the two
identity blocks correspond to the perfect matching connecting these two sub-cubes. Therefore, a (2n−1 + 1)-vertex
induced sub-graph H of Qn and the principal sub-matrix AH of An naturally induced by H also satisfy the conditions
of Lemma 2.3. As a result,

∆(H) ≥ λ1(AH).

On the other hand, from Lemma 2.2, the eigenvalues of An are known to be
√

n, · · · ,
√

n,−
√

n, · · · ,−
√

n.

Note that AH is a (2n−1 + 1) × (2n−1 + 1) sub-matrix of the 2n × 2n matrix An. By Cauchy’s Interlace Theorem
(Theorem 2.3),

λ1(AH) ≥ λ1+2n−(2n−1+1)(An) = λ2n−1(An) =
√

n.

Combining the two inequalities we just obtained ans using Lemma 2.3, we have ∆(H) ≥
√

n, completing the proof of
our theorem.

Now let us see an alternative proof due to shalev ben-david.

Proof. Let S be the
√

n-eigenspace of the matrix An. Then S has dimension 2n−1. Consider a large principal sub-matrix
B of An. We wish to lower bound its spectral norm (maximum eigenvalue). This is the same as maximizing over
vectors x with norm 1. But it’s not hard to see that this maximum is the same as the maximum of over unit vectors
x that have a 0 entry on indices corresponding to rows/columns that are not in B. Let L by the subspace of all
such vectors with 0 entries on those indices. Then L has dimension at least 2n−1 + 1, since B uses at least that many
rows/columns. It follows that the intersection of L with S must have dimension at least 1. Thus there is a unit
vector x that is in both L and S, meaning it has 0’s on entries corresponding to rows/columns not in B but it is a√

n-eigenvector of An. This gives a lower bound of
√

n on the spectral norm of B, as desired.
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3 Inertia

For a Hermitian matrix H, we use n+(H) to denote the number of positive eigen values of H, n−(H), n0(H) are also
defined similarity.

Definition 3.1 ([LP15]). For a graph G, αq(G) is the maximum integer t ∈ N for which there exist positive semi-
definite matrices ρ, ρu

i ∈ Sd
+ for i ∈ [t], u ∈ V(G) (for some d ≥ 1) satisfying the following conditions:

〈ρ, ρ〉 =1

∑
u∈V(G)

ρu
i =ρ (∀i ∈ [t])

〈ρu
i , ρv

j 〉 =0 (∀i 6= j ∈ [t], ∀{u, v} ∈ E(G) or u = v)

〈ρu
i , ρv

i 〉 =0 (∀i ∈ [t], ∀u 6= v ∈ V(G))

Here Sd
+ is the cone of d× d positive semi-definite matrices for an arbitrary d ≥ 1.

Theorem 3.1 ([WEA19]). For all graphs G and all Hermitian matrices H,

α(G) ≤ αq(G) ≤ αp(G) ≤ n0(H ◦ AG) + min{n+(H ◦ AG) + n−(H ◦ AG)}.

Here ◦ denotes the Hadamard product (also called the Schur or entry-wise product).

αp(G) is the projective packing number of G. There exist graphs G for which there is an exponential separation
between the independence number α(G) and αq(G) [MR16].
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